
HAL Id: hal-02109236
https://hal.science/hal-02109236v1

Submitted on 24 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Design Framework for Heterogeneous Hardware and
Software in Wireless Sensor Networks

David Navarro, Fabien Mieyeville, Wan Du, Mihai Galos, Nanhao Zhu, Ian
O’Connor

To cite this version:
David Navarro, Fabien Mieyeville, Wan Du, Mihai Galos, Nanhao Zhu, et al.. Design Framework
for Heterogeneous Hardware and Software in Wireless Sensor Networks. ICSNC 2011 : The Sixth
International Conference on Systems and Networks Communications, Oct 2011, Barcelone, Spain.
pp.111-116. �hal-02109236�

https://hal.science/hal-02109236v1
https://hal.archives-ouvertes.fr

Design Framework for Heterogeneous Hardware and Software in Wireless Sensor
Networks

David Navarro, Fabien Mieyeville, Wan Du, Mihai Galos, Nanhao Zhu, Ian O'Connor
Université de Lyon, Institut des Nanotechnologies de Lyon (INL), UMR5270 - CNRS, Ecole Centrale de Lyon,

Ecully, F-69134, France
david.navarro@ec-lyon.fr, fabien.mieyeville@ec-lyon.fr, wan.du@ec-lyon.fr, mihai.galos@ec-lyon.fr,

nanhao.zhu@ec-lyon.fr, ian.oconnor@ec-lyon.fr

Abstract- Wireless Sensor Networks are composed of many
autonomous resource-constrained sensor nodes. Constrains are
low energy, memory and processing speed. Nowadays, several
limitations exist for heterogeneous Wireless Sensor Networks:
various hardware and software are hardly supported at design
and simulation levels. Meanwhile, to optimize a self-organized
network, it is essential to be able to update it with new nodes,
to ensure interoperability, and to be able to exchange not only
data but functionalities between nodes. Moreover, it is difficult
to make design space exploration, as accurate hardware-level
models and network-level simulations have very different
(opposite) levels. We propose a simulator –based on SystemC
language- that allows such design space explorations. It is
composed of a library of hardware and software blocks. More
and more sophisticated software support is implemented in our
simulator. As trend is to deploy heterogeneous nodes, various
software levels have to be considered. Our simulator is also
thought to support many levels: from machine code to high
level languages.

Keywords-wireless sensor network; WSN; simulation; model;
systemC

I. INTRODUCTION

Many applications use communicating and distributed
sensory systems, such as for example environmental data
collection, security monitoring, logistics or health [1]. These
radiofrequency-based communicating systems are called
Wireless Sensor Networks (WSN). Wireless Sensor
Networks are large-scale networks of resource-constrained
sensor nodes (electronic systems). Limited resources are of
different kinds: energy, memory, processing and data-rate.
Indeed, these autonomous systems have to ensure a so long
autonomy that processing architecture and communications
data-rate have to be very low. Sensor nodes cooperatively
monitor and transmit data, such as temperature, vibration,
pressure etc. They are typically composed of one or more
sensors, a 8-bit or 16-bit microcontroller, a few Kbytes non-
volatile memory, a low data-rate (often 250 Kbits/s)
radiofrequency transceiver and a light battery. Fig. 1 shows a
typical sensor node architecture.

A lot of hardware platforms exist (for example
Crossbow, Ember, Meshnetics, Zolertia) and several devices
are widely used: ATMEL, Texas Instruments or Microchip
for microcontrollers, Texas Instruments, ATMEL, Freescale,
or ST-Microelectronics for radiofrequency transceivers.
Linux systems composed of 32-bit RISC processors exist –

like the well known Crossbow's Stargate platform - but
prohibitive energy consumption relegates these products to
the border of the Wireless Sensor Networks field.

Figure 1. Wireless sensor node hardware architecture

We do not consider such systems, and we do focus on long
autonomy systems. Low power constraint and large number
of existing devices oblige us to think about dedicated
(heterogeneous support) accurate simulator and
programming tools.

Wireless Sensor Networks interconnect (topologies and
network hierarchy) is inspired from wireless
telecommunication and computer networks. We only focus
on the often used IEEE 802.15.4 standard [2] that is
widespread in Wireless Sensor Network commercial or
custom platforms. Although complex topologies exist, such
networks are dedicated to low power and low data rate
applications, mainly for physical and environmental remote
measurements. Most used topologies are also star or mesh
networks [3].

