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Abstract 

Moving smoothly is generally considered as a higher-order goal of motor control and moving 

jerkily as a witness of clumsiness or pathology. Yet many common and well-controlled 

movements (e.g. tracking movements) have irregular velocity profiles with widespread 

fluctuations. The origin and nature of these fluctuations have been associated with the 

operation of an intermittent process, but in fact remain poorly understood. Here we studied 

velocity fluctuations during slow movements using combined experimental and theoretical 

tools. We recorded arm movement trajectories in a group of healthy participants performing 

back-and-forth movements at different speeds, and we analyzed velocity profiles in terms of 

series of segments (portions of velocity between two minima). We found that most of the 

segments were smooth (i.e. corresponding to a biphasic acceleration), had constant duration 

irrespective of movement speed and linearly increasing amplitude with movement speed. We 

accounted for these observations with an optimal feedback control model driven by a 

staircase goal position signal in the presence of sensory noise. Our study suggests than one 

and the same control process can explain the production of fast and slow movements, i.e. fast 

movements emerge from the immediate tracking of a global goal position and slow 

movements from the successive tracking of intermittently updated intermediate goal 

positions.  
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New & Noteworthy 

We show in experiments and modeling that slow movements could result from the brain 

tracking a sequence of via-points regularly distributed in time and space. Accordingly slow 

movements would differ from fast movement by the nature of the guidance and not by the 

nature of control. This result could help understanding the origin and nature of slow and 

segmented movements frequently observed in brain disorders. 

 

 

Keywords: arm movement, intermittent control, modeling 
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Introduction 

Motor coordination is defined as the ability to control the kinematics and dynamics of 

multiple degrees of freedom in space and time in order to reach intended goals (Bernstein 

1967). Solutions to the coordination problem have been inferred from experimental 

observations and computational modeling (Todorov and Jordan 2002; Torres and Zipser 

2004). A central and popular trend is based on the observed smoothness and gracefulness of 

goal-directed movements (Flash 1990) which has been turned into the statement that 

smoothness is a performance index which guides the production of movement (Nelson 1983; 

Flash and Hogan 1985). Although it is still debated whether movements are planned to be 

smooth or smoothness is only a by-product of other optimization processes (Uno et al. 1989; 

Harris and Wolpert 1998), most computational models of motor control produce smooth 

movements (Harris and Wolpert 1998; Todorov and Jordan 2002; Guigon et al. 2007). 

 Yet, this “perfect” marriage between experiments and models is probably not the end 

of the story of motor control. There are at least two reasons for this. First, smoothness is an 

ill-defined quantity. Many different measures of smoothness exist but not all give a consistent 

description of actual movement regularity (Balasubramanian et al. 2012). Second, many 

categories of movement are not smooth, i.e. they are made of segments, units, 

submovements, and contain multiple velocity peaks, multiple velocity inversions, multiple 

zero-crossings of acceleration (different terms and quantifications are used in different fields 

and by different authors): tracking movements (Miall et al. 1985; Doeringer and Hogan 

1998), slow movements (Wadman et al. 1979; Morasso et al. 1983; Darling et al. 1988; 

Vallbo and Wessberg 1993; van der Wel et al. 2009), precision movements (Milner and Ijaz 

1990; Boyle et al. 2012a,b), developing and unskilled movements (Clifton et al. 1994; Torres 

and Andersen 2006), pathological movements (Hallett and Khoshbin 1980; Warabi et al. 

1986; Krebs et al. 1999; Shaikh et al. 2015). A common observation is that, for a given 
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amplitude, the velocity profile of the movement changes with duration, i.e. the profile 

becomes more irregular and contains more peaks as duration increases. This has been 

observed qualitatively for movements of varying durations obtained by different instructions 

and conditions: duration imposed by a tempo (Wadman et al. 1979; Darling et al. 1988; van 

der Wel et al. 2009; Shmuelof et al. 2012; Park et al. 2017; Salmond et al. 2017), duration 

imposed by velocity instructions (e.g. slow, natural, fast; Darling and Cole 1990; Messier et 

al. 2003; Ambike and Schmiedeler 2013; Rand and Shimansky 2013), duration constrained 

by target size (Boyle and Shea 2011; Boyle et al. 2012a,b; Michmizos and Krebs 2014). More 

quantitatively, several studies have reported an approximate linear relationship between 

movement duration and different measures of smoothness (number of velocity peaks: van der 

Wel et al. 2009; Salmond et al. 2017 — number of submovements: Lee et al. 1997; Shmuelof 

et al. 2012 — frequency of submovement: Meyer et al. 1988 — jerk: Salmond et al. 2017). In 

these conditions, smoothness increased with average movement velocity (Hernandez et al. 

2012; Ambike and Schmiedeler 2013). A consistent result was obtained when movement 

velocity was directly manipulated in tracking tasks (Miall et al. 1986; Beppu et al. 1987; 

Vallbo and Wessberg 1993; Asano et al. 2013; see also Doeringer and Hogan 1998; Levy-

Tzedek et al. 2010), i.e. slow movements were segmented and segmentation decreased as 

tracking velocity increased (Miall et al. 1986; see also Doeringer and Hogan 1998; Levy-

Tzedek et al. 2010). More specifically, Vallbo and Wessberg (1993) reported a specific 

temporal organization of slow movements in terms of ~8-10 Hz discontinuities in 

acceleration profiles which was invariant with respect to movement speed. This proposal is 

currently the most detailed available description of slow movements.  

 The main characteristic of movement segmentation is illustrated schematically in 

Fig. 1A. Both fast and slow movements begin with a rapid increase in velocity and end with a 

rapid decrease, but they differ by the presence of velocity fluctuations between these two 
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phases which are specific to the slow movements. These fluctuations are not predicted by 

motor control models that embed an optimization criterion since these models would 

typically produce movements as shown in Fig. 1B, i.e. smoothness is independent of 

movement duration. Asymmetric velocity profiles (Harris and Wolpert 1998; Guigon et al. 

