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On Classical Solutions to the Mean Field Game System of

Controls

Z. Kobeissi∗

July 9, 2020

Abstract

We consider a class of mean field games in which the optimal strategy of a representative
agent depends on the statistical distribution of the states and controls.

We prove some existence results for the forward-backward system of PDEs under rather
natural assumptions. The main step of the proof consists of obtaining a priori estimates on
the gradient of the value function by Bernstein’s method. Uniqueness is also proved under
more restrictive assumptions.

Finally, we discuss some examples to which the previously mentioned existence (and
possibly uniqueness) results apply.

1 - Introduction

The theory of Mean Field Games (MFG for short) has been introduced in the independent
works of J.M. Lasry and P.L. Lions [31, 32, 33], and of M.Y. Huang, P.E. Caines and R.Malhamé
[25, 26]. It aims at studying deterministic or stochastic differential games (Nash equilibria) as
the number of agents tends to infinity. The agents are supposed to be rational (given a cost to
be minimized, they always choose the optimal strategies), and indistinguishable. Furthermore,
the agents interact via some empirical averages of quantities which depend on the state variable.

At the limit when N → +∞, the game may be modeled by a system of two coupled partial
differential equations (PDEs), which is named the MFG system. On the one hand, there is
a Fokker-Planck-Kolmogorov equation describing the evolution of the statistical distribution
m of the state variable; this equation is a forward in time parabolic equation, and the initial
distribution at time t = 0 is given. On the other hand, the optimal value of a generic agent at
some time t and state x is noted u(t, x) and is defined as the lowest cost that a representative
agent can achieve from time t to T if it is at state x at time t. The value function satisfies a
Hamilton-Jacobi-Bellman equation posed backward in time with a terminal condition involving
a terminal cost. In the present work, we will restrict our attention to the case when the costs
and the dynamics are periodic in the state variable, and we will work in the d-dimensional torus
Td (as it is often done in the MFG literature for simplicity). We will take a finite horizon time
T > 0, and will only consider second-order non-degenerate MFG systems. In this case, the MFG
system is often written as:

(1.1a)

(1.1b)

(1.1c)

(1.1d)

− ∂tu(t, x)− ν∆u(t, x) +H(t, x,∇xu(t, x)) = f(x,m(t)) in (0, T ) × T
d,

∂tm(t, x)− ν∆m(t, x)− div(Hp(t, x,∇xu(t, x))m) = 0 in (0, T ) × T
d,

u(T, x) = g(x,m(T )) in T
d,

m(0, x) = m0(x) in T
d.
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We refer the reader to [10] for some theoretical results on the convergence of the N -agents Nash
equilibrium to the solutions of the MFG system. For a thorough study of the well-posedness of
the MFG system, see the videos of P.L.Lions’ lecture at the Collège de France, and some lecture
notes [9].

There is also an important literature on the probabilistic aspects of MFGs, see [12, 29] for
some examples and [13, 14] for a detailed presentation of the probabilistic viewpoint.

For applications of MFGs, numerical simulations are crucial because it is most often impos-
sible to find explicit or semi-explicit solutions to the MFG system. We refer to [2] for a survey
on finite difference methods and to [3] for applications to crowd motion.

Most of the literature on MFGs is focused on the case when the mean field interactions only
involves the distributions of states. Here we will consider a more general situation in which the
cost of an individual agent depends on the joint distribution µ of states and optimal strategies.
To underline this, we choose to use the terminology Mean Field Games of Controls (MFGCs) for
this class of MFGs; the latter terminology was introduced in [11]. Within this framework, the
usual MFG system (1.1) is replaced by the following MFGC system,

(1.2a)

(1.2b)

(1.2c)

(1.2d)

(1.2e)

− ∂tu(t, x)− ν∆u(t, x) +H(x,∇xu(t, x), µ(t)) = 0 in (0, T )× T
d,

∂tm(t, x)− ν∆m(t, x)− div(Hp(x,∇xu(t, x), µ(t))m) = 0 in (0, T )× T
d,

µ(t) =
(
Id,−Hp (·,∇xu(t, ·), µ(t))

)
#m(t) in [0, T ],

u(T, x) = g(x,m(T )) in T
d,

m(0, x) = m0(x) in T
d.

We would like to point out two of the main difficulties that one may encounter when studying
(1.2) and which are not present in the study of (1.1).

1) The joint law of states and controls satisfies a fixed point relation described by (1.2c).

2) The HJB equation (1.2a) is non-local with respect to ∇xu. Consequently, it is much more
difficult to obtain uniform a priori estimates on u and the its derivatives.

Difficulty 1) is in general not straightforward and one needs to make assumptions for the fixed
point in µ to have a unique solution when (∇xu,m) are given. An example in which this fixed
point relation does not admit any solution is given in [1] Remark 4.3.

Let us provide a simple illustration for describing difficulty 2) by comparing the results
obtained when we apply the maximum principle on parabolic equations to (1.1a) and (1.2a)
respectively: if u satisfies (1.1a) where f and g are assumed to be uniformly bounded with
respect to m, then u is uniformly bounded; under the same assumption on g, if u is a solution to
(1.2a) and H is not uniformly bounded with respect to µ, we can only say that u is bounded in
absolute value by a constant depending on µ. The other estimates used in the usual arguments
of existence in MFG sytems suffer the same lack of uniformity with respect to µ. Conversely,
the estimates of µ depend on ∇xu. It is not obvious a priori how to combine the estimates on
µ and (u,m) in order to obtain uniform estimates on u. Consequently, compactness results are
harder to obtain for (1.2) than for (1.1).

The main assumption of this paper, namely FP1 and FP2 described below, is an original
structural assumption designed to address difficulty 1). In particular, it implies that the map

µ 7→ µ̃ =
(
Id,−Hp (·,∇xu(t, ·), µ)

)
#m,

is a contraction in a convenient metric space, when (t, u,m) are given.
Moreover, we also assume that the Hamiltonian H(x, p, µ) behaves like a power function

when p tends to infinity. See paragraph 2.2 for more details.
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The main objective of this work is to discuss existence of the solutions of the MFGC system
(1.2) within this framework. We will also give a uniqueness result under a short time horizon
assumption. We refer to [1] for a numerical application with multiple solutions. Indeed, unique-
ness does not hold in general for arbitrary time horizon. It can be obtained though, under a
monotonicity assumption which is investigated in the companion paper [28]. In [28], existence
and uniqueness of solutions of the MFGC system are proved under the above-mentioned mono-
tonicity assumption and with Hamitonian having similar growth as in the present paper. This
monotonicity condition implies that the agents favor moving in a direction opposite to the main-
stream. Such an assumption is adapted to some models coming from finance or economy; and
may be unrealistic in several situations, in particular in models of crowd motions. This explains
why here we introduce a new structural assumption and refrain from assuming monotonicity or
investigating uniqueness in the general case.

Related literature

In the first articles devoted to MFGCs, [20, 21], D. Gomes and his collaborators have given
several existence results for MFGCs in various cases, using the terminology extended MFGs
instead of MFGCs. For instance, [21] contains existence results for stationary games (infinite
horizon) under the assumption that some of the parameters involved in the models are small.
We refer to [7, 11, 15, 13, 28] for other existence and uniqueness results for MFGC systems.

Uniqueness is a major issue in MFG theory, it has been proved for (1.1) in [33, 35] under an
assumptions called the Lasry-Lions monotonicity on the coupling function f and the terminal
cost g in the case of non-local coupling. This assumption has been extended to MFGC and
discussed in [20, 13, 28] in which uniqueness is proved. It translates the fact that the agents
prefer directions opposite to the mainstream direction; therefore it is not adapted to a large
class of MFGC systems like crowd motion models in which an agent is more likely to go in the
mainstream direction.

The latter example of population dynamic is the typical application we had in mind when
writing the assumptions in the present paper, see paragraphs 6.3 and 6.4. To our knowledge,
existence results for such MFGC systems have not been discussed in the literature before. Unique-
ness should not hold in general but under a short-time assumption. We refer to [1] in which the
MFGC system is discretized using a finite-difference scheme and simulations are provided where
the approximating discrete MFGC system admits several different solutions.

For other applications of MFGCs we refer to [11] for an model of optimal trading, [8, 16,
22, 24, 27] in the case of competition between firms producing the same goods, or [4] for energy
storage.

Organization of the paper

Section 2 describes the notations, assumptions and main results in this paper. In Section 3, we
address difficulty 1) which consists of inverting the fixed point relation in µ (1.2c) and providing
estimates on the resulting flow of measures. Section 4 is devoted to proving a priori estimates
on the solutions to (1.2) and addresses difficulty 2). Section 5 contains the proofs of the main
results. Finally, we discuss several applications in Section 6. Namely, we study

• the Bertrand and Cournot competition for exhaustible ressources and introduce an exten-
sion to negatively correlated ressources (for instance gold and other raw materials);

• a model of price impact for high-frequency trading by Almgren and Chriss in which we
discuss the possibility for the bid and ask prices to be different;

• a first-order flocking model;

• a crowd motion model.
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2 - Notations and assumptions

2.1 Notations and definitions

The spaces of probability measures are equipped with the weak* topology. We denote by
P∞

(
T
d × R

d
)

the subset of measures µ in P
(
T
d × R

d
)

with a second marginal compactly sup-
ported. For µ ∈ P∞

(
R
d × R

d
)

and q̃ ∈ [1,∞), we define the quantities Λq̃(µ) and Λ∞(µ)
by,

(2.1)
Λq̃(µ) =

(∫

Rd×Rd

|α|q̃ dµ (x, α)

)1
q̃

,

Λ∞(µ) = sup {|α| , (x, α) ∈ suppµ} .

Jensen inequality states that,

(2.2) Λq1(µ) ≤ Λq2(µ),

for any 1 ≤ q1 ≤ q2 ≤ ∞.
For R > 0, we denote by P∞,R

(
R
d × R

d
)

the subset of measures µ in P∞

(
R
d × R

d
)

such
that Λ∞ (µ) ≤ R. The probability measures µ involved in (1.2) and (2.4), have a particular form,
since they are the images of a measure m on T

d by (Id, α), where α is a bounded measurable
functions from T

d to R
d; in particular they are supported on the graph of α. For m ∈ P

(
T
d
)
, we

call Pm

(
T
d × R

d
)

the set of such measures. For µ ∈ Pm

(
T
d × R

d
)
, we set αµ to be the unique

element of L∞ (m) such that µ = (Id, α
µ)#m. Here, Λq̃(µ) and Λ∞(µ) defined in (2.1) are given

by

(2.3)
Λq̃(µ) = ‖αµ‖Lq̃(m),

Λ∞(µ) = ‖αµ‖L∞(m).

If X is a normed space and | · |X is its norm, for n ≥ 1 we denote by C0 (X;Rn) the
set of bounded continuous functions from X to R

n; it is endowed with the norm ‖v‖∞ =
supx∈X |v(x)|X .

We define C0,1
(
[0, T ]× T

d;R
)

as the set of the functions v ∈ C0
(
[0, T ]× T

d;R
)

differentiable
at any point with respect to the state variable, and such that its gradient satisfies ∇xv ∈
C0
(
[0, T ] × T

d;Rd
)
. This is a Banach space equipped with the norm ‖v‖C0,1 = ‖v‖∞+‖∇xv‖∞.

For β ∈ (0, 1) and n ≥ 1, we denote by C
β
2
,β
(
[0, T ]× T

d;Rn
)

the parabolic space of Hölder
continuous functions which is commonly defined by

C
β

2
,β
(
[0, T ] × T

d;Rn
)
=




v ∈ C0([0, T ] × T

d;Rn),∃C > 0 s.t. ∀(t1, x1), (t2, x2) ∈ [0, T ]× T
d,

|v(t1, x1)− v(t2, x2)| ≤ C
(
|x1 − x2|2 + |t1 − t2|

)β

2



 .

This is a Banach space equipped with the norm,

‖v‖
C

β
2 ,β

= ‖v‖∞ + sup
(t1,x1)6=(t2,x2)

|v(t1, x1)− v(t2, x2)|
(|x1 − x2|2 + |t1 − t2|)

β

2

.

The space C
1+β

2
,1+β([0, T ]× T

d;R) is defined as the set of the functions v ∈ C0,1([0, T ]× T
d;R)

such that ∇xv ∈ C
β

2
,β
(
[0, T ]× T

d;Rn
)

and which admits a finite norm defined by,

‖v‖
C

1+β
2 ,1+β

= ‖v‖∞ + ‖∇xv‖
C

β
2 ,β

+ sup
(t1,x)6=(t2,x)∈[0,T ]×Td

|v(t1, x)− v(t2, x)|
|t1 − t2|

1+β

2

.
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We set C1,2
(
[0, T ]× T

d;R
)

to be the set of functions which admit first derivative with resepct
to time and second derivatives with respect to the state variables, such that these derivatives are
continuous with respect to time and state.

Throughout the paper, what we call a solution to (1.2) is precisely defined by the following
definition.

Definition 2.1. The triple (u,m, µ) is a solution to (1.2) if u ∈ C1,2([0, T ]× T
d) is a pointwise

solution to the Hamilton-Jacobi-Bellman equation (1.2a) with terminal condition (1.2d), m ∈
C0
(
[0, T ] × T

d;R
)

is solution to the Fokker-Planck-Kolmogorov equation (1.2b) in the sense of
distribution with initial condition (1.2e), and µ ∈ C0

(
[0, T ];P∞

(
T
d ×R

d
))

satisfies (1.2c) at
any t ∈ [0, T ].

A simple way to overcome difficulty 2) is to assume that the Hamiltonian H and some of
its derivatives admit uniform bounds with respect to µ. In this case, the well-posedness of the
MFGC system with a possibly degenerate diffusion is investigated in [11]. Here we avoid such
an assumption for (1.2) but we introduce the following approximating system which satisfies it,

(2.4a)

(2.4b)

(2.4c)

(2.4d)

(2.4e)

− ∂tu
M (t, x) − ν∆uM (t, x) +H(x,∇xu

M (t, x), µM (t)) = 0 in (0, T )× T
d,

∂tm
M
t (t, x)− ν∆mM(t, x)− div(Hp(x,∇xu

M (t, x), µM (t))mM ) = 0 in (0, T )× T
d,

µM (t) =
[
Id, TM

(
−Hp

(
·,∇xu

M (t, ·), µM (t)
))]

#mM(t) in [0, T ],

uM (T, x) = g(x,mM (T )) in T
d,

mM (0) = m0,

where M is a positive constant and TM is a truncation map defined by

TM (v) =





v if |v| ≤ M,

M

|v|v otherwise.

The latter definition can be naturally extended to the case when M = ∞ by taking T∞ = IdRd .
In this case systems (1.2) and (2.4) coincide. A solution to (2.4) is defined by replacing (1.2) by
(2.4) in Definition 2.1.

If M < ∞ and
(
uM ,mM , µM

)
is a solution to (2.4), µM (t) is compactly supported in

BRd(0,M) the closed ball in R
d centered at 0 with radius M , for any t ∈ [0, T ]. Consequently, uM

and mM should satisfy estimates depending on M and uniform with respect to µM . Therefore,
compactness results for (2.4) should be less demanding than for (1.2) and difficulty 2) should
vanish.

2.2 Assumptions

Let us start with some reasonable assumptions about the regularity and the boundedness of the
Hamiltonian, the terminal cost and the inital distribution of agents. We introduce two constants:
C0 > 0 and β0 ∈ (0, 1).

A1 H = H(x, p, µ) is convex with respect to p, and differentiable with respect to (x, p); Hp is
locally β0-Hölder continuous with respect to p; H and Hp are continuous with respect to µ

on P∞,R

(
T
d × R

d
)

for any R > 0, where P∞,R

(
T
d × R

d
)

is defined in paragraph 2.1 and
equipped with the weak* topology.