Wireless Sensor Networks design is a difficult task,
because the system designer has to develop a network with
low level (at sensor node) hardware and software constraints.
Computer-Aided-Design (CAD) tools would also be required
to make system-level simulations, taking low-level
parameters into account.

As presented in [4], many simulators have been
developed over the last few years [5-9], but most of them are
restricted to specific hardware or precisely focus on either
network level or node level. They can be broadly divided
into two categories: network simulators enhanced with node
models (e.g., NS-2 [7] and OMNeT++ [8]), and node
simulators enhanced with network models (e.g., Avrora [9],
or SCNSL [10]). In the first category, simulators are not
sensor platform specific and they are too high level for

111

ICSNC 2011 : The Sixth International Conference on Systems and Networks Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-166-3

hardware considerations. Precision problems are recurrent. In
the second category, simulators are better suited for
electronic system designers, requiring precise low level
models for top-down (network to node) approach, but they
suffer from too low-level aspects. Scalability and simulation
time are problematic. Instruction Set Simulators have the
same drawbacks. We propose a fast simulator of the last
category.

Heterogeneous support means at first to be able to
program several devices with a single compiler (C-level
programming is nowadays the most used for Wireless Sensor
Networks [11]), and to allow not only data but functionality
exchange between nodes. As wireless sensor nodes are not
often accessible, they have to be able to compile by
themselves. Dynamic reconfiguration is also required. Many
solutions exist nowadays; they require Operating Systems or
Virtual Machines. The most known Operating Systems are
TinyOS [11], Contiki [12], SOS [13], but they don't support
heterogeneous firmware update. Indeed, they all use
monolithic binary updates, which are architecture-specific.
The most popular Virtual Machines for Wireless Sensor
Networks are Maté [14], Darjeeling [15], VMStar [16], and
ContikiVM [17]. They interpret a bytecode that is higher
level than machine code. The drawback of these solutions is
that big energy overhead is required to interpret and execute
each bytecode instructions. It is well known that most of the
power consumption in these systems is due to
radiofrequency devices. So, a dedicated solution would be to
consider in-situ compilation that minimizes code size
transmission, in order to match the Sensor Networks
constraints.

In this paper, we present a hIerarchical DEsign plAtform
for sensOr Networks Exploration called IDEA1. It is
characterized with SystemC simulation kernel, and a
graphical interface to make it easier to use. Section II details
its architecture, particularly in terms of hardware, software
and network models. Section III details simulator user
interface and results.

II. MODELS DETAILS

Our simulator is inspired from the SCNSL library [10], a
networked embedded systems simulator. It is written in
SystemC and C++. SystemC is widely used in electronics
community; it is part of the classical design flow. SystemC
based on an event-driven simulator kernel, and this language
permits to model hardware and software at same time, in the
so-called co-simulation. As Fig. 2 shows, three main models
exist: nodes (in SystemC), node-proxy (in SystemC) and
network (in C++). C++ is used to model the network in terms
of connectivity and communication characteristics; and
proxies that make input/output interfaces between nodes and
network. Simulation occurs in two steps: a gcc compilation
creates the network, that is also static, and then the SystemC
kernel runs the simulated time. It would be possible to
simulate a dynamic (moving) network, but simulation time
would be largely affected.

Figure 2. Wireless sensor network model

Node model is detailed in Fig. 3. It is composed of
hardware and software parts. This physical layer is also
detailed below for hardware and software parts.

Figure 3. Wireless sensor node architecture model

112

ICSNC 2011 : The Sixth International Conference on Systems and Networks Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-166-3

A. Hardware model

Hardware part embeds classical wireless sensor nodes

devices: a sensor, a microcontroller, a radiofrequency
transceiver and a battery. Hardware devices models are
detailed with electrical and timing parameters.

As battery discharge is based on chemical non linear
reactions, we prefer - for the moment - to define a simpler
power module that monitors instantaneous and average
power and energy. A generic battery life time can be
computed.

Sensor is modeled with its transfer function that gives
sensor output voltage versus physical input. This transfer
function can be composed of integrations during time, or
error deviations.