2007; Berret and Jean 2016) and submovements (Li et al. 2018) are found in some optimal 

control models, but nothing resembling the results of Fig. 1A has ever been reported. In fact, 

optimal control does not a priori embed a principle that would make a solution with multiple 

impulses more optimal than a solution with a single impulse. An attractive concept to account 

for movement segmentation is the notion of intermittency, i.e. a movement would be 

composed of a series of "intermittently executed overlapping segments" (Doeringer and 

Hogan 1998). Yet intermittency has been mainly used as a descriptive principle while 

computational bases of intermittency remain elusive (see Discussion). 

 The goal of this article is to provide an experimental and computational description of 

velocity fluctuations during slow movements. Our experimental design resembles that used 

by Vallbo and Wessberg (1993). While their conclusions were based on a spectral analysis, 

we perform a fine-scale kinematic analysis of velocity fluctuations. First, we report 

quantitative experimental observations on movements executed by a group of young, healthy 

participants. Then we describe a model that gives a detailed account of these observations. 

Materials and Methods 

Ethics statement 

The experiment was approved by the Ethical Assessment Committee at the Sorbonne 

Université, protocol IRB-20141400001072. Participants signed a consent form prior to 

participating in the experiment and in accordance with the ethical guidelines of Sorbonne 

Université and in accordance with the Declaration of Helsinki. 
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Participants 

Ten volunteers (23–28 yr old, 6 male and 4 female) participated in the behavioral experiment. 

They were all right-hand according to the Edinburgh Protocol of handedness (Oldfield 1971). 

They had no known neurological disorders and normal or corrected to normal vision and they 

were uninformed as to the purpose of the experiment. 

Apparatus 

Participants were seated on a chair and used their right hand to move a stylus on a graphic 

tablet (54.5 cm diagonal, active area 47.9 × 27.1 cm, resolution 1920 × 1080 pixels; CINTIQ 

22HD, Wacom, Vancouver, WA). The flow of the task was controlled by a personal 

computer running Windows 7 (Microsoft Corporation, USA). The 2D position of the tip of 

the stylus was recorded at ~130 Hz, resampled by interpolation at 200 Hz to obtain fixed time 

steps, and stored on the computer for offline processing and analysis using custom written 

Matlab scripts (Mathworks, Natick, MA, USA). 

Experimental procedure 

The purpose of the procedure was to induce movements at constant speed. We controlled the 

speed by manipulations of movement amplitude and duration. As a task with both spatial and 

temporal constraints can be difficult and elicit odd behaviors (e.g. fast displacements with 

long pauses to fulfill the temporal constraints, multiple corrections to control spatial 

precision), we emphasized the temporal over the spatial constraint. At the beginning of a trial, 

two lines (10 cm long) appeared on the tablet: they were perpendicular to the bottom/left to 

top/right diagonal and at equal distance from the center of the display. When ready, 

participants triggered the start of the trial, positioned the tip of the stylus at the center of the 

bottom/left line, and paced their movements with acoustic cues (frequency 700 Hz, 30 ms, 

40 dB) delivered through headphones. The participants were given the instructions of: 
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1. moving the tip of the stylus periodically between the two lines and perpendicularly to the 

lines (Fig. 2A), the acoustic cues indicating the time to revert movement direction; 2. moving 

as smoothly as possible and avoiding terminal corrections to guarantee spatial precision. No 

instructions were given regarding the contribution of arm segments (shoulder, elbow, wrist) 

to stylus displacement, yet the movements were dominated by elbow displacements (Salmond 

et al. 2017). Trial duration was 30 s. Visual feedback of the arm was available and visual 

feedback of stylus position was drawn online and remained available for the duration of the 

trial. 

 Eight task conditions, i.e. eight combinations of movement amplitude (in cm) and 

period (in s), were used: 3.53/2.5, 7.07/3.5, 3.53/1.5, 7.07/2.5, 15/3.5, 7.07/1.5, 15/2.5, 15/1.5 

corresponding to mean speed (in cm/s): 1.41, 2.02, 2.35, 2.83, 4.29, 4.71, 6, 10. Each 

condition contained 4 trials (120 s). The conditions were delivered in the indicated order 

(increasing mean speed). The total acquisition duration was ~40 min, including breaks 

between trials and between conditions. Prior to data collection, the participants performed 

several trials to become familiar with the stylus and the task. 

Data processing 

At this stage, a usual operation is the filtering of the raw data to reveal significant patterns 

and remove noise and irrelevant patterns. This operation is fundamental as it dictates the 

timescale of events that will be detected at the data analysis stage (see below). We reviewed a 

set of studies that analyzed similar types of data. Most of the studies used a low-pass filter 

with cut-off frequency in the range 5-100 Hz without any justification. In this framework, we 

proposed a new approach to the choice of the cut-off filtering frequency. This approach, 

described in the Results section, lead to a 9 Hz cut-off frequency. The data were thus filtered 

with a 4th order Butterworth low-pass filter at 9 Hz. 
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 Velocity, acceleration and jerk were obtained numerically from the two-sample 

difference of the position, velocity and acceleration signals, respectively. 

Data analysis 

Filtered kinematic data corresponding to horizontal displacement (displacement along the 

horizontal dimension of the tablet; Fig. 2A) were processed to quantify movement 

segmentation. An example of velocity profile (participant NH, movement speed 4.71 cm/s) is 

shown in Fig. 2B. To simplify processing, we identified unidirectional displacements 

(positive velocity for a left-to-right displacement, white box in Fig. 2B; negative velocity for 

a right-to-left displacement, gray box in Fig. 2B) and we changed the sign of velocity for the 

right-to-left displacements. We defined a segment as a pulse in the velocity profile, i.e. a 

portion between two consecutive positive minima (delimited by vertical dashed lines in 