A2 g : Td × P
(
T
d
)
→ R is continuous, and we suppose that x 7→ g(x,m) is in C2+β0

(
T
d
)
,

with a norm bounded uniformly with respect to m, i.e.

‖g(·,m)‖C2+β0 ≤ C0, ∀m ∈ P(Td).
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A3 m0 ∈ P(Td) is absolutely continuous with respect to the Lebesgue measure on T
d and we

also name m0 its density (abuse of notation). Assume that m0 ∈ Cβ0(Td) and is positive
(see Remark 2.2 below to drop out the positivity assumption).

These assumptions are not restrictive when looking for solutions with the regularity given in
Definition 2.1. However, they can be relaxed if we are interested in weaker solutions of systems
(1.2).

In this paper we consider nonlocal coupling through the controls. More precisely, we assume
that these interactions involve the quantity Λq0(µ) defined in (2.1).

Let us introduce the assumptions used to address difficulty 1) which consists of solving the
fixed point relations in µ given in (1.2c) and (2.4c), when (u,m) are fixed and have the same
regularity as in Definition 2.1. We introduce λ0 ∈ [0, 1), for all (x, p,m) ∈ T

d×R
d×P

(
T
d
)
, and

µ, µ1, µ2 ∈ Pm

(
T
d × R

d
)
, we assume that,

FP1 |Hp(x, p, µ)| ≤ C0(1 + |p|q−1) + λ0Λq0(µ).

FP2
∣∣Hp(x, p, µ

1)−Hp(x, p, µ
2)
∣∣ ≤ λ0

∥∥∥αµ1 − αµ2
∥∥∥
Lq0 (m)

.

These structural assumptions for MFGC are new in the literature and participate to the orig-
inality and novelty of the results presented in this paper. Moreover they do not seem to be
restrictive as it is explained in what follows.

We recall that the optimal control of a representative agent is given by α = −Hp (x,∇xu, µ).
Since Λq0(µ) is homogeneous to the norm of a control, we cannot expect the dependency of Hp

upon µ to involve an exponent larger than one. Moreover if m is the first marginal of µ, taking
the Lq0(m)-norm in FP1 makes Λq0(µ) appear in both sides of the resulting inequality; this
explains the form of the right-hand side in FP1 and the necessity of choosing λ0 smaller than
1. Similar arguments can provide insights on FP2, by noticing that if Λq0 was seen as a norm

on Pm

(
T
d × R

d
)

then
∥∥∥αµ1 − αµ2

∥∥∥
Lq0 (m)

would be the associated distance. We refer to Remark

4.3 in [1] for a concrete example of a MFGC system which does not admit solution if λ0 = 1.
As in a large part of the literature on MFG or HJB equations, we consider Hamiltonians that

are power-like functions in p at least asymptotically. Let q ∈ (1,∞) be this asymptotic exponent,
and q′ the conjugate exponent of q defined by q′ = q

q−1 . Namely, we assume that H satisfies the

following inequalities, for all x ∈ T
d, p ∈ R

d, m ∈ P
(
T
d
)
, and µ ∈ Pm

(
T
d × R

d
)
,

B1 |H(x, 0, µ)| ≤ C0 + λ2Λq0(µ)
q′ , with λ2 ≥ 0.

B2 |Hx(x, p, µ)| ≤ C0

(
1 + |p|q + Λq0(µ)

q′
)
.

B3 Hp(x, p, µ) · p − H(x, p, µ) ≥ C−1
0

(
|p|q − λ1Λq0 (µ)

q′
)
− C0, where λ1 is a nonnegative

constant satisfying 0 ≤ λ1 <
(1−λ0)q

′

C
q′

0

.

One may notice that the dependencies of H upon p and µ involve different exponents (which
happen to be equal when q = 2). Indeed the Legendre transform applied to a power-like function
make the exponent change into its conjugate. Since H is defined as the Legendre transform of
the Lagrangian L, the exponent in the dependency of L upon α should be q′. Moreover, Λq0(µ) is
homogeneous to the norm of a control, therefore L should at most involve Λq0(µ)

q′ . Going back
to the Hamiltonian by the Legendre transform, the exponent on Λq0(µ) stays the same which
explains the right-hand side in B1-B3. One may find the abovementionned growth conditions
on L in [28].

Assumption B3 is a convexity property of H with respect to p. In MFG without coupling
through the controls, such an assumption is common, the only difference is that the term in
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Λq0(µ) does not appear. This assumption will be particularly useful to obtain energy integral
estimates by taking advantage of the duality properties of the forward-backward systems (1.2a),
(1.2b) and (2.4a), (2.4b). The inequality satisfied by λ1 is needed in the calculation for getting
these estimates. Let us mention that the right-hand side in this inequality comes from the
estimates in Lemma 3.1, and that the constant C0 can be identified with the one in FP1.

In order to obtain classical solutions of the HJB equations (1.2a) and (2.4a), we need Hölder
continuity of (t, x) 7→ H (x,∇xu(t, x), µ(t)). While the space regularity of the latter map is
straightforward here, its time regularity may be more demanding and we need assumptions
which allow one to compare H at different measures µ1, µ2 ∈ P∞

(
T
d × R

d
)
. Assumption FP2

is not enough since it requires µ1 and µ2 to share the same marginal with respect to T
d.

T For R > 0, there exists a constant CR > 0 such that

∣∣H
(
x, p, µ1

)
−H

(
x, p, µ2

)∣∣ ≤ CR

(∥∥m1 −m2
∥∥β0

∞
+
∥∥∥αµ1 − αµ2

∥∥∥
∞

)
,

∣∣Hp

(
x, p, µ1

)
−Hp

(
x, p, µ2

)∣∣ ≤ CR

(∥∥m1 −m2
∥∥β0

∞
+
∥∥∥αµ1 − αµ2

∥∥∥
∞

)
,

for
(
x, p,mi, µi

)
such that (x, p) ∈ T

d × R
d with |p| ≤ R, mi ∈ P

(
T
d
)
∩ C0

(
T
d
)

with

mi ≥ R−1, µi ∈ Pmi

(
T
d × R

d
)

with αµi ∈ C0
(
T
d × R

d
)

and
∥∥∥αµi

∥∥∥
∞

≤ R, i = 1, 2.

One may notice that when µ1 and µ2 have the same first marginal with respect to T
d the second

inequality in T is implied by FP2. If one is only interested in weak solution to (1.2), T can be
removed.

Remark 2.2. Letting CR depends on
∥∥∥
(
mi
)−1
∥∥∥
∞

was motivated by models of population dy-

namics which are discussed in paragraphs 6.3 and 6.4. The drawback of this assumption is that
we have to assume that the initial distribution of agents m0 is positive.

All the results in this paper hold if we do not assume m0 to be positive in A3, and we remove
the condition mi ≥ R−1 in T.

2.3 Main results

We recall that assumptions FP1 and FP2 are designed to address difficulty 1), and T to obtain
time regularity of the fixed point µ in 1.2c or 2.4c. More precisely, we state the following lemma
that will be proved in Section 3.

Lemma 2.3. Assume A1, FP1, FP2 and T. Take p ∈ C
β

2
,β
(
[0, T ]× T

d;Rd
)

and m ∈ C
β

2
,β
(
[0, T ]× T

d
)

such that m ≥ R−1 and m(t) ∈ P
(
T
d
)

for t ∈ [0, T ], where β ∈ (0, 1) and R > 0 are constants.
For any t ∈ [0, T ], there exists a unique µ(t) ∈ P

(
T
d ×R

d
)

satisfying

µM (t) =
[
Id, TM

(
−Hp

(
·, p(t, ·), µM (t)

))]
#m(t),

where M ∈ (0,∞]. Moreover, the map (t, x) 7→ αµM (t)(x) is in C
ββ0
2

,ββ0
(
[0, T ]× T

d;Rd
)
, and its

associated norm can be estimated from above by a constant which depends on ‖p‖
C

β
2 ,β

, ‖m‖
C

β
2 ,β

,

and the constants in the assumptions.

In Section 4, we prove the a priori estimates stated in the following lemma.

Lemma 2.4. Assume A1-A3, B2, B3, FP1, FP2 and T. If (u,m, µ) is a solution to (2.4) for
M ∈ (0,∞], then

• ‖∇xu‖∞ ≤ C (1 + ‖u‖∞) and ‖u‖∞ ≤ C (1 + ‖∇xu‖q∞), where C is independent of M and
depends only on the constants in the assumptions,
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• m is positive,

• u ∈ C1+β

2
,2+β

(
[0, T ]× T

d
)
,

• m ∈ C
β

2
,β
(
[0, T ]× T

d;R
)
,

• (t, x) 7→ αµ(t)(x) is in C
β

2
,β
(
[0, T ] × T

d;Rd
)
,

where β ∈
(
0, β2

0

)
. Moreover,

∥∥m−1
∥∥
∞

and the norms associated with the last three items above

depend only on ‖u‖∞,
∥∥m−1

0

∥∥
∞

, β and the constants in the assumptions.

These estimates are weaker than their equivalents for MFG systems without interaction
through controls. In particular, u is not uniformly bounded in ‖·‖∞-norm. However, we believe
that our estimate of ‖∇xu‖∞ is the best that we can achieve in our framework since its right-
hand side should be at least linear with respect to ‖u‖∞. To our knowledge, such an estimate
for systems of MFG with nonlocal dependency on ∇xu (or more generally for MFG systems in
which we do not have a uniform a priori estimate on u) is new in the literature.

Here, these a priori estimates are not sufficient to address the difficulty 2) and to obtain
existence of solutions. However, existence can be obtained under several different kinds of as-
sumptions; below, we supply a list of existence results under various assumptions:

Theorem 2.5. Assume A1-A3, B1-B3, FP1, FP2, T. There exists a solution to (1.2) if one
of the following assertions is satisfied

a) q0 ≤ q′ and |H(x, 0, µ)| ≤ C0

(
1 + Λq0 (µ)

q̃
)
, where q̃ is a constant satisfying q̃ < q′

(Proposition 5.4),

b) q0 ≤ q′ and λ1 + C0λ2 <
(1−λ0)q

′

C
q′

0

where λ1 and λ2 are respectively defined in B3 and B1,

the C0 on the left-hand side comes from C−1
0 in B3 and the C0 on the right-hand side

comes from FP1 (Proposition 5.3),

c) |H(x, 0, µ)| ≤ C0

(
1 + Λq0 (µ)

q′−1
)
, for any (x, µ) ∈ T

d × P
(
T
d × R

d
)

(Proposition 5.5),

d) |Hx(x, p, µ)| ≤ C0

(
1 + |p|+ Λq0 (µ)

q′−1
)
, for any (x, p, µ) ∈ T

d×R
d×P

(
T
d × R

d
)

(Propo-

sition 5.6),

e) T ≤ T0, where T0 is a constant depending on the constants in the assumptions (Proposition
5.8).

An other additional assumption under which existence holds is the monotonicity condition
addressed in [28].

We also give a uniqueness result under a short time horizon assumption.

Theorem 2.6 (Uniqueness with short time horizon). Assume A1, A2, A3, B1, B2, B3, FP1,
FP2, and that the following three assumptions are satisfied,

• Hp is locally Lipschitz continuous with respect to p,

• g satisfies

(2.5)
∥∥g(·,m1)− g(·,m2)

∥∥
C1+β ≤ C0Wq1

(
m1,m2

)
,

for any m1,m2 ∈ P
(
T
d
)
, where q1 ∈ [1,∞) and Wq1 is the q1-Wassertein distance on

measures,
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• the two inequalities in T hold when we replace
∥∥m1 −m2

∥∥β0

∞
by Wq1

(
m1,m2

)
.

There exists T1 > 0 such that if T < T1 then there is at most one solution to (1.2).

We believe that this uniqueness result can be easily extended to more general Hamilto-
nians, but that the short-time assumption is essential. Indeed numerical examples in which
non-uniqueness occurs are presented in [1]. In these examples, we consider groups of agents who
start from some crowded areas at time t = 0, and travel through the domain to arrive at some
target areas. Imposing a short time assumption in such an example results in the agents not
trying to reach the targets at all. Indeed in this case the kinetic cost makes it more expensive
for them to cross the domain very quickly before the end of the game than to do nothing and
just wait passively at their starting point. For this reason we were not interested in finding less
restrictive assumptions in Theorem 2.6. This theorem should be only seen as an example of
uniqueness result with a short time horizon assumption. In particular we wanted the proof in
paragraph 5.4 to stay simple.

Remark 2.7. i) In this work, we only consider MFGC systems in the d-dimensional torus
T
d. However, we believe that our existence results (Theorem 2.5) hold under the same

assumptions on the Euclidean space R
d, and that the method introduced in [28] to pass

from T
d to R

d can applied here.

ii) We did not include the case q = 1 in this work (i.e. when the Hamiltonian is Lipschitz
continuous in p). In this case, systems (1.2) and (2.4) coincide when M is large enough,
therefore there exists a solution to (1.2) under assumptions A1-A3, B1-B3, FP1, FP2
and T, by the same arguments as in Lemma 5.1.

3 - The fixed point relation in µ and the proof of Lemma 2.3

We recall that (1.2) and (2.4) conincide when M = ∞. Here, we take M ∈ (0,∞].
The following lemma takes advantage of the structural assumptions FP1 and FP2 to solve

the fixed point relations (1.2c) and (2.4c) which consists of difficulty 1). It also states a priori
estimates on µ which will be of great use in the next section to obtain a priori estimates on u

and its derivatives.

Lemma 3.1. Assume A1, FP1 and FP2. Take p ∈ C0
(
T
d;Rd

)
, and m ∈ P(Td). The following

two assertions are satisfied.

(i) There exists a unique µM ∈ P(Td × R
d) such that

(3.1) µM =
[
Id, TM

(
−Hp

(
·, p(·), µM

))]
#m.

For any q̃ ∈ [1,∞], it satisfies

(3.2) Λq̃

(
µM
)
≤ C0

1− λ0

(
1 +

∥∥∥|p|q−1
∥∥∥
Lmax(q0,q̃)(m)

)
.

(ii) The map (p,m) 7→ µM given by (3.1), is continuous from C0
(
T
d;Rd

)
×P(Td) to P(Td×R

d).
We recall that the spaces of measures are equipped with the weak-* topology.

Proof. (i) Let us define the following map,

ΦM
(p,m) :

C0
(
T
d;Rd

)
→ C0

(
T
d;Rd

)

α 7→
{
T
d → R

d

x 7→ TM (−Hp (x, p(x), (Id, α)#m)) .

9



This map is well defined by (A1). It is λ0-Lipschitz continuous by FP2 and the fact that
TM is 1-Lipschitz continuous, we recall that λ0 < 1. Therefore it admits a unique fixed
point by the Banach fixed point theorem. If µM ∈ P

(
T
d × R

d
)

satisfies (3.1) then αµM

is
the only fixed point of ΦM

(p,m). Conversely, if we denote by α the fixed point of ΦM
(p,m), then

µM defined by µM = (Id, α) #m satisfies (3.1). This implies that (3.1) admits a unique
fixed point that we name µM in what follows. From FP1, µM satisfies,

Λq̃

(
µM
)
=
∥∥∥αµM

∥∥∥
Lq̃(m)

≤
∥∥∥C0

(
1 + |p|q−1

)
+ λ0Λq0

(
µM
)∥∥∥

Lq̃(m)

≤ C0

(
1 +

∥∥∥|p|q−1
∥∥∥
Lq̃(m)

)
+ λ0Λq̃

(
µM
)
,

for q̃ ≥ q0, where we obtained the last line by using the triangle inequality for the Lq̃-norm,
and (2.2). This implies (3.2) for any q̃ ≥ q0. Then we extend this result to 1 ≤ q̃ < q0 by
combining (2.2) and (3.2) applied to q0.