Microcontroller is the processing and controlling unit.
Depending on application, an external flash memory is
sometimes used, its usage really impacts power
consumption. Sensor data is captured by an Analog to
Digital Converter (ADC) that is typically a 10-bit successive
approximation converter. It gives the best balance between
speed and accuracy. Concerning communication interface
that enables dataflow output, it is done by a classical serial
communication, hardware supported by means of a serial
peripheral interface (SPI) block. The processing part of the
microcontroller is a simple 8-bit or 16-bit datapath organized
around a light arithmetic and logic unit (ALU). In power-
aware Wireless Sensor Nodes, processing power of that
element is at maximum a few tens of MIPS, coupled with
specific low power architectures.

Next, data are output from the node by a radiofrequency
transceiver. This complex device allows generating a high
frequency carrier in order to propagate data over the air. The
carrier depends on country norms, the most typical free
frequencies that are used are 433MHz, 868MHz, 916MHz,
2.4GHz. Due to market explosion concerning embedded
products, and to small size of antenna, 2.4GHz
radiofrequency transceivers are nowadays mostly used in
embedded systems. Data have to be organized in packets.
These packets allow to route data towards the right node, to
ensure data integrity, while respecting a given
communication protocol. The radiofrequency transceiver
model contains different working states (receive, transmit,
idle, sleep), and several operating modes.

At the whole, several hardware devices have been
modeled (Table I). These hardware devices are
interchangeable in order to model different existing or novel
hardware platforms. Simulator enables user to test an
application on several hardware devices to find the solution
that best fits requirements, such as data-rate and energy.
ATMEL ATMega128 and Microchip PIC16LF88 are well
known low power microcontrollers. Texas Instruments
CC2420 and Microchip 24J40 are the most used transceivers,
as their carrier is 2.4GHz, and they support the IEEE
802.15.4 standard and the ZigBee stack. Sensors are often
used ones. The first is a light sensor of the Crossbow Mica
platform, the other one is a widespread temperature sensor.

TABLE I. LIST OF MODELEDHARDWARE DEVICES

B. Software model

Software has to be considered on two different aspects:
- Portability: executable (machine) code is specific to

each precise hardware architecture.
- Level: many different languages exist, thus enabling

different levels of coding, from assembly to high level
languages.

For these two reasons, we have decided to support
heterogeneous multiple software levels. As Fig. 3 shows, the
software input can be at state machine level or at
programming language level.

1) State Machine level
The software running on microcontroller is divided into

different tasks (states), such as data processing, analog to
digital conversion (ADC) and communication (SPI). The
execution time of each task is calculated according to its
datasheet typical values. For example, the time taken by
PIC16LF88 to configure and launch ADC is taken into
account (hardware delays such as the 11.974µs minimum
required acquisition time [18]).

When data are transferred from microcontroller to
radiofrequency transceiver, a trigger command enables
transmission. At the right time (depending on network
policy), the radiofrequency transceiver will transmit data to
another node. Microcontroller that drives radiofrequency
transceiver has different working states, detailed in Fig. 4 for
a simple example.

READ-SENSOR

TX finished && lenQueue < payloadSensing timer ends

S
en

si
ng

 t
im

er
 e

nd
s

lenQueue = payload && sensing finished

S
e

ns
in

g
fin

is
he

d
 &

&

le
n

Q
ue

ue
<

 p
a

yl
oa

d

TX finished &&
lenQueue = payload

RXSLEEP

TX

F
or

w
ar

d
d

at
a

No (more) forward

RX interrupt

Sensing finished && RX interrupt

T
X

 f
in

is
h

 &
&

R
X

 in
te

rr
u

pt

Sensing timer ends

Figure 4. Simple capture and send program in microcontroller

Microcontrollers
ATMEL ATMega128

Microchip 16LF88

Radiofrequency transceivers

Texas Instruments CC2420
Texas Instruments CC1000

Microchip MRF24J40
Nordic nRF24L01

Temperature
National Semiconductor

LM35DZ Sensors
Light Clairex CL9P4L

113

ICSNC 2011 : The Sixth International Conference on Systems and Networks Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-166-3

This finite state machine has been implemented with
realistic (from datasheet and measurement validated)
parameters in terms of delays and power consumption.
Actual hardware library with finite state machine models is
detailed in table I. In our model, the microcontroller can
configure some parameters of physical (PHY) and MAC
layers in the radiofrequency transceiver registers (IEEE
802.15.4 - compliant).