Fig. 2B and shown schematically in Fig. 2C). Note that segments corresponding to a change 

in direction were not included in the analysis. A segment was initially described by two 

elementary quantities: duration (time between the two minima), and velocity (difference 

between peak velocity and velocity at start). Note that the terms duration/velocity are used to 

describe a segment and the terms period/speed refer to the overall movement. We added a 

third quantity (number of units, !!"#$) that characterizes the jerkiness of the pulse, i.e. the 

number of impulsions that are necessary to produce the pulse. We chose a quantification 

based on acceleration (rather than jerk) as it is an easily understandable quantity that is 

lawfully related to force. The number of units is related to the total number of acceleration 

peaks (in the ascending part of the pulse) and deceleration peaks (in the descending part of 

the pulse). For instance, a minimum-jerk segment has 2 units. To explain how we calculated 

!!"#$, we consider two schematic cases illustrated with velocity, acceleration and jerk 

profiles (Fig. 2C,D,E and Fig. 2F,G,H). In the case of Fig. 2C, !!!"# is 4 (Fig. 2D). A more 

complex case is shown in Fig. 2F. The ascending part has one unit (one acceleration peak) 
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but the acceleration profile is highly irregular (Fig. 2G). In this case, the jerk is decreasing at 

the start of the segment and a jerk peak occurs before the start of the segment (Fig. 2H, 

compared to Fig. 2E). We add one unit to account for this irregularity. 

 Each task condition (i.e. 120 s of back-and-forth movements of given movement 

speed) can be described by the set of segments it contains and summarized by 3 concise 

characteristics: 1. the distribution of numbers of units (i.e. how many segments have 2 units, 

3 units, ...); 2. the relationship between !!"#$ and duration of the segments; 3. the relationship 

between !!"#$ and velocity of the segments. The experiment can be described by the 

influence of movement speed on the distribution of numbers of units, the duration and the 

velocity of segments. 

Statistical analysis 

In general, we used classical statistical tests. When necessary, we used Bayesian statistics 

(ANOVA, linear regression) to assess the evidence for the null hypothesis (absence of effect; 

see Etz et al. 2018 for a tutorial on Bayesian data analysis). In Bayesian statistics 

(https://en.wikipedia.org/wiki/Bayes_factor), the ratio !!" (Bayes factor) of the likelihood 

probability of two competing hypotheses !! and !! (e.g an alternative and a null hypothesis), 

is calculated to quantify the support for !! over !!. If !!" > 1, !! is more strongly 

supported by the data under consideration than !!. In the case when !! corresponds an 

absence of effect, a scale for interpretation of !!" is: <0.01 decisive=, 0.01-0.03 very 

strong=, 0.03-0.1 strong=, 0.1-0.3 substantial=, 0.3-1 anecdotal=, 1-3 anecdotal≠, 3-10 

substantial≠, 10-30 strong≠, 30-100 very strong≠, >100 decisive≠. If a Bayes factor is for 

instance < 1, we will say that the evidence is anecdotal= or better. Bayes factors were 

calculated using JASP (JASP 2018). 
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Results 

Compliance with task instructions 

The participants performed back-and-forth movements paced by a metronome (Fig. 2B). For 

each task condition, we calculated the period P and mean speed S (i.e. mean of the velocity 

signal) of each unidirectional displacement and compared it to the desired period Pd and 

speed Sd. As P and S were not normally distributed in general (Shapiro-Wilk test), we used a 

one-sample Wilcoxon rank test. For each participant, we could not reject the null hypothesis 

that the median of the distribution of P−Pd is 0 (p < 0.05) in more than 6/8 conditions (75/80 

across participants). Then we performed a regression analysis between Pd and P−Pd across 

conditions for each participant. The slope (range −0.029/0.023) was non-significantly 

different from 0 in the 10 participants. Bayes factors (full vs intercept-only regression) were 

< 1 for the 10 participants. These results indicate that the participants complied with the 

request of the experimenter. 

Movement segmentation 

The main results of this experiment are shown in Figs. 3 and 4: 

- For a given participant and a given condition (movement speed), the velocity profile was 

made of segments (Fig. 2B). A large majority of the segments had 2 units (439/558, ~79%), a 

minority 3 units (98/558, ~18%), and the remainder 4 or more (21/558, ~3%) (Fig. 3A). 

Mean segment duration increased with !!"#$ (Fig. 3B; correlation coefficient, ! = 0.82). The 

distribution of segment duration is shown in Fig. 3C. Segment velocity and !!"#$ were 

loosely related (Fig. 3D; correlation coefficient, ! = 0.28). Note that for this participant and 

this condition, only 3 segments had 5 units (in blue in Fig. 3). Accordingly, the mean and std 

of duration and velocity of 5-unit segments were not meaningful. These observations were 

robust across participants and conditions. In particular, only a mean of 6/568 segments had 5 
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units. We did not analyze these results further as they are not directly informative on the 

strategy used to perform slow movements. Yet it is interesting to note that the model to be 

described accounts for these results (see Fig. 8). 

- For a given participant, the distribution of !!"#$ (Fig. 4A) and the duration of n-unit 

segments (n = 2-5; Fig. 4B) varied little with movement speed and the velocity of n-unit 

segments increased with movement speed (Fig. 4C). These observations were robust across 

participants. 

 We performed single-participant analysis to assess the statistical strength of these 

observations: 

- We performed a one-factor Bayesian ANOVA on 2-unit segment duration with movement 

speed as factor. Bayes factors for the 10 participants (Pa) were: Pa1=0.09 (strong=), 

Pa2=0.039 (strong=), Pa3=0.004 (decisive=), Pa4=0.016 (very strong=), Pa5=204.4 

(decisive≠), Pa6=0.003 (decisive=), Pa7=0.186 (substantial=), Pa8=13.59 (strong≠), 

Pa9=0.004 (decisive=), Pa10=0.000041 (decisive=). Analysis of Pa5 gave a Bayes factor of 

0.022 (very strong=) when the 1st speed condition is removed. Analysis of Pa8 gave a Bayes 

factor of 0.0032 (decisive=) when the 3rd speed condition is removed. Post hoc tests gave 

Bayes factor < 1 (anecdotal= or better) in 82% of the comparisons. 

- We performed a linear regression between movement speed and 2-unit segment duration. 