(ii) Let (pn,mn)n∈N ∈
(
C0
(
T
d × R

d
)
;P(Td)

)N
be a convergent sequence to (p,m) in C0

(
T
d;Rd

)
×

P
(
T
d
)
. We define µN as before, and

(
µN,n

)
n∈N

the fixed points satisfying

(3.3) µN,n =
[
Id, TM

(
−Hp

(
·, pn(·), µN,n

))]
#mn

for n ∈ N. The sequence (pn)n∈N is bounded in C0
(
T
d;Rd

)
, thus (3.2) with q̃ = ∞ yields

that
(
µN,n

)
n∈N

are uniformly compactly supported. The sequence
(
µN,n

)
is compact in

P
(
T
d × R

d
)

endowed with the weak-* topology. Let µ̃ be the limit of a subsequence(
µN,ϕ(n)

)
n∈N

, for ϕ : N → N an increasing function. By continuity of Hp and TM , we can
pass to the limit in (3.3) taken at ϕ(n) when n tends to infinity, this gives that µ̃ satisfies
the same fixed point relation as µ. By uniqueness of this fixed point, we deduce that µ̃ = µ.
This implies that the entire sequence

(
µN,n

)
tends to µ.

Therefore the map (p,m) 7→ µM is continuous from C0
(
T
d;Rd

)
× P

(
T
d
)

to P
(
T
d × R

d
)
.

In particular if q0 ≤ q′, (2.2) and (3.2) yield

(3.4) Λq0(µ) ≤ Λq′(µ) ≤
C0

1− λ0

(
1 + ‖p‖q−1

Lq(m)

)
,

and then we use the inequality (a+ b)q
′ ≤ aq

′

θq
′−1 + bq

′

(1−θ)q′−1 which holds for a, b > 0 and for any

θ ∈ (0, 1), to obtain

(3.5) Λq0(µ)
q′ ≤ C

q′

0

(1− λ0)q
′

(
θ1−q′ + (1− θ)1−q′‖p‖q

Lq(m)

)
.

If q ∈ [1,∞] without restriction, we obtain

(3.6) Λq0(µ)
q′ ≤ C

q′

0

(1− λ0)q
′

(
θ1−q′ + (1− θ)1−q′‖p‖q∞

)
.

These latter three inequalities will be of great use in Section 4 for getting a priori estimates.
Given (u,m) as regular as in definition 2.1, we can use Lemma 3.1 to prove that the fixed

point relations (1.2c) and (2.4c) are well-posed, and that if (u,m, µ) is a solution to (1.2) or (2.4)
then µ is continuous with respect to time. However, we need a better regularity in time to get
classical solution of the HJB equations (1.2a) and (2.4a). In Lemma 3.2, we use T to obtain an
estimate of the distance between two fixed points of (3.1) associated with different (u,m). We
will be particularly interested in using this estimate on a solution to (2.4) at different times.
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Lemma 3.2. Assume A1, FP1, FP2 and T. Take p1, p2 ∈ C0
(
T
d;Rd

)
, and m1,m2 ∈ P

(
T
d
)
∩

C0
(
T
d;R

)
some positive probability measures. We define µ1, µ2 ∈ P

(
T
d × R

d
)

as the fixed point
in (i) in Lemma 3.1 associated with

(
p1,m1

)
and

(
p2,m2

)
, respectively. There exists a constant

C such that

(3.7)
∥∥∥αµ1 − αµ2

∥∥∥
∞

≤ C
(∥∥p1 − p2

∥∥β0

∞
+
∥∥m1 −m2

∥∥β0

∞

)
,

where C depends on
∥∥pi
∥∥
∞

,
∥∥∥
(
mi
)−1
∥∥∥
∞

, for i = 1, 2, and the constants in the assumptions.

Proof. We define µ̃ by µ̃ =
(
Id, α

µ1
)
#m2. The triangle inequality and the fact that TM is a

contraction imply that for any x ∈ T
d,

∣∣∣αµ1
(x)− αµ2

(x)
∣∣∣ ≤

∣∣Hp

(
x, p1(x), µ1

)
−Hp

(
x, p2(x), µ2

)∣∣

≤
∣∣Hp

(
x, p1(x), µ1

)
−Hp

(
x, p1(x), µ̃

)∣∣
+
∣∣Hp

(
x, p1(x), µ̃

)
−Hp

(
x, p1(x), µ2

)∣∣
+
∣∣Hp

(
x, p1(x), µ2

)
−Hp

(
x, p2(x), µ2

)∣∣ .

The measures µ1 and µ̃ are the image measures by the same function
(
Id, α

µ1
)
, of m1 and m2

respectively. From T, we obtain

∣∣Hp

(
x, p1(x), µ1

)
−Hp

(
x, p1(x), µ̃

)∣∣ ≤ CR

∥∥m1 −m2
∥∥β0

∞
,

where R = max
(∥∥pi

∥∥
∞
,
∥∥∥
(
mi
)−1
∥∥∥
∞

)
and CR is the constant defined in T. We recall that

Λ∞

(
µi
)

can be estimated from above by a quantity which only depends on
∥∥pi
∥∥
∞

and the
constants in the assumptions, by (3.2).

Since µ̃ and µ2 have the same marginal with respect to T
d, FP2 yields that,

∣∣Hp

(
x, p1(x), µ̃

)
−Hp

(
x, p1(x), µ2

)∣∣ ≤ λ0

∥∥∥αµ1 − αµ2
∥∥∥
∞
.

Then Hp is locally β0-Hölder continuous by A1 so,

∣∣Hp

(
x, p1(x), µ2

)
−Hp

(
x, p2(x), µ2

)∣∣ ≤ C
∥∥p1 − p2

∥∥β0

∞
,

for some constant C. Combining the latter four inequalities, we obtain,

∥∥∥αµ1 − αµ2
∥∥∥
∞

≤ C1

(∥∥p1 − p2
∥∥β0

∞
+
∥∥m1 −m2

∥∥β0

∞

)
+ λ0

∥∥∥αµ1 − αµ2
∥∥∥
∞
,

which implies (3.7) up to replacing C with (1− λ0)
−1 max (C,CR).

Lemma 2.3 is a straightfoward consequence of Lemmas 3.1 and 3.2.

4 - A priori estimates and the proof of Lemma 2.4

Here we take M ∈ (0,∞], and (u,m, µ) a solution to (2.4) defined in Definition 2.1. We will look
for estimates independent of M which allow us to address difficulty 2). These a priori estimates
imply compactness results and play an essential role in the proofs of existence in Section 5.
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4.1 A priori estimates on u

When we consider MFG without interactions through controls and with bounded coupling func-
tion and terminal cost, we can apply the maximum principle on parabolic differential equations
to (4.3) below and get an a priori estimates of ‖u‖∞ which only depends on the constants in the
assumptions. However, for MFGC systems and more generally for HJB equations with non-local
interactions in ∇xu, it is not possible to get such a strong a priori estimate directly from the
maximum principle. Instead we get (4.1) and (4.2) which involve non-local quantities depending
on ∇xu.

Lemma 4.1. Under assumptions A1, A2, B1, FP1, FP2, and q0 ≤ q′, for θ ∈ (0, 1) u satisfies,

(4.1) ‖u‖∞ ≤ C0 (1 + T ) +
λ2C

q′

0

(1− λ0)q
′

(
θ1−q′T + (1− θ)1−q′

∫ T

0

∫

Td

|∇xu|q dm(t, x)dt

)
,

where λ2 is defined in B1. More generally, for any q0 ∈ [1,∞] u satisfies,

(4.2) ‖u‖∞ ≤ C0 (1 + T ) +
λ2C

q′

0

(1− λ0)q
′

(
θ1−q′T + (1− θ)1−q′ ‖∇xu‖q∞

)
.

Proof. Here, we can rewrite (2.4a) in the following way,

(4.3) − ∂tu(t, x)− ν∆u(t, x) +

[∫ 1

0
Hp(x, s∇xu, µ(t))ds

]
· ∇xu(t, x) = −H(x, 0, µ(t)),

for (t, x) ∈ (0, T ) × T
d. The maximum principle for parabolic second-order equation applies to

u and −u,

(4.4) ‖u‖∞ ≤ ‖u(T, ·)‖∞ +

∫ T

0
‖H (·, 0, µ(t))‖∞dt.

Moreover, |H (x, 0, µ(t)) | ≤ C0 + λ2Λq0 (µ(t))
q′ and |u(T, x)| ≤ C0 come from B1 and A2,

respectively. We combine the latter inequalities with (3.5) and (3.6) to get (4.1) when q0 ≤ q′,
and (4.2) respectively.

The non-local term in (4.1) involving ∇xu corresponds roughly speaking to an energy. More-
over this is a quantity that naturally appears in MFG literature thanks to duality properties in
the forward-backward systems (1.1), (1.2), or (2.4). More precisely, the FPK equations is the
dual equation of the linearized HJB equation with respect to u. Lemma 4.2 provides an a priori
estimate of this quantity.

Lemma 4.2. Under assumptions A1, A2, B3, FP1, FP2, and q0 ≤ q′, the following inequality
is satisfied,

(4.5)

∫ T

0

∫

Td

|∇xu|q dm(t, x)dt ≤
(
1− λ1C

q′

0

(1− θ)q′−1(1− λ0)q
′

)−1(
C0‖u‖∞ + C2

0 (1 + T ) +
λ1C

q′

0 T

θq
′−1(1− λ0)q

′

)
,

for any θ ∈ (0, 1) such that λ1 <
(1−θ)q

′
−1(1−λ0)q

′

C
q′

0

.
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Proof. We multiply (2.4a) by −m and (2.4b) by u; we add up and integrate over (0, T )×T
d the

resulting quantities; after performing some integrations by part, we obtain

∫ T

0

∫

Td

[Hp (x,∇xu(t, x), µ(t)) · ∇xu−H (x,∇xu(t, x), µ(t))] dm(t, x)dt

=

∫

Td

u(0, x)dm0(x)−
∫

Td

g(x,m(T ))dm(T, x),

that we can combine with B3 and A2 to get,

C−1
0

∫ T

0

∫

Td

|∇xu|q dm(t, x)dt ≤ ‖u‖∞ + C0(1 + T ) +C−1
0 λ1

∫ T

0
Λq0 (µ(t))

q′ dt.

We integrate (3.5) over (0, T ),

∫ T

0
Λq0 (µ(t))

q′ dt ≤ C
q′

0

(1− λ0)q
′

(
θ1−q′T + (1− θ)1−q′

∫ T

0

∫

Td

|∇xu|q dm(t, x)dt

)
,

where we can choose θ ∈ (0, 1) such that λ1 <
(1−θ)q

′
−1(1−λ0)q

′

C
q′

0

, since λ1 satisfies the inequality

in B3. The latter three inequalities imply (4.5).

Roughly speaking, Lemma 4.1 with q0 ≤ q′ and Lemma 4.2 provide opposite inequalities
which may become complementary under a smallness condition on the parameters, implying a
uniform estimate on ‖u‖∞. This condition is explicitely given in the following corollary.

Corollary 4.3. Under Assumptions A1, A2, B1, B3, FP1, FP2, q0 ≤ q′, and λ1 + C0λ2 <
(1−λ0)q

′

C
q′

0

, u is bounded by a quantity which only depends on the constants in the assumptions.

Proof. Combing (4.1) and (4.5) results in,

‖u‖∞ ≤ λ2C
q′

0

(1− θ)q
′−1(1− λ0)q

′
C0

(
1− λ1C

q′

0

(1− θ)q
′−1(1− λ0)q

′

)−1

‖u‖∞ + Cθ

≤ C0λ2

(
(1− θ)q

′−1(1− λ0)
q′

C
q′

0

− λ1

)−1

‖u‖∞ + Cθ

where θ ∈ (0, 1) may be chosen such that λ1 + C0λ2 <
(1−θ)q

′
−1(1−λ0)q

′

C
q′

0

, and Cθ is a positive

constant depending on the constants in the assumptions and θ. This implies

‖u‖∞ ≤


1− C0λ2

(
(1− θ)q

′−1(1− λ0)
q′

C
q′

0

− λ1

)−1

Cθ,

where C0λ2

(
(1−θ)q

′
−1(1−λ0)q

′

C
q′

0

− λ1

)−1

< 1, which concludes the proof.

Let us mention that in the assumption λ1 + C0λ2 <
(1−λ0)q

′

C
q′

0

in Corollary 4.3, the constant

C0 in the left-hand side comes from the C−1
0 in B3, and the C0 in the right-hand side comes

from FP1.
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4.2 A priori estimates on m

In order for the HJB equations (1.2a) and (2.4a) to admit classical solutions, we want µ to be
regular in time. Since m is the marginal of µ with respect to T

d, we first prove that m is regular
in the following lemma. Moreover, we also prove that m stays positive, which is required in
Lemma 2.3 to obtain time regularity on µ.

Lemma 4.4. Under assumptions A1, A3, FP1, FP2, m is in C
β

2
,β
(
[0, T ]× T

d;R
)

for β ∈
(0, β0) and its C

β

2
,β
(
[0, T ] × T

d,R
)
-norm can be estimated from above by a constant which de-

pends on ‖m0‖Cβ0 , ‖∇xu‖∞, β and the constants in the assumptions.
Furthermore, m is positive everywhere and admits a positive lower bound which only depends

on
∥∥m−1

0

∥∥
∞

, ‖∇xu‖∞ and the constants in the assumptions.

Proof. The distribution of agents m satisfies the second-order parabolic FPK equation (2.4b),
which is supplemented with a β0-Hölder continuous initial condition. Theorem 2.1 section
V.2 in [30] states that m is uniformly bounded by a constant which depends on ‖m0‖∞ and
‖Hp (·,∇xu, µ)‖∞. This, (FP1) and (3.4) yield that mHp (·,∇xu, µ,m) is bounded by a con-
stant which depends on ‖m0‖∞, ‖∇xu‖∞ and the constant of the assumptions. Finally, Theorem

6.29 in [34] yields that m ∈ C
β

2
,β
(
[0, T ] × T

d
)

for β ∈ (0, β0), and its associated norm can be
estimated from above by a constant which depends on ‖m0‖Cβ0 , ‖∇xu‖∞, β and the constants
in the assumptions.

We define Tε = inf
({

t ∈ [0, T ],
∥∥m(t)−1

∥∥
∞

≤ ε
}
∪ {T}

)
, for 0 < ε <

∥∥m−1
0

∥∥
∞

. In particular

Tε is positive, since we proved in the latter paragraph that m is continuous. On [0, Tε]× T
d we

define the function n by n = m−1, it satisfies the following partial differential equation in the
sense of viscosity,

∂tn− ν∆n− div (αn) + 2α · ∇xn = −2ν
|∇xn|2

n
,

supplemented with the initial condition n(0) = m−1
0 , where α(t, x) = −Hp (x,∇xu(t, x), µ(t)) for

(t, x) ∈ [0, T ] × T
d. We define ñ as the unique weak solution of the following partial differential

equation defined on [0, T ]× T
d,

(4.6) ∂tñ− ν∆ñ− div (αñ) + 2α · ∇xñ = 0,

supplemented with the initial condition ñ(0) = m−1
0 . Theorem 2.1 section V.2 in [30] states that

ñ is bounded from above by a constant which depends on
∥∥m−1

0

∥∥
∞

, ‖α‖∞ and T . Moreover, n

is a subsolution of the restriction of (4.6) to [0, Tε] × T
d, with the same initial condition as ñ.

Therefore, by a comparison argument for second-order parabolic equations in divergence form
(Theorem 9.7 in [34] for instance), n and ñ satisfy n ≤ ñ. This implies that there exists C a
positive constant independent of Tε, such that ‖n‖∞ ≤ C. We conclude the proof by taking
ε = 2−1C−1 and recalling that ‖α‖∞ can be estimated from above using FP1 and (3.4).