Both IEEE 802.15.4 non-beacon and beacon modes are
supported in our simulator. Non-beacon mode is based on a
channel free access and packet-based philosophy. When a
node wants to send data, it senses the channel, then sends
them if the channel is free. If the channel is busy, it waits a
random time (called back-off time) and then checks for free
channel again. This method is called CSMA-CA (Carrier
Sense Multiple Access with Collision Avoidance). Beacon
mode is a synchronized mode: the network coordinator
(network head) sends synchronization packets to inform
nodes when they can communicate. In this case, the mode is
also channel-based, inspired from the well known TDMA
(Time Division Multiple Access) method.

Time is organized according to a superframe that is
defined by the network coordinator. Two beacon-mode
algorithms exist: slotted CSMA-CA, and GTS
communication non-predictive GTS and predictive GTS [2].
Slotted CSMA-CA is a CSMA-CA based communication,
within a given slot time. In GTS algorithm, nodes that want
to communicate send a GTS request to the coordinator
during a first time slot (the Contention Access Period). Then,
nodes are allowed to communicate during a following time
slot (the Contention Free Period).

A power module has been implemented. It computes and
monitors electrical power and energy consumed by sensor,
microcontroller and radiofrequency transceiver. Different
energy-saving (sleep) modes, data flow and global behavior
can also be co-designed according to power constraints.

2) Language level

If user selects language input instead of finite state

machine, several solutions are available. This step is
currently being implemented in our framework. Input
language can be in assembly, in C language, or in a high
level language we have developed (MinTax). Software
support of ATMEL ATMega128 is currently realized, we
plan to support Texas Instruments MSP430 and Microchip
PIC16LF88 later. The commercial platforms we are using for
testcase and measurements are ATMEL AVRraven and
Zolertia Z1, comprising for Texas Instruments MSP430 and
ATMEL ATMega128 microcontrollers.

In order to meet the energy constraints in a Wireless
Sensor Network, the processing and controlling unit is nearly
all the time a microcontroller. Such devices often consume
less than 5 mW. Meanwhile, they often have 8-bit or 16-bit
datapaths that process less than 20 MIPS, and they embed
less than 128 Kbytes of program memory (FLASH ROM),
and less than 16 Kbytes of data memory (RAM). Such light
architectures require specific lightweight solutions.

If assembly language is used, the code is analyzed in
order to estimate process timing of microcontroller, and its
associated power consumption.

If C language is selected, compilers are used to generate
low level assembly and machine code. IAR Systems
compiler is used for Texas Instruments MSP430, AVR-gcc is
used for ATMEL ATMega128. C language compilation
generates assembly code that is treated in the same way as
direct assembly input. More precisely, lss output files from
compilers are treated.

As a test-case, we have demonstrated that our simulator
is moreover able to consider new languages that could better
suit Wireless Sensor Network specificities. To prove this, the
simulator supports a high level dedicated language we have
developed, with an energy-aware syntax that allows to
compactly write microcontroller tasks. That minimal syntax
(MinTax, detailed in [19]), based on C language, has the
advantage to require fewer characters, and also shorter
radiofrequency communications for program exchanges. A
MinTax and C comparison example is given in table II. We
can clearly see that MinTax reduces the number of characters
to code the example (pin toggle program). Data to send are
also reduced by a 3 factor.

TABLE II. MINTAX – C COMPARIZON.

MinTax C
f{
WT
$b%2

};

void f()
{
while(true)
{
PORTB ^= (1<<2);
}
}

11 bytes 37 bytes

As in C language, this high level syntax permits designer to
have hardware abstraction, and also to consider a single
language on heterogeneous platforms. A functionality
exchange in a heterogeneous network has been implemented
as testcase. ATMEL AVRraven and Zolertia Z1 platforms
were used, and functionality written in MinTax has been
send from ATMEL ATMega to T.I. MSP430 through
ATMEL AT86RF230 and T.I. CC2420 transceivers (IEEE
802.15.4 standard).

The compiler that is related to this language is based on
classical compiler structure, as shown in Fig. 5. As it is
embedded (compilation is done in-situ with low processing
unit), all of its parts have been optimized for compactness.
Two stages exist: an analysis stage then a synthesis stage.
The analysis stage reads the high-level language, splits it into
tokens and orders them. It recognizes for example variables
names and functions calls. The synthesis stage generates the
executable code (binary machine code). More information
about classical compiler structure is detailed in [20].