We could not reject the hypothesis that the regression slope is null (p < 0.05) in five 

participants. Bayes factors (full vs intercept-only regression) for the 10 participants were: 

Pa1=0.0623 (strong=), Pa2=2.06 (anecdotal≠), Pa3=3.03 (substantial≠), Pa4=0.445 

(anecdotal=), Pa5=10227 (decisive≠), Pa6=0.123 (substantial=), Pa7=0.171 (substantial=), 

Pa8=1.678 (anecdotal≠), Pa9=0.0818 (strong=), Pa10=0.04 (strong=). 

- We performed a linear regression between movement speed and 2-unit segment velocity. 

Slope range was 0.296/0.439, intercept range -0.22/0.14 and mean R2 0.187 (p < 0.001). We 
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could not reject the hypothesis that the regression intercept is null (p < 0.05) in 7/10 

participants. 

- Similar results were obtained for 3- and 4-unit segments. The 5-unit segments were not 

included in the statistical analysis due to the small size of the samples. 

- Group data were used for comparisons with a model and can be seen in Figs. 7 and 8. 

Choice of the cut-off filtering frequency 

Our results have been obtained with a specific choice of filtering frequency (Fs = 9 Hz, s for 

stylus) and would remain qualitatively similar but quantitatively different for a different 

filtering frequency (see Salmond 2014; Salmond et al. 2017). We propose the following 

explanation of our choice (we only describe the method and do not provide experimental 

results). We can consider the mean duration of the 2-unit segments (which is a well-defined 

quantity; Fig. 3) as an elementary timescale of motor processing. The most plausible 

timescale of motor processing should be found when well-identified and easily detectable 

events (e.g. spikes) trigger elementary motor outputs. For example, simultaneous recordings 

of single motor unit discharges and correlated fluctuations in force during index finger 

abduction reveal a specific rise and fall of force after each discharge of a motor unit (Fig. 4 in 

Galganski et al. 1993). The duration of this elementary pulse of force is around 120 ms. We 

reproduced the experimental protocol of Galganski (without motor unit recordings). 

Participants were instructed to exert a constant force (20% MVC) with the index finger on a 

pinchmeter (P200, Biometrics Ltd, UK; sampling at 1 kHz) guided by a visual feedback. The 

recorded force profiles (see Fig. 4A in Galganski) were filtered (cut-off frequency Fp, p for 

pinchmeter) and analyzed to identify "force" segments (same method as that used for the 

velocity profiles recorded with the stylus). The characteristics of segments in the force 

profiles were qualitatively similar to those found in the velocity profiles. We adjusted Fp so 

that the mean duration of 2-unit "force" segments is 120 ms. We found Fp = 10 Hz. Fp can be 
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considered as an appropriate filtering frequency for force signals recorded at 1 kHz. Then we 

reproduced our velocity experiment using an accelerometer (ACL300, Biometrics Ltd, UK; 

sampling at 1 kHz) as measurement system. The recorded acceleration profiles were 

integrated to obtain velocity profiles which were filtered (cut-off frequency Fa = Fp = 10 Hz, 

a for accelerometer) and analyzed to identify "velocity" segments. Again the characteristics 

of segments recorded with the accelerometer were qualitatively similar to those found in the 

velocity profiles recorded with the stylus. On this basis we adjusted Fs so that the mean 

duration of 2-unit segments in the stylus experiment is equal to the mean duration of 2-unit 

segments in the accelerometer experiment. We found Fs = 9 Hz. This value of cut-off 

frequency was actually used for data processing (see Data processing). 

 To confirm this method, we calculated the power spectral density function of the 

unfiltered acceleration signal. For one participant, there was a broad spectrum between 4 and 

12 Hz with a peak around 8 Hz for all task conditions (Fig. 5A). Across participants, peak 

frequency varied little with movement speed, with a mean of 8.05 Hz (Fig. 5B). This 

observation indicates the putative presence of events of ~120 ms duration in the acceleration 

signal, and lends some independent support to the methodology described above and to our 

choice of cut-off frequency. 

Modeling 

In order to make sense of these results, we developed a computational model based on 

optimal feedback control theory (see Discussion for alternative models). We used the 

framework of control theory (Todorov 2004), i.e. we considered an object to be controlled 

with dynamics 

!!(!)
!" = !(!(!),!(!))+ !!"#(!), 
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where ! is the state of the object, ! a function, !!"# a noise term, and ! an input defined by 

the control policy 

! ! = ! !∗(!),!(!) , 

where !∗ is the goal state and ! the estimated state of the object (italic is used for scalars, 

bold italic for vectors, and bold for matrices). If ! describes the dynamics of a moving limb 

and ! tracks a goal (e.g. trajectory, fixed point), the model produces displacements which can 

be analyzed in terms of segments and compared to the experimental data. We chose for ! an 

optimal feedback control policy (combined with an optimal state estimator), i.e. at each time 

! between !! and !!, the input ! minimizes the cost function 

!(!) = ! ! ! ,! ! !"
!!

!
, 

subject to object dynamics, with boundary conditions !(!!) = !!, !(!) = !(!) and 

! !! = !∗ ! , where ! is a positive function. The rationale for this choice is to consider a 

controller that solves central problems of motor control (trajectory formation, degree-of-

freedom problem, structured variability; Hoff and Arbib 1993; Todorov and Jordan 2002; Liu 

and Todorov 2007; Guigon et al. 2008a,b; Izawa et al. 2008). The quantity !! − ! defines the 

prediction horizon of control. If !! is fixed, the prediction horizon decreases as the controlled 

object approaches its goal. In this case, the control policy is nonstationarity and lacks the 

required flexibility in time observed in motor control (Torres and Andersen 2006; Guigon 

2010; Rigoux and Guigon 2012). This issue can be addressed using an infinite-horizon 

formulation of optimal control (i.e. !! = +∞; Rigoux and Guigon 2012; Qian et al. 2013). 