4.3 A priori estimates on derivatives of u

Bernstein methods are useful tools when studying HJB equations or MFG systems. They allow
one to obtain a priori estimates on ∇xu by considering the partial differential equations satisfied
by some well-chosen functions depending on u and ∇xu. See for example the video of the lecture
of P.L. Lions on November the 23rd 2018 [35], in which Bernstein estimates are derived for MFG
systems without interactions through controls. More precisely, P.L. Lions used the function
defined by |∇xu|2 e−ηu, for small η. Here this method might work only if we knew a uniform
estimates on ‖u‖∞ and if q = 2. After significant changes in the latter method, we can derive
an estimate on u which is weaker than the one for MFG without interactions through controls.
Namely, we state that ‖∇xu‖∞ is bounded by a quantity that depends linearly on ‖u‖∞ by
studying the functions w and ϕ defined in (4.11) below. To our knowledge, such estimates for
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systems of MFG with nonlocal dependency on ∇xu (or more generally for MFG systems in which
we do not have a uniform a priori estimate on u) are new in the literature. We believe that this
result may hold for more general HJB equations with nonlocal dependency on ∇xu.

Lemma 4.5. Under assumptions A1, A2, B2, B3, FP1 and FP2, there exists C > 0 depending
only on the constants of the assumptions, such that

(4.7) ‖∇xu(t)‖∞ ≤ C

(
1 + max

t≤s≤T
‖u‖∞

)
,

for any t ∈ [0, T ].

Proof. In what follows, we only prove that (4.7) holds for t = 0, however the proof does not use
additional information available at t = 0 (the initial condition on m for example), so it can be
repeated for any t ∈ [0, T ] and the constant C in (4.7) does not depend on t.

Here we wish to differentiate (2.4a) with respect to x; however we did not assume in Definition
2.1 enough regularity on u for such an operation to have sense pointwisely on (0, T ) × T

d.
Especially the time derivative of ∇xu and the third derivatives of u with respect to x are not
required to exist. This leads us to introducing ρ ∈ C∞

(
[−1

2 ,
1
2)

d
)

a non-negative mollifier such
that ρ(x) = 0 if |x| ≥ 1

4 and
∫
Rd ρ(x)dx = 1. We introduce ρδ = δ−dρ

(
·
δ

)
and uδ(t) = ρδ ⋆ u(t),

for any 0 < δ < 1 and t ∈ [0, T ], where ⋆ denotes the convolution operator.
Thus uδ depends smoothly on the state variable and its partial derivatives in space at any

order have the same regularity in time as u, moreover it solves the following partial differential
equation with final condition,

(4.8)

{
− ∂tu

δ(t, x)− ν∆uδ(t, x) + ρδ ⋆ (H(·,∇xu(t, ·), µ(t))) (x) = 0 in (0, T )× T
d,

uδ(T, x) = ρδ ⋆ (g(·,m(T, ·))) (x) in T
d,

Let us take the gradient with respect to the state variable of the latter equation and the scalar
product of the resulting equality with ∇xu

δ,

(4.9) − 1

2
∂t

∣∣∣∇xu
δ
∣∣∣
2
− ν∇xu

δ ·∆
(
∇xu

δ
)
+∇xu

δ ·D2
x,xu

δHp

(
x,∇xu

δ, µ
)

+∇xu
δ ·Hδ

x (x,∇xu, µ) = ∇xu
δ ·Rδ(t, x),

where Hδ and Rδ are defined by

Hδ(x, p, µ) = ρδ ⋆ (H(·, p(·), µ)) (x),

Rδ(t, x) = D2
x,xu

δHp

(
x,∇xu

δ, µ
)
− ρδ ⋆

(
D2

x,xuHp (·,∇xu, µ)
)
.

By simple calculus, we notice that

∇x

∣∣∣∇xu
δ
∣∣∣
2
= 2D2

x,xu
δ∇xu

δ,

∆
∣∣∣∇xu

δ
∣∣∣
2
= 2∇xu

δ ·∆
(
∇xu

δ
)
+ 2

∣∣∣D2
x,xu

δ
∣∣∣
2
,

that we can combine with (4.9) and obtain

(4.10) − 1

2
∂t

∣∣∣∇xu
δ
∣∣∣
2
− ν

2
∆
∣∣∣∇xu

δ
∣∣∣
2
+ ν

∣∣∣D2
x,xu

δ
∣∣∣
2
+

1

2
∇x

∣∣∣∇xu
δ
∣∣∣
2
·Hp

(
x,∇xu

δ, µ
)

= −∇xu
δ ·Hδ

x (x,∇xu, µ) +∇xu
δ ·Rδ(t, x).

We define the functions ϕ and wδ by

(4.11)
ϕ(v) = exp

(
exp

(
−
(
a+ b‖u‖−1

∞ v
)))

, for |v| ≤ ‖u‖∞,

wδ(t, x) = ϕ(uδ(T − t, x))
∣∣∣∇xu

δ
∣∣∣
2
(T − t, x),
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where a > 1 and b > 0 are constants that will be defined below. The derivatives of ϕ are given
by

(4.12)
ϕ′(v) = −b‖u‖−1

∞ e−(a+b‖u‖−1
∞

v)ϕ(v),

ϕ′′(v) = b2‖u‖−2
∞ e−(a+b‖u‖−1

∞
v)
(
1 + e−(a+b‖u‖−1

∞
v)
)
ϕ(v),

which implies that ϕ and ϕ′ satisfy,

(4.13)

1 ≤ ϕ(v) ≤ ee
−a+b

,

b‖u‖−1
∞ e−a−b ≤ |ϕ′(v)|

ϕ(v)
≤ b‖u‖−1

∞ e−a+b.

Roughly speaking, we introduced a and b in order to have ‖ϕ‖∞
∥∥ϕ−1

∥∥
∞

and ‖ϕ′‖∞
∥∥(ϕ′)−1

∥∥
∞

as close as possible to 1. This will be achieved by taking a large enough, and b small enough.
For simplicity of the notations, we will omit to write the argument of ϕ since it is always uδ.
The derivatives of wδ verify the following equalities,

−ϕ∂t

∣∣∣∇xu
δ
∣∣∣
2
= ∂tw

δ +
ϕ′

ϕ
wδ∂tu

δ,

ϕ∇x

∣∣∣∇xu
δ
∣∣∣
2
= ∇xw

δ − ϕ′

ϕ
wδ∇xu

δ,

ϕ∆
∣∣∣∇xu

δ
∣∣∣
2
= ∆wδ − ϕ′

ϕ
wδ∆uδ + 2

ϕ′

ϕ
∇xw

δ · ∇xu
δ − ϕ′′ϕ− 2 (ϕ′)2

ϕ3

(
wδ
)2

.

We multiply (4.10) by 2ϕ and use the latter equalities in the resulting relation,

(4.14) ∂tw
δ − ν∆wδ +∇xw

δ ·Hp

(
x,∇xu

δ, µ
)
− 2ν

ϕ′

ϕ
∇xw

δ · ∇xu
δ + 2νϕ

∣∣∣D2
x,xu

δ
∣∣∣
2

=
ϕ′

ϕ
wδ
[
−∂tu

δ − ν∆uδ +∇xu
δ ·Hp

(
x,∇xu

δ, µ
)]

− ν
ϕ′′ϕ− 2 (ϕ′)2

ϕ3

(
wδ
)2

− 2ϕ∇xu
δ ·Hδ

x (x,∇xu, µ) + 2ϕ∇xu
δ ·Rδ(t, x).

We can rewrite the first line of (4.8) in the following way,

−∂tu
δ − ν∆uδ = −H

(
x,∇xu

δ, µ
)
−Qδ,

where Qδ is defined by,

Qδ(t, x) = Hδ (x,∇xu(t), µ(t)) −H
(
x,∇xu

δ(t, x), µ(t)
)
.

This and (4.14) imply that

(4.15) ∂tw
δ − ν∆wδ +∇xw

δ ·Hp

(
x,∇xu

δ, µ
)
− 2ν

ϕ′

ϕ
∇xw

δ · ∇xu
δ + 2νϕ

∣∣∣D2
x,xu

δ
∣∣∣
2

=
ϕ′

ϕ
wδ
[
∇xu

δ ·Hp

(
x,∇xu

δ, µ
)
−H

(
x,∇xu

δ, µ
)]

− ν
ϕ′′ϕ− 2 (ϕ′)2

ϕ3

(
wδ
)2

− 2ϕ∇xu
δ ·Hδ

x (x,∇xu, µ) + 2ϕ∇xu
δ · Rδ(t, x)− ϕ′

∣∣∣∇xu
δ
∣∣∣
2
Qδ(t, x).

In the following we will estimate from above the right-hand side of the latter expression. We
notice that the second term of the right-hand side is negative since

(4.16) ϕ′′ϕ− 2
(
ϕ′
)2 ≥ 0.
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We notice that Rδ and Qδ are uniformly convergent to 0 as δ tends to 0, so we can assume that,

(4.17)
∥∥∥Rδ

∥∥∥
∞

+
∥∥∥Qδ

∥∥∥
∞

≤ ε

2e‖∇xu‖∞ + ‖ϕ′‖∞‖∇xu‖2∞
,

for δ small enough and depending on ε > 0.
The first term in the last line of (4.15) can be bounded using B2,

(4.18) − 2ϕ∇xu
δ ·Hδ

x (x,∇xu, µ) ≤ 2C0ϕ
∥∥∥∇xu

δ
∥∥∥
∞

(
1 +

∥∥∥∇xu
δ
∥∥∥
q

∞
+ Λq0 (µ(t))

q′
)
.

In fact we are going to use the latter inequality to obtain (4.19) below, only by noticing that
using (3.6), the right-hand side involves only terms with exponents in

∥∥wδ
∥∥
∞

or
∥∥w0

∥∥
∞

not

larger than 1+q
2 .

Then we use B3 on the first term of the right-hand side of (4.15) since ϕ′ < 0,

ϕ′

ϕ
wδ
[
∇xu

δ ·Hp

(
x,∇xu

δ, µ
)
−H

(
x,∇xu

δ, µ
)]

≤ −C−1
0

ϕ′

ϕ1+ q

2

(
wδ
)1+ q

2
+C0

|ϕ′|
ϕ

wδ+C−1
0 λ1

|ϕ′|
ϕ

wδΛq0 (µ(t))
q′ .

The term involving −
(
wδ
)1+ q

2 is a key element in this proof. On the one hand, it will allow us

to cancel the term in wδΛq0 (µ(t))
q′ . On the other hand, we will use the fact that it has a larger

exponent than any of the remaining terms.
From (3.6) and (4.13), we obtain

|ϕ′|
ϕ

Λq0 (µ(t))
q′ ≤ b‖u‖−1

∞ e−a+b C
q′

0

(1− λ0)q
′

(
θ1−q′ + (1− θ)1−q′

∥∥w0
∥∥ q

2

∞

)
,

where θ ∈ (0, 1) will be defined below. Then (4.13) implies,

|ϕ′|
ϕ1+ q

2

≥ b‖u‖−1
∞ e−a−be−

q

2
e−a+b

Combining the latter six inequalities, (4.15), and the fact that
∥∥wδ

∥∥
∞

≤
∥∥w0

∥∥
∞

, we obtain the
following partial differential inequality,

(4.19) ∂tw
δ − ν∆wδ +∇xw

δ ·Hp

(
x,∇xu

δ, µ
)
− 2ν

ϕ′

ϕ
∇xw

δ · ∇xu
δ

≤ −C−1
0 b‖u‖−1

∞ e−a−be−
q

2
e−a+b

(
wδ
)1+ q

2
+ b‖u‖−1

∞ e−a+b λ1C
q′−1
0

(1− θ)1−q′(1− λ0)q
′

∥∥w0
∥∥1+ q

2

∞

+ ε+ Ca,b,θ

(
1 + ‖u‖−1

∞

)(
1 +

∥∥w0
∥∥ 1+q

2

∞

)

where Ca,b,θ is a positive constant which only depends on the constants in the assumptions and

in (a, b, θ). We systematically used the inequality
∥∥w0

∥∥r
∞

≤ 1 +
∥∥w0

∥∥ 1+q

2
∞

on every term of the

form
∥∥w0

∥∥r
∞

with 0 < r < 1+q
2 .

Let us mention the following result: the function y+ defined by y+ = max

(
y0,K

− 1
k ‖f‖

1
k
∞

)

is a super-solution of the following differential equation,

{
y′(t) = −Ky(t)k + f(t)

y(0) = y0

posed on [0, T ], where k and y0 are positive constants and f is a bounded positive function.
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This and ‖w(0)‖∞ ≤ eC2
0 which comes from A2 and (4.13), yield that a super-solution to

(4.19) is given by

[
λ1C

q′

0 e2be
q

2
e−a+b

(1− θ)q′−1(1− λ0)q
′

∥∥w0
∥∥1+ q

2

∞
+ Ca,b,θ (1 + ‖u‖∞)

(
1 +

∥∥w0
∥∥ 1+q

2

∞
+ ε

)] 2
2+q

,

where we replace Ca,b,θ with Ca,b,θ +
(
eC2

0

)1+ q

2 .
From a comparison argument for parabolic second-order equation, wδ is not larger than the

latter expression. This result holds for w0 by letting δ and ε tend to 0, thus w0 verifies the
following inequality,

∥∥w0
∥∥1+ q

2

∞
≤ λ1C

q′

0 e2be
q

2
e−a+b

(1− θ)q′−1(1− λ0)q
′

∥∥w0
∥∥1+ q

2

∞
+ Ca,b,θ (1 + ‖u‖∞)

(
1 +

∥∥w0
∥∥ 1+q

2

∞

)
.

By B3, we can choose a > 1 large enough, b > 0 and θ ∈ (0, 1) small enough such that

λ1C
q′

0 e2be
q
2 e−a+b

(1−θ)q′−1(1−λ0)q
′ < 1. This implies

(4.20)
∥∥w0

∥∥1+ q

2

∞
≤ Ca,b,θ (1 + ‖u‖∞)

(
1 +

∥∥w0
∥∥ 1+q

2

∞

)
,

where we increased Ca,b,θ into

(
1− λ1C

q′+1
0 e2be

q
2 e−a+b

(1−θ)q′−1(1−λ0)q
′

)−1

Ca,b,θ.

We make out two cases: the first case is when
∥∥w0

∥∥ 1
2
∞

≤ 2Ca,b,θ (1 + ‖u‖∞). The second

case is when
∥∥w0

∥∥ 1
2
∞

> 2Ca,b,θ (1 + ‖u‖∞). In the latter case, (4.20) implies that
∥∥w0

∥∥1+ q

2
∞

≤
1
2

∥∥w0
∥∥ 1

2
∞

(
1 +

∥∥w0
∥∥ 1+q

2
∞

)
, which implies that

∥∥w0
∥∥
∞

≤ 1. Therefore, in any of the two latter

cases we obtain ∥∥w0
∥∥ 1

2

∞
≤ 1 + 2Ca,b,θ (1 + ‖u‖∞) .

This and (4.13) yield (4.7) when t = 0, this concludes the proof.

Now, we can combine the estimates obtained in this section with classical results on parabolic
second-order equations and get further estimates of u and its derivatives and on m.

Lemma 4.6. Assume A1, A2, B2, B3, FP1, FP2 and T. The function u is in C1+β
2
,2+β

(
[0, T ] × T

d
)

for any β ∈
(
0, β2

0

)
, where β0 was introduced in the assumptions. Its C1+β

2
,2+β-norm can be

bounded by a quantity depending only on ‖u‖∞, β, and the constants in the assumptions.