114

ICSNC 2011 : The Sixth International Conference on Systems and Networks Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-166-3

Semantical analysis

Syntactical analysis

Lexical analysis

Analysis Stage

Code generation

Code optimization

Synthesis Stage

Figure 5. Classical compiler structure

Several variants of the compiler exist: it has been cross -
developed on x86 personal computer and on several
microcontroller architectures. The PC variant allows easier
debugging because of its human-machine interface. It
permits to deploy the code on the nodes by serial
programming machine code (output files such as .hex). The
microcontroller variant has been developed on several
hardware architectures to prove the heterogeneity support.
Software support, from low level (assembly) to novel high
level specific languages (MinTax) has also been proved.

III. SIMULATOR INTERFACE AND RESULTS

User interface is shown in Fig. 6. It is composed of

different sub-windows. The information appears graphically
in the right window, to clearly display the network topology.
Each node and coordinator is characterized by a spatial
position. Lines between nodes represent possible
communications routes according to position, transmit power
and receive sensitivity. When parameters are changed, the
graphical viewer refreshes the possible communications
(lines). For this early version, free space communications are
considered. Focus is set on communication capabilities and
data rate, not on mechanical or electromagnetic
environments. Hardware parameters of microcontrollers and
radiofrequency devices are set. At higher level, many
parameters of the IEEE 802.15.4 can be set. Sensors
sampling rate and packets payload can also be changed.

By clicking on the launch button in the graphical
interface, a SystemC simulation is launched in background.
The simulation log is displayed in the bottom window of
graphical interface, and a timing trace (VCD) viewer is
opened. Output log files are also generated. From these
results, we can explore design space in order to find the best-
suited design solution.

As a test example, we simulated an 8 nodes network. We
chose Microchip PIC16LF88 and MRF24J40 as target test

hardware. As IEEE 802.15.4 data-rate is low (250 Kb/s), a
systematic trade-off between payload (number of sent data
bytes per packet), sampling rate (of ADC) and packet
delivery rate has to be explored.

Figure 6. Simulator graphical interface

Simulator can output a transient VCD trace and text log.
Log permits to process data in order to evaluate Packet
Delivery Rate (PDR), Packet Latency (PL), Energy Per
Packet (EPP), and average power consumption. Packet
delivery rate is the ratio of number of successful packets over
the total number of sent packets is measured. Packet latency
is the time needed by a packet to go from one node to
another one. Energy per packet is related to the product of
sent packets by the sample period. Average power
consumption is the one consumed by electronic devices.
Global power consumption of hardware devices level is
available; this result was shown in [21].

Moreover, it is now possible to detail the power
consumption of each hardware part in microcontroller. Fig. 7
shows decomposition of power consumption in
microcontroller according to analog to digital converter
(ADC), serial communication (SPI), processing of CPU, and
sleep state. This analysis is done for various frequencies of
data sampling. Power consumption is high when sample rate
is high, because nodes are always busy in these two cases.
Moreover, as almost maximal usage is reached from 100Hz,
power consumption difference is small for 100 and 1000 Hz.
Most power consuming states are CPU processing and inter-
chip communications. It clearly shows the impact of
hardware support of radiofrequency device on power
consumption of microcontroller: depending if IEEE 802.15.4
is hardware supported in radiofrequency device or not,
power consumption distribution changes. Indeed, the bigger
part of physical and MAC layers to be managed by the
microcontroller, the more power consumption will be
observed for this device. At the same time, radiofrequency

115

ICSNC 2011 : The Sixth International Conference on Systems and Networks Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-166-3

transceiver will have different idle and sleep timings
according to this eventual IEEE 802.15.4 hardware support,
so different power consumption is impacted too.

Figure 7. Microcontroller unit (MCU) detailed power consumption

IV. CONCLUSION

A Wireless Sensor Network design framework, based on
SystemC, has been presented. It permits design space
exploration, considering hardware and software details.
Hardware is modeled as a finite state machine, characterized
by timings and power consumption of each state. Software
can be modeled as finite state machine in the same way.
Current work is done in order to take real program inputs at
different levels: assembly, C language using existing
compilers, or high level minimalist language (MinTax)
associated to its in-situ compiler we already have developed.
This language permits to exchange functionalities between
non-compatible (heterogeneous) processing units, with a
small energy cost. A graphical user interface permits to
easily simulate and compare several IEEE 802.15.4
configurations and programs on many interchangeable (and
parameterized) hardware devices.