Here we exploited the notion of receding horizon (i.e !! = ! + !!, where !! is a fixed 

duration) which corresponds to a fixed prediction horizon (!! − ! = !!). This means that at 

each time, there is a fixed duration !! to reach the intended goal, irrespective of the time 

already spent for this goal. Control with a receding horizon defines model predictive control 
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(Camacho and Bordons 1999), and has already been used in models of motor control (Bye 

and Neilson 2008, 2010; Berio et al. 2017). 

 As it is formulated, the model has a single free parameter !!, and, in the case of a 

second-order linear dynamics (!) and quadratic cost (!), would produce smooth velocity 

profiles as !! is varied (e.g. Fig. 1B). In detail, the state ! is a vector of position and velocity 

! ! !, !! = !! 0 !, and !∗ = !! 0 !
, where !! and !! define the initial and final positions, 

respectively. There is evidence that only the fastest movements are smooth (see 

Introduction), which suggests that !! is constant. 

 The model can be used without modifications to produce a movement of a given 

amplitude (or duration) at constant speed. The principle is to set the goal velocity to the 

intended movement speed and increment periodically the goal position by a fixed quantity 

equal to the expected displacement in a period at the given speed. Formally, we note ! the 

movement speed and !! the period. In the case of a second-order dynamics, the goal state 

!∗(!) is the vector !∗(!) !∗(!) !. We set !∗(!) = ! and 

!∗(!) = !!! ℎ ! − !"!
!

!!!
, 

where ℎ is the step function (ℎ(!) = 0 if ! < 0 otherwise ℎ(!) = 1) and ! = !/!!  (for 

given movement duration !) or ! = !/!/!!  (for given movement amplitude !). In fact, the 

goal position is a regular staircase signal. Note that the control principle is not to follow 

instantaneously the trajectory defined by the goal state, but to reach the goal state defined at 

each time ! at the horizon ! + !!. The staircase signal can be considered as a sequence of via-

points regularly distributed in time and space. 

 We simulated the model for an inertial point actuated by a linear muscle, i.e. 
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! ! ! ,! ! =
!! = !!
!!! = !!

!!! = −!! + !!
!!! = −!! + !

 

where ! and ! are parameters, with !(!,!) = !!. State estimation was defined by 

! ! = ! ! ! ,! ! + ! ! ! − !! ! , 

where ! is the Kalman gain, ! the observation matrix, and 

!(!) = !!(!)+ !!"#(!), 

where !!"# is a noise term. Parameters were ! = 1 kg, ! = 0.05 s, !! = 0.28 s, and 

!! = 0.13 s, and ! is the 4×4 identity matrix. 

 We first considered the noise-free case. Simulated position and velocity profiles for 4 

movement speeds (1, 2, 5, 10 cm/s) are shown in Fig. 6A,B. The staircase goal position !∗(!) 

and the constant goal velocity !∗(!) are shown only for the fastest movement in Fig. 6A,B. 

The velocity profiles were segmented. All the segments had 2 units. Their duration was 

constant (~130 ms) independent of movement speed (Fig. 6C) and their velocity increased 

linearly with movement speed (Fig. 6D). Segment duration was strictly determined by !!. The 

slope of the speed/velocity relationship decreased with !!. 

 The deterministic model provides an elementary mechanism that can partially account 

for the experimental observations. In fact, the model cannot explain the existence of segments 

with more than 2 units and properties related to variability (Fig. 3). An hypothesis is that the 

existence of segments with more than 2 units and the observed variability in segment 

duration, velocity and !!"#$ are due to the corruption of a nominal deterministic process by 

noise. We explored this issue using a classic approach to noise modeling, i.e. dynamic 

(motor) and observation (sensory) noises contained an additive (signal-independent) term and 

a multiplicative (signal-dependent) term, and had Gaussian distributions (Todorov 2005; 

Guigon et al. 2008a,b). Multiplicative sensory noise is an instantiation of Weber's law 
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(Burbeck and Yap 1990). Many parameters are necessary to specify noise properties. A 

thorough exploration of these parameters is a daunting task and would not lead to a decisive 

conclusion due to the highly simplified nature of the model. We proceeded in the following 

way. We tested each type of noise separately. We observed that: 1. Gaussian noise has too 

fast variations and needs to be filtered (time constant 0.05 s); 2. additive observation noise 

does not create segments with more than 2 units; 3. additive dynamic noise creates segments 

with more than 2 units but all the segments have the same duration irrespective of !!"#$; 

4. multiplicative dynamic noise has a deleterious effect on control. This latter observation 

does not contradict the fact that signal-dependent noise plays a central role in motor control 

(Harris and Wolpert 1998; Todorov and Jordan 2002). In fact, slow movements (as compared 

to fast movements) are produced by weak signals, and a large and probably unrealistic 

quantity of signal-dependent noise is necessary to induce variability for these movements. 

 We ran simulations with multiplicative observation noise (same conditions and 

parameters as in noise-free simulations; ! = 240 !). We considered the noise model 

described in Guigon et al. (2008a). Multiplicative observation noise is given by 

!!"#(!) = !!(!)!!!(!)
!

!!!
, 

where ! = [!! !!] is a zero-mean Gaussian random vector with covariance matrix Ω! , and !! 

a 4x4 matrix. We took 

Ω! = !!"#$% 1 0
0 1  

and 

!! =
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 and !! =
0 0 0 0
0 10 0 0
0 0 0 0
0 0 0 0

. 
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For comparison, we built an average participant. We found a set of noise parameters that 

satisfactorily accounts for the average experimental observations (!!"#$% = 0.45; Figs. 7,8). 

Figures 7 and 8 show that the model qualitatively captures the properties of segments: 

distribution of number of units (Fig. 7A), invariance of segment duration with movement 

speed (Fig. 7B), scaling of segment velocity with movement speed (Fig. 7C,D,E,F), 

relationship between !!"#$ and duration (Fig. 8A), relationship between !!"#$ and velocity 

(Fig. 8B). There are several reasons why some of the trends in the experimental data are not 

captured by the model. First, we did not attempt to find the best fit which would not be 

especially meaningful due to the highly simplified nature of the model (linear dynamics, 

Gaussian noise, ...). Second we observed that the power spectrum of simulated acceleration 

was almost exclusively concentrated at a single frequency around 8 Hz, which suggests that 

other forms of variability should be considered. Third, the range of movement speed (1-10 

cm/s) might not be entirely homogeneous at all levels of data analysis. Fourth, we have built 

a "mean" participant for comparison with the model. Due to the averaging process, 

characteristics of the mean participant may differ from those of any single participant. 