Proof. Lemma 4.5 states that ‖∇xu‖∞ is bounded by a quantity which depends on ‖u‖∞ and the
constants in the assumptions. So is Λq0(µ) by (3.2). Then u is the solution of the heat equation
with a right-hand side equal to −H (x,∇xu, µ) which is bounded in L∞. Classical results (see for

example Theorem 6.48 in [34]) state that for any β ∈ (0, 1), the C
1
2
+β

2
,1+β-norm of u is bounded

by a constant which depends on the L∞-norm of the right-hand side, the terminal condition,
and β.

Lemma 4.4 yields that m is in C
β

2
,β
(
[0, T ]× T

d
)

for β ∈ (0, β0), is positive, and that both

its C
β

2
,β
(
[0, T ] × T

d
)
-norm and its lower bound depend on ‖u‖∞,

∥∥m−1
0

∥∥
∞

, β, and the constant
of the assumptions.

Therefore, Lemma 2.3 yields that
[
(t, x) 7→ αµ(t)(x)

]
∈ C

ββ0
2

,ββ0
(
[0, T ]× T

d;Rd
)
.

From A1, H is locally Lipschitz continuous with respect to (x, p). This and T imply that

[(t, x) 7→ H (t,∇xu (t, x) , µ(t))] ∈ C
ββ0
2

,ββ0
(
[0, T ]× T

d
)
. Thus u is the solution of the backward
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heat equation with a right-hand side in C
ββ0
2

,ββ0 supplemented with terminal condition in C2+β0 .

Classical results (see for instance Theorem 4.9 in [34]) yield that u is in C1+
ββ0
2

,2+ββ0 , and its

C1+
ββ0
2

,2+ββ0-norm depends on ‖g(·,m(T ))‖C2+β0 and the C
ββ0
2

,ββ0-norm of the right-hand side.
We recall that β is any constant in (0, β0). The proof of the lemma is complete.

Following precisely the dependencies in the above estimates, we obtain that the C1+
ββ0
2

,2+ββ0

norm of u can be estimated from above by a constant which depends on ‖u‖∞,
∥∥m−1

0

∥∥
∞

, β, and
the constants in the assumptions.

The conclusions of Lemmas 4.1, 4.4, 4.5 and 4.6 are summarized in Lemma 2.4.

5 - Existence and uniqueness results under additional

assumptions

5.1 Solving the MFGC systems for M < ∞
Lemma 5.1. Under assumptions A1-A3, B2, B3, FP1, FP2, T and M ∈ (0,∞), there exists
at least one solution to (2.4).

Proof. For (u,m) ∈ C0,1
(
[0, T ]× T

d;R
)
×C0

(
[0, T ];P

(
T
d
))

, we define µM ∈ C0
(
[0, T ];P

(
T
d × R

d
))

by
µM (t) =

[
Id, TM

(
−Hp

(
·,∇xu(t, ·), µM (t)

))]
#m(t) in [0, T ],

using Lemma 2.3. Then we define uM as the viscosity solution of the following backward HJB
equation with a final condition,

(5.1)

{
− ∂tu

M (t, x)− ν∆uM (t, x) +H(x,∇xu
M (t, x), µM (t)) = 0

uM (T, x) = g(x,m(t)).

We can rewrite the first line of the latter system in the following way,

−∂tu
M − ν∆uM +∇xu

M ·
∫ 1

0
Hp

(
x, s∇xu

M , µM (t)
)
ds = −H

(
x, 0, µM (t)

)
,

where the right-hand side is bounded using Λ∞ (µ(t)) ≤ M , B1 and (2.2). The maximum
principle for second-order parabolic equation provides that uM is bounded. Here, the proof of
Lemma 4.5 can be repeated to prove that ‖∇xu‖∞ is bounded by a constant which depends on
M and the constants in the assumptions. Then with the same argument as in Lemma 4.6, uM

is bounded in C
1
2
+β

2
,1+β-norm, for all β ∈ (0, 1).

We define mM as the solution in the sense of distributions of the following Fokker-Planck-
Kolmogorov equation with an initial condition,

{
∂tm

M
t (t, x)− ν∆mM(t, x) + div

(
b(t, x)mM

)
= 0 in (0, T ) × T

d,

mM (0) = m0,

with b(t, x) = −Hp

(
x,∇xu

M (t, x), µM (t)
)

which is a continuous function with respect to (t, x).

Using the same arguments as in Lemma 4.4, we get that m ∈ C
β

2
,β
(
T
d;R

)
for β ∈ (0, β0).

Moreover, ‖u‖
C

1
2+

β
2 ,1+β

, ‖m‖
C

β
2 ,β

are bounded by a constant which depends on M , β and the

constants in the assumptions. The map (u,m) 7→ µM is continuous from C0,1
(
[0, T ]× T

d;R
)
×

C0
(
[0, T ];P

(
T
d
))

to C0
(
[0, T ];P

(
T
d × R

d
))

by Lemma 3.1. The map
(
m,µM

)
7→ uM is contin-

uous from C0
(
[0, T ];P

(
T
d
))

×C0
(
[0, T ];P

(
T
d × R

d
))

to C0,1
(
[0, T ]× T

d;R
)

by the stability of
the solutions of viscosity. The map

(
uM , µM

)
7→ mM is continuous from C0,1

(
[0, T ]× T

d;R
)
×

C0
(
[0, T ];P

(
T
d × R

d
))

to C0
(
[0, T ];P

(
T
d
))

by linearity of the FPK equation.
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Thus the map (u,m) 7→ (uM ,mM ) is continuous from C0,1
(
[0, T ]× T

d;R
)
×C0

(
[0, T ];P

(
T
d
))

to itself. Its fixed points are exactly the solutions to (2.4). The image of this map is a subset
of a convex compact set. Therefore, there exists a fixed point by Schauder theorem, see [19]
Corollary 11.2.

Using the same arguments as in the proof of Lemma 4.6, such a fixed point u satisfies

u ∈ C1+β

2
,2+β

(
[0, T ] × T

d;R
)

for any β ∈
(
0, β2

0

)
.

Considering M < ∞ in (2.4) consists of enforcing the condition Λ∞ (µ(t)) ≤ M , i.e. the
fact that the support of µ(t) is embedded in the compact set T

d × BRd (0,M), for t ∈ [0, T ].
Therefore, the interactions through controls are uniformly bounded. Lemma 5.1 relies on that to
state the existence of solutions to (2.4). For M = ∞, we can not obtain such a uniform estimate
by combining only the results of Section 4. However if such an estimate exists, the result of
Lemma 5.1 holds for M = ∞ and yields the existence of solutions to (1.2). More precisely, if
a solution to (2.4) satisfies Λ∞ (µ(t)) < M for any t ∈ [0, T ], then it is also a solution to (1.2).
This is summarized in the following Corollary.

Corollary 5.2. Under the same assumptions as in Lemma 5.1, if, for any M > 0, any solution
(u,m, µ) to (2.4) satisfies ‖u‖∞ ≤ C, or ‖∇xu‖∞ ≤ C, for some C > 0, then there exists at
least one solution to (1.2).

Proof. By Lemma 5.1, we define (u,m, µ) as a solution to (2.4) for M ∈ (0,∞) that will be
defined later. By Lemma 2.4, assuming that ‖u‖∞ is bounded is equivalent to assuming that
‖∇xu‖∞ is bounded. Therefore, without loss of generality, we can assume that ‖∇xu‖∞ ≤ C.
From FP1 and (3.4), we obtain

‖Hp (x,∇xu, µ)‖∞ ≤ C0

(
1 + Cq−1

)
+

λ0C0

1− λ0

(
1 + Cq−1

)
.

We define M = 1+C0

(
1 + Cq−1

)
+ λ0C0

1−λ0

(
1 + Cq−1

)
, then the truncation TM leaves −Hp

(
·,∇xu

M , µ
)

unchanged. Hence (u,m, µ) is a solution to (1.2).

5.2 Existence results when q0 ≤ q′

When q0 ≤ q′, we can use integral energy estimates. More precisely, inequalities (4.1) and (4.5)
hold. Therefore, the assumptions under which we can prove existence should be weaker than in
the case q0 > q′ in which we have less estimates at our disposal.

In particular, Corollary 4.3 provides a uniform estimate on ‖u‖∞ under suitable assumptions.
Corollary 5.2 then yields the existence of a solution to (1.2): hence we may state the following
theorem:

Proposition 5.3 (Existence of solution with small non-linearities). Under assumptions A1-A3,

B1-B3, FP1, FP2, T, q0 ≤ q′, and λ1 + C0λ2 <
(1−λ0)q

′

C
q′

0

, there exists at least one solution to

(1.2).

Instead of assuming that the multiplicative parameters are small like in Proposition 5.3; we
suppose in Propositions 5.5 below the exponent for the interactions through controls is in fact
smaller than the one appearing in B1.

Proposition 5.4. Assume A1-A3, B2, B3, FP1, FP2, T, q0 ≤ q′, and that H satisfies

|H(x, 0, µ)| ≤ C0

(
1 + Λq0 (µ)

q̃
)
,

for (x, µ) ∈ T
d × P

(
T
d × R

d
)
, where q̃ ∈ [0, q′) is a constant. There exists a solution to (1.2).
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Proof. Let (u,m, µ) be a solution to (2.4) for M ∈ (0,∞). From A2, (4.4) and the new assump-
tion, we obtain that,

‖u‖∞ ≤ C0 (1 + T ) + C0

∫ T

0
Λq0 (µ(t))

q̃ dt

≤ C0 (1 + T ) + C0T
q′−q̃

q′

(∫ T

0
Λq0 (µ(t))

q′ dt

) q̃

q′

,

where the second line is obtained by a Hölder inequality, since q̃ < q′. Let us recall that the

inequality (a+ b)
q̃

q′ ≤ a
q̃

q′ + b
q̃

q′ holds for any a, b > 0. The latter two inequalities and (3.5) with
θ = 1

2 imply,

‖u‖∞ ≤ C + C

(∫ T

0

∫

Td

|∇xu(t, x)|q dm(t, x)dt

) q̃

q′

,

where C > 0 is a constant which depends on the constants in the assumptions. This and (4.5)
yield that,

‖u‖∞ ≤ C + C‖u‖
q̃

q′

∞,

up changing the value of C. Let us make out two cases: the first case is when ‖u‖∞ ≤ (2C)
q′

q′−q̃ .

The second case is when ‖u‖∞ > (2C)
q′

q′−q̃ , which implies ‖u‖∞ ≤ C+ 1
2‖u‖∞. In any of the two

cases, u is uniformly bounded with respect to M . The desired result then stems from Corollary
5.2.

5.3 Existence results which do not need the assumption q0 < q′

Here, we do not make the assumption q0 ≤ q′. We can still obtain an existence result in the
same spirit as the one provided in Proposition 5.4. In the following proposition, the exponent
for the interactions through controls is assumed to be smaller than the one appearing in B1 or
in Proposition 5.4.

Proposition 5.5. Assume A1-A3, B2, B3, FP1, FP2, T, and that H satisfies

(5.2) |H(x, 0, µ)| ≤ C0

(
1 + Λq0 (µ)

q′−1
)

for any (x, µ) ∈ T
d × P

(
T
d × R

d
)
. There exists a solution to (1.2).

Proof. Take (u,m, µ) a solution to (2.4) for M ∈ (0,∞). Let us combine (4.3), (3.6) for θ = 1
2 ,

(4.7), (5.2), and the inequality (a+ b)
1
q ≤ a

1
q + b

1
q which holds for a, b > 0; this yields

(5.3) − ∂tu− ν∆u+∇xu ·
∫ 1

0
Hp (x, s∇xu(t, x), µ(t)) ds ≤ C

(
1 + max

t≤s≤T
‖u(s)‖∞

)
,

for a constant C > 0 which depends only on the constants in the assumptions. We recall that
‖u(T )‖∞ ≤ C0 by A2. We consider y+, y− ∈ C1 ([0, T ];R) defined as y+(t) = Ct + C0e

Ct and
y−(t) = −Ct− C0e

Ct such that they are solution to the following differential equations

{
y′+(t) = C(1 + y+(t))

y+(0) = C0,{
y′−(t) = C(−1 + y−(t))

y−(0) = −C0.
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By a comparison argument for second-order parabolic equation we obtain,

−CT − C0e
CT ≤ y−(T − t) ≤ u(t, x) ≤ y+(t) ≤ CT + C0e

CT ,

for (t, x) ∈ [0, T ]× T
d. Therefore u is uniformly bounded with respect to M . The desired result

then stems from Corollary 5.2.

In Propotitions 5.4 and 5.5, we changed the exponent appearing in B1. In the following
proposition, we assume a smaller exponent than the one appearing in B2 instead.

Proposition 5.6 (Existence with more restrictive assumptions on Hx). Assume A1-A3, B1,
B3, FP1, FP2, T, and the following inequality,

(5.4) |Hx(x, p, µ)| ≤ C0

(
1 + |p|+ Λq0 (µ)

q′−1
)
,

for any (x, p, µ) ∈ T
d × R

d × P
(
T
d × R

d
)
. There exists at least one solution to (1.2).

Proof. Take (u,m, µ) a solution to (2.4), for M ∈ (0,∞).
First step: we prove the following inequality,

(5.5) ‖∇xu(t)‖q∞ ≤ C

(
1 + sup

t≤s≤T

‖u(s)‖∞

)
,

for any t ∈ [0, T ], where C > 0 is a constant depending only on the constants in the assumptions.
We will only prove this inequality for t = 0, however the proof does not use the additional
information available at t = 0 (the initial condition on m for example), so it can be repeated for
any t ∈ [0, T ] and the constant C in (5.5) does not depend on t.

We introduce ϕ,wδ , a, b, δ and ε as in the proof of Lemma 4.5. Using (5.4) instead of B2, we
obtain

−2ϕ∇xu
δ ·Hδ

x (x,∇xu, µ) ≤ 2C0ϕ
∥∥∥∇xu

δ
∥∥∥
∞

(
1 +

∥∥∥∇xu
δ
∥∥∥
∞

+ Λq0 (µ(t))
q′−1

)
.

From this and (3.2), one may notice that the right-hand side of the latter inequality only involves
terms with exponents in

∥∥wδ
∥∥
∞

or
∥∥w0

∥∥
∞

nor larger than 1
2 (1 + (q − 1)(q′ − 1)) = 1. This and

the same arguments as in the proof of Lemma 4.5 between (4.18) and (4.19), lead to the following
inequality,

∂tw
δ − ν∆wδ +∇xw

δ ·Hp

(
x,∇xu

δ, µ
)
− 2ν

ϕ′

ϕ
∇xw

δ · ∇xu
δ

≤ −C−1
0 b‖u‖−1

∞ e−a−be−
q

2
e−a+b

(
wδ
)1+ q

2
+ b‖u‖−1

∞ e−a+b λ1C
q′

0

(1− θ)1−q′(1− λ0)q
′

∥∥w0
∥∥1+ q

2

∞

+ ε+Ca,b,θ

(
1 + ‖u‖−1

∞

) (
1 +

∥∥w0
∥∥
∞

)
,

instead of (4.19), where the novelty is the exponent on
∥∥w0

∥∥
∞

at the last line which changed

from 1+q
2 to 1. Then following the same steps as in the proof of Lemma 4.5 until the end, we

obtain that,
‖∇xu‖q∞ ≤ Ca,b,θ (1 + ‖u‖∞) .

This concludes the first step of the proof.
Second step: obtaining a uniform estimate on u.
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Using B1, (3.6) with θ = 1
2 and (5.5), we obtain that,

|H (x, 0, µ(t))| ≤ C0

(
1 + Λq0 (µ(t))

q′
)

≤ 2C0 +
C

q′+1
0 2q

′−1

(1− λ)q′
(1 + ‖∇xu(t)‖q∞)

≤ C

(
1 + max

t≤s≤T
‖u(s)‖∞

)
,

where the constant C from the previous step may have been increased. This implies that u

satisfies the same partial differential inequality as in the proof of Proposition 5.5, namely (5.3).
Therefore the same arguments as in Proposition 5.5 apply and we conclude that there exists a
solution to (1.2).