REFERENCES
[1] M. Horton and J. Suh, “A vision for wireless sensor

networks”, IEEE Microwave Symposium Digest, USA, June
2005, pp. 361-364.

[2] IEEE 802.15 WPAN Task Grup 4, “IEEE 802.15 part 15.4-
2006 wireless medium access control (MAC) and physical
layer (PHY) specifications for low-rate wireless personal area
networks (WPANs),
http://www.ieee802.org/15/pub/TG4.html, last access date:
July 2011.

[3] A. Salhieh, J. Weinmann, M. Kochhal, and L. Schwiebert,
“Power efficient topologies for wireless sensor networks”,
International Conference on Parallel Processing, Spain, Sept.
2001, pp. 256-163.

[4] W. Du, D. Navarro, F. Mieyeville, and F. Gaffiot, “Towards a
taxonomy of simulation tools for wireless sensor networks”
International Conference on Simulation Tools and
Techniques, Spain, March 2010, pp. 1-7.

[5] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: accurate
and scalable simulation of entire tinyos applications”,
International Conference on Embedded Networked Sensor
Systems, USA, Nov. 2003, pp. 126-137.

[6] M. Varshney, D. Xu, M. Srivastava, and R. Bagrodia,
“sQualNet: an accurate and scalable evaluation framework for
sensor networks”, International Symposium on Information
Processing in Sensor Networks, USA, April 2007, pp. 196-
205.

[7] S. McCanne and S. Floyd, “Network simulator NS-2”,
http://www.isi.edu/nsnam/ns, last access date: July 2011.

[8] A. Varga, “The OMNeT++ discrete event simulation system”,
European Simulation and Modeling Conferences, Czech
Republic, June 2001, pp. 319-324.

[9] B. Titzer, D. Lee, and J. Palsberg, “Avrora: scalable sensor
network simulation with precise timing”, Information
Processing in Sensor Networks, USA, April 2005, pp. 477-
482.

[10] F. Fummi, D. Quaglia, and F. Stefanni, “A systemC-based
framework for modeling and simulation of networked
embedded systems”, Forum on Specification and Design
Languages, Germany, Sept. 2008, pp. 49-54.

[11] L. Mottola and G.P. Picco, “Programming wireless sensor
networks: fundamental concepts and state of the art”, ACM
Computing Surveys. Volume 43, Issue 4, Dec. 2010, pp. 1-19.

[12] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a
lightweight and flexible operating system for tiny networked
sensors”, IEEE International Conference on Local Computer
Networks., USA, Nov. 2004, pp. 455-462.

[13] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava,
“A dynamic operating system for sensor nodes”, International
Conference on Mobile systems Applications and Services,
USA, June 2005, pp. 163-176.

[14] P. Levis and D. Culler, “Mate: a tiny virtual machine for
sensor networks”, International Conference on Architectural
Support for Programming Languages and Operating Systems,
USA, Oct. 2002, pp. 85-95.

[15] N. Brouwers, K. Langendoen, and P. Corke, “Darjeeling, a
feature-rich VM for the resource poor”, ACM Conference on
Embedded Networked Sensor Systems, USA, Nov.2009, pp.
169-182.

[16] J. Koshy and R. Pandey, “VMSTAR: synthesizing scalable
runtime environments for sensor networks,” International
Conference on Embedded Networked Sensor Systems, USA,
Nov. 2005, pp. 243-254.

[17] A. Dunkels, “Programming Memory-Constrained Embedded
Systems”, PhD Thesis, Swedish Institute of Computer
Science, 2007.

[18] Microchip Inc., “PIC16F87/88 Enhanced Flash
Microcontrollers with nanoWatt Technology Datasheet”,
http://www.microchip.com, last access date: July 2011.

[19] M. Galos, F. Mieyeville and D. Navarro, “Dynamic
reconfiguration in wireless sensor networks”, International
Conference on Electronics Circuits and Systems, Greece, Dec.
2010, pp. 918-921.

[20] R. Mak, “Writing compilers and interpreters”, Ed Wiley
Computer Publishing, ISBN 471-11353-0.

[21] W. Du, F. Mieyeville and D. Navarro, “Modeling energy
consumption of wireless sensor networks by systemC”,
International Conference on Systems and Networks
Communications, France, Aug. 2010, pp. 94-98.

116

ICSNC 2011 : The Sixth International Conference on Systems and Networks Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-166-3