 We note that the model is linear and thus invariant relative to movement speed. 

Accordingly, it does not predict a change in behavior (segmentation) as movement speed 

increases. This may not be a limitation of the model (see Discussion). 

Discussion 

In summary, our results show that: 1. movements in a certain range of speeds are made of 

segments defined as pulses in the velocity profile; 2. the segments are made of units defined 

from peaks in the acceleration and jerk profiles, and most of the segments have only two 

units (i.e. one acceleration and one deceleration phase); 3. the duration of the segments 

depends on their number of units and not on instructed movement speed; 4. the velocity of 
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the segments scales with movement speed. A model explains these results by the optimal 

tracking of a staircase goal position signal in the presence of sensory noise. 

Task design 

The starting point of this study is the observation that there exists a large class of nonsmooth 

movements whose properties are not well explained by current computational approaches. 

Yet this class is not homogeneous as it encompasses movements of various velocities and 

governed by various instructions. The only common property is that of being markedly 

slower than the fastest possible movements (see Introduction). Here, we studied linear 

movements in a specific range of mean velocity (1.4-10 cm/s). This range overlaps with 

ranges used in previous studies of so-called "slow" movements (Vallbo and Wessberg 1993; 

Doeringer and Hogan 1998; Park et al. 2017) and corresponds to movements with pervading 

velocity fluctuations (Fig. 2B). As in Park et al. (2017), our participants were instructed to 

match the period of a metronome. In other studies, the participants tracked a "velocity" 

reference (Vallbo and Wessberg 1993; Doeringer and Hogan 1998). In preliminary 

experiments, we tested participants in a tracking task and found little difference with the 

metronome task. 

What are "slow movements"? 

We have repeatedly used the term "slow movements" as a proxy for a large and 

inhomogeneous class of movements, but we lack a definition of these movements. The 

proposed model suggests as a definition that a slow movement is a movement guided by 

partial successive goal position and velocity signals (the staircase position and the constant 

velocity signals), irrespective of the global goal defined by the desired duration and 

amplitude of the movement. By contrast, a fast movement is guided by a single stair 

corresponding to the global goal of the movement. An analogy with stair climbing is 
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instructive. A slow movement would correspond to stair-by-stair climbing until the next 

floor, a fast movement to a direct jump to the next floor. 

 According to the model, the only condition for segmentation is the presence of a 

staircase goal position signal. Since the model is linear, the actual size of a stair (and thus 

movement speed) has no direct influence on segmentation. Although it can be considered as a 

limitation of the model, an alternative view is that the very mechanism of the model (the 

control policy) is not sensitive to movement speed, but the choice of the goal position and 

velocity signals (stair-by-stair vs direct jump) is. In fact, this property can be considered as a 

prediction of the model. The characteristics of segmentation (distribution of number of units, 

Fig. 4A; invariance of segment duration, Fig. 4B; scaling of segment velocity, Fig. 4C) 

should not change as movement speed increases as long as the movement is performed as a 

slow movement. In this framework, a slow movement would be defined as a movement of 

sufficient duration so that the participant focuses locally on the control of velocity (as defined 

by the presence of characteristic fluctuations in the velocity profile) rather than globally on 

the spatial goal of the movement. In our experimental protocol, we observed velocity 

fluctuations for durations > 1.5 s, which, given the size of the tablet, corresponds to 

movement speeds < 10 cm/s. Using free arm movements rather than movements on a tablet, 

we could obtain a much larger range of amplitude and thus a larger range of speed. 

 An open question is whether the reported characteristics of slow movements might be 

specific to our experimental procedure and related to an unusual, artificial mean of producing 

movement. We believe this is not the case for two reasons. First, the procedure induces a 

similar behavior and similar movement properties in all participants. Furthermore, in 

preliminary experiments, we observed that movements obtained in tracking a slowly moving 

target had similar properties than movements in the metronome task. Second, our results are 
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consistent with those of previous studies in which slow movements were induced by various 

means (tempo, instructions, target size; see Introduction). 

 Here we considered a comparison between slow and fast discrete movements (i.e 

movements that terminate with zero speed and acceleration), and did not address the 

distinction between discrete and rhythmic movements (Guiard 1993; Hogan and Sternad 

2007). In fact, as the speed of the movement increases with the frequency of the metronome, 

our slow movements should transform into rhythmic rather than discrete movements. Yet 

neither our results nor our model provide new insights into this distinction. 

Time invariance 

We observed that changes in instructed movement speed did not modify the temporal 

structure of movement segmentation, i.e. segment duration remained unchanged as speed 

increased while segment velocity scaled with speed. The strategy to increase movement 

speed is thus to produce segment of constant duration and longer amplitude. This strategy 

confirms the results of Vallbo and Wessberg (1993) who observed velocity and acceleration 

profiles with discontinuities at 8-10 Hz independent of movement speed. Their conclusions 

based on frequency analysis are supported here by both frequency and fine-scale kinematic 

analysis. This strategy is also consistent with the notion of isochrony, i.e. changes in velocity 

scale with amplitude in order to keep movement duration constant, which is an ordinary 

feature of different types of movement (Binet and Courtier 1893; Stetson and McDill 1923; 

Denier van der Gon and Thuring 1965; Glencross 1975; Freund and Büdingen 1978; Viviani 

and Terzuolo 1982; Jeannerod 1984; Gordon and Ghez 1987; Sartori et al. 2013). The origin 

of isochrony is unknown. In the model, isochrony results from a rhythmic goal position 

signal. Interestingly the clearest examples of isochrony are found in motor activities with 

prevalent underlying rhythms, e.g. eyelid movements (Gruart et al. 2000), handwriting 

(Freeman 1914), typing (Terzuolo and Viviani 1980), speech (Alexandrou et al. 2016). 
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 The results of Krebs et al. (1999) are highly relevant to the present study. They 

analyzed slow movements of individuals with brain damaged and concluded that sub-

movements speed profile was invariant and that the sub-movements shapes were unaffected 

by peak speed. Yet the duration of submovements was not reported. We analyzed original 

data from Krebs (1997). Krebs (1997) reported total movement amplitude, total movement 

duration, submovement peak velocity and submovement duration for different participants 

(control, stroke patients). From these data, we calculated mean movement speed (total 

amplitude/total duration). There is a clear scaling of submovement peak velocity with 

movement speed, but there is no clear invariance of submovement duration. A central 

difference with our results is the range of submovement duration (0.5-1 s in Krebs vs 0.1-

0.5 s here). 