Remark 5.7. Note that the exponent q′−1 actually appears in several applications: for instance,
the price impact model described in paragraph 6.2 in the quadratic case (i.e. q = 2) with ε = 0
(i.e. when the bidding and asking prices are equal), satisfies the assumptions in both Propositions
5.5 and 5.6 with an exponent exactly equal to q′ − 1.

5.4 Existence and uniqueness results with a short-time horizon assumption

Under a short-time horizon assumption, existence and even uniqueness of solutions are well-
known in the MFG literature. Indeed, when the time horizon is small, one may obtain strong
a priori estimates under non-restrictive assumptions. These estimates combined with Corollary
5.2 yield existence of solution to (1.2) as stated in the following proposition.

Proposition 5.8 (Existence with short time horizon). Assume A1, A2-B1, B2-FP1, FP2,
and T. There exists T0 > 0 such that, if T ≤ T0 then there exists a solution to (1.2).

Proof. Take (u,m, µ) a solution to (2.4) for M ∈ (0,∞). We combine (4.3), FP1, (3.6), (4.7),
and the convex inequality (a+ b)q ≤ 2q−1 (aq + bq), and we obtain

(5.6) − ∂tu− ν∆u+∇xu ·
∫ 1

0
Hp (x, s∇xu(t, x), µ(t)) ds ≤ C

(
1 + max

t≤s≤T
‖u(s)‖q∞

)
,

where C is a positive constant which depends only on the constants in the assumptions. We
recall that ‖u(T )‖∞ ≤ C0 by A2. Let us consider the following differential equation,

{
y′(t) = C (1 + yq)

y(0) = C0.

There exists T0 > 0 such that the latter differential equation admits a bounded solution on
[0, T0]. We suppose that T ≤ T0, then (t, x) 7→ y(T − t) is a super-solution to (5.6). Hence by
a comparison principle, we get that u ≤ y. The same argument applies in order to prove that
u ≥ −y. Therefore u is uniformly bounded with respect to M , and there exists a solution to
(1.2) by Corollary 5.2.

We will now prove Theorem 2.6 which states that uniqueness is achieved under a short-time
horizon assumption. We believe that this uniqueness result can be easily extended to more general
Hamiltonians, but that the short-time assumption is essential. Indeed, numerical simulations in
[1] show that uniqueness does not hold for the discrete MFGC system obtained by approximating
(1.2) with finite differences; we believe that uniqueness does not hold for (1.2) either. Theorem
2.6 should be interpreted only as a simple example of uniqueness result with a short-time horizon
assumption.
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Proof of Theorem 2.6. We suppose that T1 ≤ T0, where T0 was defined in Proposition 5.8, so
that a solution to (1.2) satisfies uniform estimates on ‖u‖∞, ‖ui‖C1,2 and ‖mi‖C0 by Lemma 4.6,
for i = 1, 2. Take (u1,m1, µ1) and (u2,m2, µ2) two solutions to (1.2). We define u = u1 − u2,
m = m1 −m2 and α = αµ1 − αµ2

.
In this proof C > 0 is a constant which may differ from line to line and depends only on the

constants in the assumptions, ‖ui‖C1,2 and ‖mi‖C0 , for i = 1, 2.

We can repeat the proof of Lemma 3.2 replacing
∥∥m1 −m2

∥∥β0

∞
and

∥∥p1 − p2
∥∥β0

∞
respectively

with Wq1

(
m1,m2

)
and

∥∥p1 − p2
∥∥β0

∞
everywhere and we obtain that,

(5.7) ‖α(t)‖∞ ≤ C
(
‖∇xu(t)‖∞ +Wq1

(
m1(t),m2(t)

))
,

for any t ∈ [0, T ]. Let us consider X1 and X2 two random processes defined by

dX1
t = αµ1

(t,X1)dt+
√
2νdWt

dX2
t = αµ2

(t,X2)dt+
√
2νdWt

X1
0 = X2

0 = X0,

where X0 is a random variable on T
d with law m0 and W is a Brownian motion independent of

X0. The respective laws of
(
X1

t , α
µ1
(t,X1

t )
)

and
(
X2

t , α
µ2
(t,X2

t )
)

are µ1(t) and µ2(t). Then

we obtain,

E
[∣∣X1

t −X2
t

∣∣q1] 1
q1 = E

[∣∣∣∣
∫ t

0
αµ1 (

s,X1
s

)
− αµ2 (

s,X2
s

)
ds

∣∣∣∣
q1] 1

q1

≤
∫ t

0
E

[∣∣∣αµ1 (
s,X1

s

)
− αµ2 (

s,X2
s

)∣∣∣
q1
] 1

q1 ds

≤
∫ t

0
E

[∣∣∣αµ1 (
s,X1

s

)
− αµ1 (

s,X2
s

)∣∣∣
q1
] 1

q1 + E

[∣∣∣αµ1 (
s,X2

s

)
− αµ2 (

s,X2
s

)∣∣∣
q1
] 1

q1 ds,

where we used the triangle inequality for the Lq1-norm twice. By the first additional assumption
of the theorem and A1, αµ1

is Lipschitz continuous with respect to x and its Lipschitz constant
depends on

∥∥ui
∥∥
C0,1 and Λ∞

(
µ1
)
. Using the estimates from the proof of Proposition 5.8, it only

depends on the constants in the assumptions. This, the latter inequality and (5.7) imply

E
[∣∣X1

t −X2
t

∣∣q1] 1
q1 ≤ C

∫ t

0
E
[∣∣X1

s −X2
s

∣∣q1] 1
q1 ds+CT sup

0≤t′≤T

(∥∥∇xu(t
′)
∥∥
∞

+Wq1

(
m1(t′),m2(t′)

))
.

This and Gronwall’s inequality yield that,

sup
0≤t≤T

E
[∣∣X1

t −X2
t

∣∣q1] 1
q1 ≤ CT sup

0≤t≤T

(
‖∇xu(t)‖∞ +Wq1

(
m1(t),m2(t)

))
.

From now on, we assume that T ≤ 1
2C , so that (1 − CT ) ≥ 1

2 . Since Wq1(m
1(t),m2(t)) ≤

E
[∣∣X1

t −X2
t

∣∣q1] 1
q1 , we obtain:

(5.8) sup
0≤t≤T

Wq1

(
m1(t),m2(t)

)
≤ CT sup

0≤t≤T

‖∇xu(t)‖∞.

Hence u satisfies the following equation,

{
− ∂tu− ν∆u = −H

(
x,∇xu

1, µ1
)
+H

(
x,∇xu

2, µ2
)
,

u(T, x) = g(x,m1(T ))− g(x,m2(T )).
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The right-hand side of the first line can be estimated in absolute value from above as follows:
∣∣H
(
x,∇xu

1, µ1
)
−H

(
x,∇xu

2, µ2
)∣∣ ≤ C sup

0≤t′≤T

∥∥∇xu(t
′)
∥∥
∞
,

by T, (5.7) and (5.8). Since u(T, ·) ∈ C1+β
(
T
d
)
, Theorem 6.48 in [34] yields that u ∈ C

1
2
+β

2
,1+β

(
[0, T ]× T

d
)

and it satisfies:

sup
t∈[0,T ]

‖∇xu(t)‖∞ ≤
∥∥∇x

(
g(·,m1(T ))− g(·,m2(T ))

)∥∥
∞

+ CT
β
2 sup
t∈[0,T ]

(
‖∇xu(t)‖∞ +

∥∥g(·,m1(T ))− g(·,m2(T ))
∥∥
C1+β

)
.

This, (2.5) and (5.8) yield,

sup
t∈[0,T ]

‖∇xu(t)‖∞ ≤ CT
β

2 sup
t∈[0,T ]

‖∇xu(t)‖∞.

Thus if we suppose furthermore that T < C
− 2

β , then ∇xu = 0, so m = 0 by (5.8), then µ1 = µ2

by (5.7), and finally u1 and u2 solve the same Hamilton-Jacobi-Bellman equation with the same
terminal condition, so by uniqueness u = 0.

Therefore, we proved the uniqueness for T < T1 where T1 is defined by T1 = minT0,
(
C

− 2
β , C−1

)
.

6 - Applications

Here, we are going to work on T
d, while it would be more realistic to work in the whole space R

d

for the applications considered below. We would like to recall that the existence results contained
in the present work hold for MFGC systems on R

d using the method introduced in [28] to pass
from the torus to the whole Euclidean space. Therefore, the conclusions of this section may be
adapted to treat the same applications on R

d.

6.1 Exhaustible ressource model with nonpositively correlated ressources

This model is often referred to as Bertrand and Cournot competition model for exhaustible
ressources, introduced in the independent works of Cournot [17] and Bertrand [6]; its mean
field game version in dimension one was introduced in [24] and numerically analyzed in [16]; for
theoretical results see [8, 22, 27, 23]. We consider a continuum of producers selling exhaustible
ressources. The production of a representative agent is (qt)t∈[0,T ]; the agents differ in their
production capacities Xt ∈ T (the state variable), that satifies,

dXt = −qtdt+
√
2νdWt,

where ν > 0 and W is a Brownian motion. Each producer is selling a different ressource and has
her own consumers. However, the ressources are substitutable and any consumer may change her
mind and buy from a competitor depending on the degree of competition in the game (which is
characterized by ε in the linear demand case below for instance). Therefore, the selling price per
unit of ressource that a producer can make when she sales q units of ressource, depends naturally
on q and on the quantity produced by the other agents. The price satisfies a supply-demand
relationship, and is given by P (q, q), where q is the aggregate demand which depends on the
overall distribution of productions of the agents. A producer tries to maximize her profit, or
equivalently to minimize the following quantity,

E

[∫ T

0
−P (qt, qt) · qtdt+ g (XT )

]
,
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where g is a terminal cost which often penalizes the producers who have non-zero production
capacities at the end of the game. In the Cournot competition, see [17], a producer is controling
her production q. Like the MFG version of the Bertrand and Cournot competition introduced in
[16], here we consider the Bertrand formulation [6], where an agent directly controls her selling
price α = P (q, q). After inverting the latter equality, the production can be viewed as a function
of the price and the mean field. Mathematically this corresponds to writing q = Q (α,α).

In [16], the authors considered a linear demand system depending on qlin =
∫
T
q(x)dm(x),

and a price satisfying α = Plin(q, qlin) = 1− q − εqlin. In this case, the running cost Llin and its
Legendre transform H lin are defined by

Llin (α, µ) = α2 +
ε

1 + ε
αα− 1

1 + ε
α,

H lin (p, µ) =
1

4

(
p+

ε

1 + ε
α− 1

1 + ε

)2

,

where α, p ∈ R, µ ∈ P (T× R) and α is defined by α =
∫
T×R

α̃dµ(y, α̃). Therefore the system of
MFGC has the following form,

(6.1)





− ∂tu− ν∆u+
1

4

(
∇xu+

ε

1 + ε
α− 1

1 + ε

)2

= 0,

∂tm− ν∆m− div

(
1

2

(
∇xu+

ε

1 + ε
α− 1

1 + ε

)
m

)
= 0,

α(t) = −
∫

T

1

2

(
∇xu+

ε

1 + ε
α(t)− 1

1 + ε

)
dm(t, x),

u(T, x) = g(x),

m(0, x) = m0(x),

for (t, x) ∈ [0, T ] × T. Roughly speaking, ε = 0 corresponds to a monopoly in which a producer
does not suffer from competition, and she plays as if she was alone in the game. Conversely,
ε = ∞ stands for all the producers selling the same ressource and the consumers not having any
preference.

Here, Theorem 2.5 d) implies the following existence result.

Proposition 6.1. If m0 and g satisfy A2 and A3, there exists a solution to (6.1) for any
ε ∈ (0,∞).

To prove it, we may take q = 2, q0 = 1, λ0 = ε
2(1+ε) , λ1 = 1, and C0 = 1

2 in FP1; then

we check the assumptions of Theorem 2.5 d). In this case, the inequality in B3 has the form

1 <
(
2+ε
1+ε

)2
, and is satisfied for any ε ∈ (0,∞).

Here, the Lagrangian Llin satisfies a monotonicity assumption, but the latter existence result
does not take advantage of it. We refer to [28] for a uniqueness result and an other existence
result for the solution to (6.1) using this monotonicity assumption. Generalizations of (6.1) to
larger dimensions with more general Hamiltonians and prices are also discussed in [28] under the
monotonicty assumption.

In what follows, we provide a simple example of a generalization of (6.1) in which the mono-
tonicity assumption does not hold and the results in [28] do not apply anymore. However, the
results in the present work may hold in some cases even without the monotonicity assumption.

Let us consider a model in which every producer sells d different kinds of ressources. The
price of each ressource depends on the mean field like in (6.1). Namely, we take Q = Mα − α

which is now a d-dimensional vector and where M ∈ R
d×d is a given matrix. This leads to the
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following MFGC system,

(6.2)





− ∂tu− ν∆u+
1

4
(∇xu+Mα)2 = f(x,m),

∂tm− ν∆m− div

(
1

2
(∇xu+Mα)m

)
= 0,

α(t) = −
(
Id +

1

2
M

)−1 ∫

Rd

∇xu(t, x)dm(t, x),

u(T, x) = g(x),

m(0, x) = m0(x),

Proposition 6.2. Assume A2, A3, that M has an operator norm smaller than 1, and that f

is continuous, and differentiable with respect to x with continuous derivatives. There exists a
solution to (6.3).

The proof consists in taking q = 2, q0 = 1, λ1 = 1, C0 = 1
2 in FP1, and λ0 =

‖M‖
2 , where

‖M‖ is the operator norm of M ; and we check the assumptions of Theorem 2.5 d).
The monotonicity assumption discussed in [28] is equivalent to assuming that M is a positive

semi-definite matrix. Here, we do not make such an assumpion.
What we have in mind in the latter example is the case where the prices of the different

ressources may be negatively correlated, like cars and oil (if the production of cars increases,
then the demand for oil also increases and the price of oil rises while the price of cars decreases),
or pesticides and medicines, or gold and other raw materiels. To our knowledge, such a general-
ization of the exhaustible ressource model to negatively correlated ressources is new in the MFG
literature.

More generally, we believe that our results hold for the following MFGC system under various
different sets of assumptions that we will not detailed here,

(6.3)





− ∂tu− ν∆u+H (x,∇xu+Q(t, x, µ)) = f(t, x,m(t)),

∂tm− ν∆m− div (Hp (x,∇xu+Q(t, x, µ))m) = 0,

µ(t) =
(
Id,−Hp (·,∇xu(t, ·) +Q(t, ·, µ(t))) #m(t)

u(T, x) = g(x,m(T )),

m(0, x) = m0(x),

where Q : [0, T ]× T
d × P

(
T
d × R

d
)
→ R

d is a vector characterizing the mean field interactions.

6.2 Price impact models with bid and ask prices

The price impact model without bid and ask prices is inspired by the Almgren and Chriss’s model
[5], and was introduced in the MFG literature in [11] and [15] where existence and uniqueness
results are proved when the admissible controls stay in a compact set. Here we consider an
extension with bid and ask prices.

We suppose that a continuum of agents are trading an asset, the state of a representative
agent is Xt the amount of this asset she owns. Her control α is the quantity she buys (if α ≥ 0)
or sell (if α < 0). The state space is the one-dimensional torus T, and Xt is given by,

dXt = αtdt+ σdWt,

where W is a Brownian motion, and σ > 0 is a real constant. We define St as the asking price
of the asset, and ε (µ(t)) as the difference between the bidding and asking prices, where µ(t) is
the law of (Xt, αt). The agent buys at the bidding price St + ε (µt), thus her cash is given by

dKt = − (αtSt + αtε (µ(t)) + ℓ(αt)) dt,

27



where ℓ is a differentiable function standing for the transaction cost. The price St evolves
accordingly with the amount of transactions at time t, it satisfies the following SDE,

dSt = A (µ(t)) dt,

where A (µ(t)) =

∫

T×R

ℓ′(α)dµ(t, x, α),

The wealth of a representative agent is given by Vt = V0+XtSt+Kt and it satisfies the following
SDE,

(6.4) dVt = (XtA (µ(t))− ℓ (αt)− ε (µ(t))αt) dt+ σStdWt.

The objective function that she will try to maximize is given by,

E

[
VT −

∫ T

0
f(Xt)dt− g(XT )

]
,

where f and g are penalization costs for holding stocks. Here, the Lagrangian and Hamiltonian
are given by,

LPI (x, α, µ) = ℓ(α) + αε (µ)− xA (µ) ,

HPI (x, p, µ) = h (p+ ε (µ)) + xA (µ) ,

for (x, α, µ) ∈ T× R× P (T× R), where h is the Legendre transform of ℓ.
The linear-quadratic case with ε = 0 is treated in [13]. Here, taking ε = 0 corresponds to

assuming that the bidding and asking prices coincide. In this case the optimal control is given by
−hp(p) and does not depend explicitely on µ. If ε 6= 0, the optimal control depends explicitely
on µ and LPI is not separable in α and µ, this prevents us from using the results in [13].

Let us give an example of choices for the functions ℓ and ε under which our result apply and
a solution of the MFGC price impact model exists.

Proposition 6.3. Assume A2, A3, that f is C1, and that c and ε are respectively given by

ℓ(α) = |α|2

2 and ε (µ) = ε̃
(∫

T×R
|α|2dµ (x, α)

) 1
2
, where 0 < ε̃ < 1

2 . There exists a solution to

(1.2) with HPI.

This existence result is a consequence of 2.5 c), where the assumptions are satisfied for
q = q0 = 2, λ0 = ε, λ1 =

1
4 and C0 = 1 in FP1. We would like to insist on the fact that Theorem

2.5 c) provides the existence of solutions for a wild class of Hamiltonian, larger than the one of
the latter proposition and which goes beyond the linear-quadratic case.

Let us mention that we would be interested in defining the bidding price by (1+ ε̃)St, where
ε̃ > 0. The associated MFGC system cannot be using the conclusions of the present work because
the mean field interaction at time t would depend not only on µt but on (µs)s∈[0,t]. However,
we believe that existence holds under similar assumptions as here, and we plan to prove it in
forthcoming works.

6.3 First-order flocking model with velocity as controls

Cucker and Smale proposed a form of Vicseck model in [18] to illustrate the behavior of flocks of
birds. This model is of second-order in the sense that the state of an agent is given by a couple
(x, v) standing for her position and velocity respectively, and the equation of evolution of her
state involves considering her acceleration.

A game version of this model in which an agent controls her acceleration has been introduced
in [36], the authors derived a MFG formulation in the infinite horizon case. Here we are interested
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in the finite horizon problem which was studied in [15, 13]. This model is still of second-
order. More precisely the state of an agent is given by (Xt, Vt)t∈[0,T ] respectively her position
and velocity, two random processes which satisfy the following system of stochastic differential
equations,

dXt = Vtdt,

dVt = atdt+ σdWt,

where at is the individual’s acceleration vector and her control, W is a d-dimentional Brownian
motion, and σ ∈ R

d×d is a positive definite matrix. The cost that a representative agent tries to
minimize is given by

E

[∫ T

0

|at|2
2

+
1

2

∣∣∣∣
∫

Td

(
v − V i

t

)
ϕ
(∣∣x−Xi

t

∣∣) dµ(t, x, v)
∣∣∣∣
2

+ f(Xt)dt

]
,

where µ(t) ∈ P
(
T
d × R

d
)

is the joint distribution of states and velocities of the agents, ϕ is a
C1 nonincreasing function, and f is a C1 function modeling the spatial preferences of the agents
(for instance, we can take f significantly smaller in some areas which corresponds to where the
food is).

Here we consider an alternative viewpoint in which an agent directly controls her velocity.
This is a first-order model since the state of an agent is now given by a vector of Td, and the
acceleration does not appear anymore in the dynamics of a given agent, which is given by

dXt = αtdt+ σdWt.

Here, the cost that an agent tries to minimize is given by

E

[∫ T

0

|αt|2
2

+
1

2

∣∣∣∣
∫

Td×Rd

(α̃− αt)ϕ
(∣∣x−Xi

t

∣∣) dµ(t, x, α̃)
∣∣∣∣
2

+ f (Xt) dt

]
.

First-order physical models are generally easier to study than second-order models. However the
price we paid here to go from a second-order model to a first-order model is to consider a MFGC
system instead of a MFG system without interaction through the controls.

If µ ∈ P
(
T
d × R

d
)

and m ∈ P
(
T
d
)

are such that m is the marginal of µ with respect to T
d,

we define A(x, µ) and Z(x, µ) by,




A(x, µ) =

∫

Td×Rd

α̃ϕ (|x− y|) dµ(y, α̃),

Z(x, µ) =

∫

Td

ϕ (|x− y|) dm(y),

for x ∈ T
d. We define the Lagrangian of the first-order flocking model by,

LFM (x, α, µ) =
|α|2
2

+
1

2
|Z(x, µ)α−A(x, µ)|2 + f(x),

for (x, α, µ) ∈ T
d × R

d × P
(
T
d × R

d
)
, and the Hamiltonian by,

HFM(x, p, µ) =
1

2 (1 + Z(x, µ)2)

(
|p|2 − 2Z(x, µ)A(x, µ) · p− |A(x, µ)|2

)
− f(x),

for p ∈ R
d, such that HFM is the Legendre’s transform of LFM.

Proposition 6.4. Under assumptions A2 and A3, there exists T0 > 0 such that if T < T0,
there exists a unique solution to (1.2) with HFM.

Hereafter, we present an other model for crowd motion which is very similar to the first-order
flocking model discussed above. The main difference between these two models is the normaliza-
tion constants. However, the assumptions and conclusions of this work are more adapted to the
following crowd motion model and we can derive more existence results for it. We believe that
these results can be adapted to the first-order Cucker-Smale system.

29



6.4 A model of crowd motion

This model of crowd motion has been numerically studied in [1] in the quadratic case, and has
some similarities with the first-order flocking model presented in the previous paragraph. For
(x, µ) ∈ T

d × P
(
T
d × R

d
)
, we define V (x, µ) and Zq0(x, µ) by





V (x, µ) =
1

Zq0(x, µ)

∫

Td×Rd

α̃k(x, y)dµ(y, α̃),

Zq0(x, µ) =

(∫

Td

k(x, y)q
′

0dm(y)

) 1
q′
0
,

where q0 ∈ (1,∞], q′0 is the conjugate exponent of q0, k : Td × T
d → R+ is a nonnegative C1

kernel, and m ∈ P
(
T
d
)

is the marginal of µ with respect to T
d. The quantity V (x, µ) is called

the average drift.
The state of a representative agent is given by her position Xt ∈ T

d and she controls her
velocity αt,

dXt = αtdt+
√
2νdWt.

Her objective is to minimize the cost given by,

E

[∫ T

0

θ

a′

∣∣∣αt − λ̃V (Xt, µ(t))
∣∣∣
a′

+
1− θ

b′
|αt|b

′

+ f(Xt)dt+ g(XT )

]
,

where −1 < λ̃ < 1 and 0 ≤ θ ≤ 1 are two constants standing for the preference of an individual
to have a similar (resp. opposite) control as the mainstream when λ̃ > 0 (resp. λ̃ < 0), f and g

are respectively the running cost and the terminal cost which encode the spatial preferences of
the agents, and a′, b′ > 1 are exponents.

Here, we take q = min(a, b). In this model we define the Lagrangian by,

(6.5) L (x, α, µ) =
θ

a′

∣∣∣α− λ̃V (x, µ)
∣∣∣
a′

+
1− θ

b′
|α|b′ ,

and the Hamiltonian as its Legendre transform. If a = b = 2, H is given by

H(x, p, µ) =
|p|2
2

− λ̃θp · V (x, µ)− λ̃2θ(1− θ)

2
|V (x, µ)|2.

If θ = 1, H satisfies

H(x, p, µ) =
1

a
|p|a − λ̃p · V (x, µ).

For other choices of the parameters a,b and θ, H does not admit an explicit form.

Proposition 6.5. Assume that g and m0 satisfy A2 and A3 respectively. There exists a solution
to (1.2) where H is the Legendre transform of L given in (6.5), under one of the following
assertions,

a) q0 ≤ q′ and a 6= b,

b) q0 ≤ q′ and one of the following assertions is satisfied,

i) θ < θ0,

ii) θ > 1− θ0,

iii)
∣∣∣λ̃
∣∣∣ < λ0,

where θ0, λ0 ∈ (0, 1) are constants coming from Theorem 2.5 c),
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c) θ = 1,

d) k(x, y) is constant,

e) T < T0, where T0 is a positive constant coming from Theorem 2.5 e).

Proof. We refer to the appendix, Lemma A.2 for the proof that H satisfies A1-A3, B1-B3,
FP1-FP2, and T. The existence results c), d) and e) are direct consequences of Theorem 2.5
c), d) and e) respectively.

We define L̃(α, V ) by

L̃(α, V ) =
θ

a′

∣∣∣α− λ̃V
∣∣∣
a′

+
1− θ

b′
|α|b′ ,

for α, V ∈ R
d, H̃(p, V ) as the Legendre transform of L̃ with respect to its first argument, and

α(p, V ) as the unique control which achieves the maximum in the definition of H̃ (it is unique
because L̃ is strictly convex with respect to α).

Proof of a). Take V ∈ R
d and α = α(0, V ), since α achieves the maximum in the definition

of H̃(0, V ), we know that

0 = θ
∣∣∣α− λ̃V

∣∣∣
a′−2

(α− λ̃V ) + (1− θ) |α|b′−2
α,

which implies

(6.6) θ
∣∣∣α− λ̃V

∣∣∣
a′−1

= (1− θ) |α|b′−1 ,

and then

(6.7)

(
θa−1(1− θ)2−a|α|

(a′−2)(b′−1)

a′−1 + (1− θ)|α|b′−2

)
α = λ̃θa−1(1− θ)2−a|α|

(a′−2)(b′−1)

a′−1 V.

The two latter equalities yield lim
V→+∞

|α(0, V )| = +∞. We make out two cases:

• if a > b then we have (a′−2)(b′−1)
a′−1 < b′ − 2, and |α| = o

+∞
(|V |). Therefore, (6.7) yields

|α|b
′−1−

(a′−2)(b′−1)

a′−1 = O
+∞

(|V |),

and b′ − 1− (a′−2)(b′−1)
a′−1 = a−1

b−1 > 1, so we obtain

|α| = O
+∞

(
|V |

b−1
a−1

)
,

which yields

H̃(0, V ) = O
+∞

(
|V |a′

)
+ O

+∞

(
|V |

b−1
a−1

b′
)
,

with a′ < b′, and b−1
a−1b

′ < b′, and b = q.

• if a < b then we have (a′−2)(b′−1)
a′−1 > b′ − 2, and α = λ̃V + o

+∞
(|V |). Therefore, (6.7) yields

(
1 + O

+∞

(
|V |b

′−2− (a′−2)(b′−1)

a′−1

))
α = λ̃V.

We notice that b′ − 2− (a′−2)(b′−1)
a′−1 = b′−a′

a′−1 < 0, and we obtain

α = λ̃V + O
+∞

(
|V |1+

b′−a′

a′−1

)
= λ̃V + O

+∞

(
|V |

a−1
b−1

)
.
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This implies

H̃(0, V ) = O
+∞

(
|V |

b′−1
a′−1

a′
)
,+ O

+∞

(
|V |b′

)
,

with b′ < a′, and a−1
b−1a

′ < a′, and a = q.

We conclude by (A.1) and Theorem 2.5 a).
Proof of b)
Here, we assume that a = b since the case a 6= b is addressed in a).
Take V ∈ R

d, and α = α(0, V ). In this case, H̃(0, V ) admits an explicit form given by

H̃(0, V ) = −

∣∣∣λ̃
∣∣∣
a′

a′
θ(1− θ)a + (1 − θ)θa

((1− θ)a−1 + θa−1)a
′
|V |a′ .

Therefore, taking λ̃, θ or (1− θ) small enough allows one to conclude by (A.1) and Theorem 2.5
b).
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A - Verification of the assumptions for the model of crowd

motion

We start by establishing some properties of the function V in the following lemma.

Lemma A.1. The function V is C1 with respect to x and it satisfies

(A.1) ‖V (·, µ)‖∞ ≤ Λq0 (µ) ,

where µ ∈ P
(
T
d × R

d
)
.

For m ∈ P
(
T
d
)

and µ1, µ2 ∈ Pm

(
T
d × R

d
)
, the following inequality is satisfied,

(A.2)
∥∥V
(
·, µ1

)
− V

(
·, µ2

)∥∥
∞

≤
∥∥∥αµ1 − αµ2

∥∥∥
Lq0 (m)

.

For R > 0, there exists CR > 0 a constant such that,

(A.3)
∥∥V
(
·, µ1

)
− V

(
·, µ2

)∥∥
∞

≤ CR

(∥∥∥αµ1 − αµ2
∥∥∥
∞

+
∥∥m1 −m2

∥∥
∞

)
,

for
(
mi, µi

)
such that mi ∈ P

(
T
d
)
∩ C0

(
T
d
)

with mi ≥ R−1, µi ∈ P
(
T
d ×R

d
)

with αµi ∈
C0
(
T
d ×R

d
)

and
∥∥∥αµi

∥∥∥
∞

≤ R, i = 1, 2.

Proof. The function V has at least the same regularity as k with respect to the state variable
since V is the convolution product of k with a probability measure. Then (A.1) and (A.2) are

34



straightforward using Hölder inequality. Let us take the same notation as in (A.3), for x ∈ T
d

we get

∣∣V
(
x, µ1

)
− V

(
x, µ2

)∣∣ ≤ 1

Zq0 (x, µ
1)

∫

Td

k(x, y)
∣∣∣αµ1

(y)− αµ2
(y)
∣∣∣ dm1(y)

+
1

Zq0 (x, µ
1)

∫

Td

k(x, y)
∣∣∣αµ2

(y)
∣∣∣
∣∣m1(y)−m2(y)

∣∣ dy

+

∣∣∣∣
1

Zq0 (x, µ
1)

− 1

Zq0 (x, µ
2)

∣∣∣∣
∫

Td

k(x, y)
∣∣∣αµ2

(y)
∣∣∣ dm2(y)

≤
∥∥∥αµ1 − αµ2

∥∥∥
∞

+
1

Zq0 (x, µ
1)

∫

Td

k(x, y)dy
∥∥∥αµ2

∥∥∥
∞

∥∥m1 −m2
∥∥
∞

+
1

Zq0 (x, µ
1)

∥∥∥αµ2
∥∥∥
Lq0 (m2)

∣∣Zq0

(
x, µ1

)
− Zq0

(
x, µ2

)∣∣ .

Moreover, we know that Zq0

(
x, µ1

)
≥ R

− 1
q′0

(∫
Td k(0, y)

q′0dy
) 1

q′
0 > 0 where the right-hand side

does not depend on x, and

∣∣Zq0

(
x, µ1

)
− Zq0

(
x, µ2

)∣∣ ≤ max
i=1,2

(
1

q′0

(
Zq0

(
x, µi

)q′0)
1
q′
0
−1
) ∣∣∣Zq0

(
x, µ1

)q′0 − Zq0

(
x, µ2

)q′0
∣∣∣

≤ 1

q′0

(
min
i=1,2

Zq0

(
x, µi

))1−q′0
∫

Td

k(0, y)q
′

0dy
∥∥m1 −m2

∥∥
∞

≤ 1

q′0
R

1
q0

(∫

Td

k(0, y)q
′

0dy

) 1
q′
0
∥∥m1 −m2

∥∥
∞
.