Intermittency, discontinuity, pulsatile control 

Our results and our model are consistent with notions such as intermittency, discontinuity and 

pulsatile control which have been proposed to account for the apparently discrete nature of 

motor control (Navas and Stark 1968; Neilson et al. 1988; Vallbo and Wessberg 1993; Welsh 

and Llinás 1997; Doeringer and Hogan 1998; Cabrera and Milton 2002; Gross et al. 2002; 

Loram and Lakie 2002; Jaberzadeh et al. 2003; Fishbach et al. 2007; Bye and Neilson 2010; 

Karniel 2013). Yet most studies used these notions in a purely descriptive way. Some 

computational accounts of intermittency have been proposed for the control of unstable 

dynamics (quiet standing, stick balancing, virtual unstable objects, ...; Cabrera and Milton 

2002; Bottaro et al. 2008; Asai et al. 2009; Gawthrop et al. 2011), and trajectory tracking 

(Bye and Neilson 2010; Sakaguchi et al. 2015). The central idea in these proposals is the 

existence of "open-loop" periods, i.e. periods during which no control is applied (act-and-

wait; Asai et al. 2009) or feedback is not processed (Gawthrop et al. 2011), which can be 

triggered or stopped by a clock or by a specific event (e.g. threshold crossing). Here we 
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propose a different view of intermittency. Intermittent control is defined as the guidance of a 

continuous closed-loop controller by a rhythmic goal signal. Closed-loop control is deemed 

necessary for the model to solve central problems of motor control (Todorov and Jordan 

2002). Accordingly one and the same controller can produce fast and slow movements. The 

central element of intermittency is the ~8 Hz rhythmic goal signal and could correspond to 

oculomotor signals indicating anticipatory eye movements or signals contributing to eye-hand 

coordination (McCauley et al. 1999a,b). The neurophysiological origin of this signal is 

unknown. Vallbo and Wessberg (1993) thoroughly addressed the 8-10 Hz discontinuities in 

the kinematics of slow movements and physiological tremor, and concluded that they have 

not the same nature. They argued that the observed discontinuities are of supraspinal origin, 

and result from the action of a biphasic pulse generator functioning at regular rate. Primary 

motor cortex is a likely source of inputs to the spinal cord in this range of frequency (Conway 

et al. 1995). Furthermore, there is a significant coherence between finger acceleration and 

activity in local field potentials and single units in monkey motor cortex during slow finger 

movements (Williams et al. 2009). Yet multiple brain regions (e.g. in the cerebellum and the 

reticular formation) may contribute to the production of discontinuities (Williams et al. 

2010). 

Alternative explanations 

An open question is whether there are alternative ways to explain our experimental results. 

Irrespective of the theoretical framework (except pure open-loop control), a movement of a 

system is a consequence of a discrepancy between the current state of the system and a goal 

state. In the task dynamics framework (Kelso 1995), the discrepancy is defined by the 

distance to an attractor state of the system (fixed point, limit cycle) and the spatiotemporal 

characteristics of the movement are an emergent property of the dynamics of the attractor. A 

dynamical system with a limit cycle attractor can produce slow rhythmic movements, but it 
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will not by itself generate velocity fluctuations. In the control theory framework, the 

discrepancy is the distance between the current state and the goal state. The movement can be 

produced either by a fixed gain (e.g. Proportional-Derivative controller) or by a time-varying 

gain (e.g. optimal feedback controller). Consider first the case where the goal state is fixed. 

The PD controller generates an oscillatory pattern whose frequency is determined by the gain. 

Appropriate damping can transform this pattern into a slow displacement toward the goal. 

The optimal feedback controller generates a smooth displacement whose velocity is dictated 

by the chosen time horizon (Fig. 1B). There are no mechanisms in these controllers to 

produce velocity fluctuations. If the goal is a staircase signal, both controllers produce slow 

displacements with velocity fluctuations, although the fluctuations correspond to abrupt 

(nonsmooth) changes in velocity in the case of the PD controller. 

 An alternative view would be that fluctuations result from intermittent motor 

commands or intermittent updates in the feedback loop (see above; Asai et al. 2009; 

Gawthrop et al. 2011). In these scenarii, the fluctuations are produced by periods of open-

loop control during which the dynamics of the system (e.g. an inverted pendulum) is not or 

only approximately controlled. These approaches are pertinent for the control of unstable 

dynamics but have no direct counterpart for the control of stable dynamics. It is still unclear 

whether different types of intermittency are necessary in motor control, e.g. intermittent 

open-loop control to exploit the dynamics of unstable objects vs intermittent closed-loop 

control for stable objects. 

Rationale for the staircase goal signal 

The model is based on the idea that motor control results from the interplay between a 

"universal", task-independent controller (e.g. optimal feedback controller) and a task 

representation in terms of goals (Todorov and Jordan 2002). In this framework, we have 

translated the task at hand (movements of constant velocity) into a set of via-points that 
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indicate partial successive goals. In fact, to produce a movement at constant speed, the 

controller needs to track goals on a constant-speed trajectory, i.e. a staircase positional signal 

and constant velocity signal. The staircase signal needs not be regular although this is the 

simplest solution. In this case, the only open parameter is the frequency of the staircase 

signal. 

 The staircase signal is considered as a computational necessity. But is it a 

physiological necessity? If we consider the problem from the point of view of the nervous 

system, it is clear that there are some constraints on the motor control machinery that prevent 

the production of smooth movements of arbitrary duration. The origin of such a limitation is 

unknown but we can speculate that it is related to the rhythmic and pulsatile nature of neural 

processes (Vallbo and Wessberg 1993; Gross et al. 2002) which plays a prevalent role in the 

production of skilled actions (Shaffer 1982), e.g. handwriting (Freeman 1914), typing 

(Terzuolo and Viviani 1980), speech (Alexandrou et al. 2016). In this framework, the 

staircase signal can be considered as a task representation adapted to the properties of the 

sensorimotor apparatus. 
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Figure captions 

Figure 1. A. Schematic properties of segmented movements. (left) Velocity profiles of 

movements of 4 different durations (black, short — red/green, intermediate — blue, long). 

(right) Number of velocity peaks as function of movement duration. B. Schematic properties 

of smooth movements. Velocity profiles were built with the minimum-jerk model. A 

minimum-jerk trajectory is defined by a duration D and initial and final (boundary) 

conditions (posi, veli, acci, posf, velf, accf). Units are arbitrary. A (black) D = 0.5 and (0, 0, 0, 

1, 0, 0). A (red) D = 0.5 and (0, 0, 0, 0.5, 0.5, 0) + D = 0.5 and (0.5, 0.5, 0, 1, 0, 0). A (green) 

D = 0.55 and (0, 0, 0, 0.33, 0.25, 0) + D = 0.55 and boundary conditions (0.33, 0.25, 0, 0.66, 

0.25, 0) + D = 0.55 and boundary conditions (0.66, 0.25, 0, 1, 0, 0). A (blue) D = 0.6 and 

boundary conditions (0, 0, 0, 0.25, 0.25, 0) + D = 0.6 and boundary conditions (0.25, 0.25, 0, 

0.5, 0.25, 0) + D = 0.6 and boundary conditions (0.5, 0.25, 0, 0.75, 0.25, 0) + D = 0.6 and 

boundary conditions (0.75, 0.25, 0, 1, 0, 0). B (black) D = 0.6 and boundary conditions (0, 0, 

0, 1, 0, 0). B (red) D = 1.2 and boundary conditions (0, 0, 0, 1, 0, 0). B (green) D = 1.8 and 

boundary conditions (0, 0, 0, 1, 0, 0). B (blue) D = 2.4 and boundary conditions (0, 0, 0, 1, 0, 

0). The properties of segmented movements correspond to what was known before the 

present study (velocity fluctuations, scaling of the number of velocity peaks with movement 

duration). 

 

Figure 2. A. Experimental setup. B. Example of velocity profile (participant NH, movement 

speed 4.71 cm/s). The white box (gray box) indicates a left-to-right (right-to-left) movement. 

Vertical dashed lines are the limits of segments (minima of velocity). C. Schematic 

representation of a segment of velocity with 4 units, i.e. 4 peaks of acceleration (see D). 

D. Acceleration (derivative of the velocity segment in C). There are 4 peaks in the 

acceleration profile. E. Jerk (derivative of the acceleration segment in D). F. Another 
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segment of velocity with 4 units. In this case there are only 3 peaks of acceleration (see G). 

G. Acceleration (derivative of F). There are 3 peaks in the acceleration profile, but the 

acceleration profile is highly irregular (arrow). H. Jerk (derivative of G). A peak of jerk is 

observed before the beginning of the segment and is responsible for the irregular initial 

acceleration (see G). 

 

Figure 3. Data for participant NH, movement speed 2.35 cm/s. A. Distribution of !!"#$. 

B. Relationship between mean segment duration (dot) and !!"#$. The central mark in the box 

is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to 

the most extreme data points not considered outliers. C. Distribution of segment duration. 

D. Relationship between mean segment velocity and !!"#$. Same conventions as in B. 

 

Figure 4. Data for participant NH. A. Distribution of !!"#$ for the 8 task conditions. 

B. Relationship between mean segment duration and movement speed for 2-unit (black), 3-

unit (red), 4-unit (green) and 5-unit (blue) segments. Bar indicates standard deviation. 

C. Relationship between mean segment velocity and movement speed. Standard deviation 

divided by 7 for legibility. Colored lines correspond to linear regression 

(!! = 0.98, 0.92, 0.62, 0.64). 

 

Figure 5. A. Power spectral density function (smoothed with 5-point moving average) of the 

acceleration signal (participant TV). Color code for movement speed (see B). Vertical dashed 

lines indicate peak frequency. B. Peak frequency of the power spectral density function for all 

participants (open symbols) and all conditions (colors). Horizontal dashed line indicates mean 

frequency. 
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Figure 6. Simulation of the noise-free model. A. Position (black, 1 cm/s — dark gray, 2 cm/s 

— gray, 5 cm/s — light gray, 10 cm/s). The staircase trace is the goal position for the 

movement at 10 cm/s. B. Velocity profile. The constant trace is the goal velocity for the 

movement at 10 cm/s. C. Duration of segments. D. Velocity of segments. 

 

Figure 7. Simulation of the model with noise and comparison with an average participant. 

A. Distribution of !!"#$ for the 4 simulated conditions (gray bars; see Fig. 6) and 8 task 

conditions (colored lines; see Fig. 5). B. Relationship between mean segment duration and 

movement speed for 2-unit (square), 3-unit (diamond), 4-unit (up triangle) and 5-unit (down 

triangle) segments. Bar indicates standard deviation. Grays and colors as in A. 

C. Relationship between mean segment velocity and movement speed for 2-unit segments. 

D. Same as C for 3-unit segments. E. Same as C for 4-unit segments. F. Same as C for 5-unit 

segments. 

 

Figure 8. Simulation of the model with noise and comparison with an average participant. 

A. Slope, intercept and !! of the linear regression between !!"#$ and segment duration. 

B. Slope, intercept and !! of the linear regression between !!"#$ and segment velocity. Same 

color code as in Fig. 7. 
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