The latter two chains of inequalities imply (A.3) with CR = 1 +R
1+ 1

q′
0 + 1

q′0
R2.

Here, we assume θ ∈ (0, 1). Indeed, H admits an explicit form when θ = 0 or θ = 1, then
checking A1-A3, B1-B3, FP1-FP2, and T is straightforward.

Lemma A.2. Assumptions A1, B1-B3, FP1, FP2, and T are satisfied when L is defined in
(6.5).

Proof. We define L̃, H̃ and α as in the proof of 6.5.
Checking A1, B1 and B2.
The Legendre transform of a function is convex, therefore H is convex with respect to p.

Since L is strictly convex, H is differentiable with respect to p. Moreover, α = −Hp thus Hp is
continuous by the Maximum theorem. Then H(x, p, µ) = p ·Hp (x, p, µ)−L (x,−Hp (x, p, µ) , µ),
so H is continuous. Finally, H is differentiable with respect to x by the envelop theorem and

(A.4) Hx (x, p, µ) = −Lx (x,−Hp (x, p, µ) , µ) ,

for (x, p, µ) ∈ T
d × R

d × P
(
T
d × R

d
)
.

Using the growth properties of L, we can prove that there exists C0 > 0 such that

|Hp (t, x, p, µ)| ≤ C0

(
1 + |p|q−1 + Λq′ (µ)

)
,(A.5)

|H (t, x, p, µ)| ≤ C0

(
1 + |p|q + Λq′ (µ)

q′
)
,(A.6)

|Hx (t, x, p, µ)| ≤ C0

(
1 + |p|q + Λq′ (µ)

q′
)
,(A.7)

for any (x, p, µ) ∈ T
d × R

d × P
(
R
d × R

d
)
. We refer to [28] Lemma 2.5 for a complete proof.
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One may prove that the function h : z ∈ R
d 7→ |z|a′ ∈ R satisfies h(z)−h(y)−∇h(y)·(y−x) ≥

C−1
R |y − z|max(a′,2) for y, z ∈ R

d such that |y| ≤ R, |z| ≤ R, where CR > 0 is a constant. This
implies that for R > 0 there exists CR > 0 a constant such that L satisfies

L
(
x, α2, µ

)
− L

(
x, α1, µ

)
−
(
α2 − α1

)
· Lα

(
x, α1, µ

)
≥ C−1

R

∣∣α2 − α1
∣∣max(q′,2)

,

for
(
α1, α2, µ

)
∈ R

d × R
d × P∞

(
T
d × R

d
)
, such that

∣∣αi
∣∣ ≤ R and Λq0 (µ) ≤ R. This implies

(
α2 − α1

)
·
(
Lα

(
x, α2, µ

)
− Lα

(
x, α1, µ

))
≥ 2C−1

R

∣∣α2 − α1
∣∣max(q′,2)

.

Take pi ∈ R
d and αi = −Hp

(
x, pi, µ

)
, i = 1, 2. Recalling the conjugacy relation pi =

−Lα

(
x, αi, µ

)
we obtain that Hp is locally Hölder continuous with respect to p.

Checking B3.
Take (p, V ) ∈ R

2d and α = α(p, V ), the optimal control α satisfies

(A.8) p = −DαL̃(α, V ) = −θ|α− λ̃V |a′−2(α− λ̃V )− (1− θ)|α|b′−2
α,

If (p, V ) 6= (0, 0), this implies

(A.9) α =
−p+ λ̃θ|α− λ̃V |a′−2V

θ|α− λ̃V |a′−2 + (1− θ)|α|b′−2
,

and

(A.10) α− λ̃V =
−p+ λ̃(1− θ)|α|b′−2V

θ|α− λ̃V |a′−2 + (1− θ)|α|b′−2
.

From (A.8), we deduce that

θ|α− λ̃V |a′−1 ≥ 1

2
|p|, or (1− θ)|α|b′−1 ≥ 1

2
|p|.

We recall that α = −Hp(p, V ), hence

H̃p(p, V ) · p− H̃(p, V ) = L̃(α, V )

=
θ

a′
|α− λ̃V |a′ + 1− θ

b′
|α|b′ ,

≥ min

( |p|a
2aa′θa−1

,
|p|b

2bb′(1− θ)b−1

)
,

which implies B3.
Proof that α is differentiable with respect to V at (0, 0).
Take V ∈ R

d that will eventually tend to 0 and α = α(0, V ). From (A.8) we obtain

0 = θ
∣∣∣α− λ̃V

∣∣∣
a′−2

(α− λ̃V ) + (1− θ) |α|b′−2
α,

Let us recall inequalities (6.6) and (6.7).

• if a > b then (a′−2)(b′−1)
a′−1 < b′ − 2, and we obtain the following expansion as |V | tends to 0,

α = λ̃V + o(|V |).

• if a = b we obtain,

(A.11) α = λ̃
θa−1

θa−1 + (1− θ)a−1V.
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• if a < b then (a′−2)(b′−1)
a′−1 > b′ − 2, and we obtain the following estimate as |V | tends to 0,

α = o(|V |).

Therefore the derivatives of α with respect to V in any of the above three cases are:

(A.12) DV α(0, 0) =





λ̃Id if b < a

λ̃
θa−1

θa−1 + (1− θ)a−1 Id if b = a

0 if b > a.

Proof that the operator norm of DV α =
(
∂V jα

i
)
1≤i,j≤d

∈ R
d×d is not larger than λ.

Here, the norm of a square matrix A ∈ R
d×d is defined by ‖A‖ = supX 6=0

|AX|
|X| . Let us

introduce

v1 = 1
α−λ̃V 6=0

α− λ̃V∣∣∣α− λ̃V
∣∣∣
, B = Id + (a′ − 2)v1v

T
1 ,

v2 = 1α 6=0
α

|α| , C = Id + (b′ − 2)v2v
T
2 .

We recall that if vi 6= 0, then viv
T
i is the orthogonal projection onto Rvi for i = 1, 2.

If α = λ̃V = 0 then (p, V ) = (0, 0), we see on (A.12) that DV α is a positive semi-definite
matrix with eigenvalues in [−λ, λ]. Therefore, we can now assume that (α, V ) 6= (0, 0).

Let us assume temporarily that a′ 6= 2, b′ 6= 2,α− λ̃V 6= 0,α 6= 0. Then we differentiate the
i-th component of (A.8) with respect to V j,

0 = θ
∣∣∣α− λ̃V

∣∣∣
a′−2 (

∂V jα
i − λ̃δi,j

)

+ θ(a′ − 2)
∣∣∣α− λ̃V

∣∣∣
a′−4

d∑

k=1

(
∂V jα

k − λ̃δk,j

)(
α

i − λ̃V i
)(

α
k − λ̃V k

)

+ (1− θ)|α|b′−2∂V jαi + (1− θ)(b′ − 2)|α|b′−4
d∑

k=1

∂V jα
k
α

i
α

k.

This implies

0 = θ
∣∣∣α− λ̃V

∣∣∣
a′−2

B
(
DV α− λ̃Id

)
+ (1− θ)|α|b′−2CDV α,

and thus

(A.13) DV α = λ̃


Id +

(1− θ)|α|b′−2

θ
∣∣∣α− λ̃V

∣∣∣
a′−2

B−1C




−1

.

We can check that this last equation holds in the general case for any (α, V ) 6= (0, 0), a′, b′.

• If (a′ − 2)v1 = 0 (i.e. B = Id) or (b′ − 2)v2 = 0 (i.e. C = Id), then (A.13) yields that DV α

is a positive definite matrix with eigenvalues in (−λ, λ).

• If (a′− 2)v1 6= 0 , (b′− 2)v2 6= 0 and v1, v2 are aligned, Then B and C commute and B−1C

is a positive definite matrix. Then (A.13) yields that DV α is a positive definite matrix
with eigenvalues in (−λ, λ).
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• The last case consists of assuming that (a′ − 2)v1 6= 0 , (b′ − 2)v2 6= 0, and v1, v2 are

linearly independent. We define k by k = (1−θ)|α|b
′
−2

θ|α−λ̃V |a′−2 > 0. The two orthogonal subspaces

Span(v1, v2) and {v1, v2}⊥ are stable by DV α, B,C. The restriction of DV α to {v1, v2}⊥
is positive definite with eigenvalues in (−λ, λ).

Let us denote by Ã, B̃, C̃ ∈ M2×2(R) respectively the restriction of DV α, B and C to
Span(v1, v2). We notice that

B̃−1 = Id +
(
(a′ − 1)−1 − 1

)
v1v

⊥
1 ,

thus the eigenvalues of B̃−1 are 1 and (a′ − 1)−1 ≤ 1 since a′ ≥ 2. The eigenvalues of C̃
are 1 and (b′ − 1) ≥ 1. Lemma A.3 below yields that M = (Id + kB̃−1C̃)(Id + kC̃B̃−1) is
a positive definite matrix with eigenvalues not smaller than 1. This implies

‖ÃX‖2 = λ2
〈
M−1X,X

〉

≤ λ2‖X‖2.

This concludes the proof that the norm of DV α is not larger than λ.

Proof of FP2.
Take (p, V 1, V 2) ∈ R

3d and α
i = −H̃p

(
p, V i

)
, i = 1, 2, then

∣∣∣H̃p (p, V1)− H̃p (p, V2)
∣∣∣ ≤ sup

s∈[0,1]
{‖DV α(p, sV1 + (1− s)V2)‖}

∣∣V 1 − V 2
∣∣

≤ λ
∣∣V 1 − V 2

∣∣ .

Combining the latter inequality and (A.2), we conclude that FP2 is satisfied.
Proof of FP1.
Let (p, V ) ∈ R

2d, we take α = −Hp (p, V ).

• We suppose b′ ≥ a′, we make out two cases: the first case is when |α| ≤ |p|b−1; the second

case is when |α| > |p|b−1 = |p|
1

b′−1 which implies

|α| ≤
∣∣∣∣∣

−p+ λ̃θ|α− λ̃V |a′−2V

θ|α− λ̃V |a′−2 + (1− θ)|α|b′−2

∣∣∣∣∣

≤ |p|
(1− θ)|α|b′−2

+ λ|V |

≤ (1− θ)−1|p|1−
b′−2
b′−1 + λ|V |,

using (A.9). We recall that 1− b′−2
b′−1 = b− 1, hence

(A.14)
∣∣∣H̃p (p, V )

∣∣∣ = |α| ≤ (1− θ)−1|p|b−1 + λ|V |.

• We suppose that b′ < a′, we make out two cases: the first case is when |α− λ̃V | ≤ |p|a−1;

the second case is when |α− λ̃V | > |p|
1

a′−1 which implies

|α| ≤
∣∣∣∣∣

−p+ λ̃θ|α− λ̃V |a′−2V

θ|α− λ̃V |a′−2 + (1− θ)|α|b′−2

∣∣∣∣∣

≤ |p|
θ|α− λ̃V |a′−2

+ λ|V |

≤ θ−1|p|1−
a′−2
a′−1 + λ|V |,
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where we used (A.9). From the equality 1− a′−2
a′−1 = a− 1, we deduce

(A.15) |Hp (p, V )| = |α| ≤ θ−1|p|a−1 + λ|V |.

This concludes the proof of FP1.
Proof of T.
We proved above that α is locally Lipschitz continuous with respect to V and we recall that

L̃ is C1. Therefore H̃ is also locally Lipschitz with respect to V . This and (A.3) implies that T
holds.

Lemma A.3. Let B,C ∈ M2×2 (R) be two positive definite matrices with eigenvalues (1, r) and
(1, s) respectively, and 0 < r ≤ 1, s ≥ 1. Then for any k > 0 the matrix M defined by

M = Id + k(BC +CB) + k2BC2B,

is positive definite with eigenvalues not smaller than 1.

Proof. We can assume that B,C have the following form:

C =

(
1 0
0 s

)
, B = U

(
1 0
0 r

)
UT , with U ∈ O2 (R) ,

since the eigenvalues of M are invariant by taking the conjugate of B and C by the same

orthogonal matrix. The same argument and noticing that C commutes with

(
1 0
0 −1

)
, imply

that we can assume that U admits a positive determinant, and thus we can write it as

U =

(
cosχ sinχ
− sinχ cosχ

)
,

with χ ∈ [0, 2π). In this case, M is given by

M = Id + k(BC + CB) + k2BC2B

∼ Id + kUT

(
1 0
0 s

)
U

(
1 0
0 r

)
+ k

(
1 0
0 r

)
UT

(
1 0
0 s

)
U + k2

(
1 0
0 r

)
UT

(
1 0
0 s2

)
U

(
1 0
0 r

)
.

We name M̃ the matrix in the last line of the latter calculation, M and M̃ have the same
eigenvalues. Let us compute M̃

M̃ =

(
cos2 χ(1 + k)2 + sin2 χ(1 + ks)2 −k(s− 1) [1 + r + kr(1 + s)] cosχ sinχ

−k(s− 1) [1 + r + kr(1 + s)] cosχ sinχ cos2 χ(1 + krs)2 + sin2 χ(1 + kr)2

)
,

its trace is given by

tr(M̃) = cos2 χ(1 + k)2 + sin2 χ(1 + kr)2 + cos2 χ(1 + krs)2 + sin2 χ(1 + ks)2,

and its determinant by

det(M̃ ) = (1 + k)2(1 + krs)2 cos4 χ+ (1 + kr)2(1 + ks)2 sin4 χ

+ 2(1 + k)(1 + kr)(1 + ks)(1 + krs) cos2 χ sin2 χ

=
[
(1 + k)(1 + krs) cos2 χ+ (1 + kr)(1 + ks) sin2 χ

]2
.

The eigenvalues of M̃ are the roots of the following second-order polynomial function,

X2 − tr(M̃)X + det(M̃ ),

39



its smallest root is
1

2

(
tr(M̃ )−

√
tr2(M̃)− 4 det(M̃)

)
,

which is not smaller than 1 if and only if

tr2(M̃)− 4 det(M̃) ≤
(
tr(M̃ )− 2

)2
.

Therefore, it is sufficient to check that tr(M̃ ) ≤ det(M̃ ) + 1 to conclude. We define the function
f : R → R by

f(x) = (1 + k)2(1 + krs)2x2 + (1 + kr)2(1 + ks)2(1− x)2

+ 2(1 + k)(1 + kr)(1 + ks)(1 + krs)x(1− x) cos2 χ(1 + k)2

+ sin2 χ(1 + kr)2 + cos2 χ(1 + krs)2 + sin2 χ(1 + ks)2 + 1.

This is a second-order polynomial in x with

f(0) =
(
(1 + kr)2 − 1

) (
(1 + ks)2 − 1

)
≥ 0

f(1) =
(
(1 + k)2 − 1

) (
(1 + krs)2 − 1

)
≥ 0,

f ′′(x) = 2 [(1 + k)(1 + krs)− (1 + kr)(1 + ks)]2 .

If (1 + k)(1 + krs)− (1 + kr)(1 + ks) = 0, then f is linear and thus f(x) ≥ 0 for all x ∈ [0, 1].
If (1 + k)(1 + krs)− (1 + kr)(1 + ks) 6= 0, then the minimum of this polynomial function on

R is obtained at xmin defined as

xmin =
(1 + k)2 + (1 + krs)2 − (1 + ks)2 − (1− kr)2

2 [(1 + k)(1 + krs)− (1 + kr)(1 + ks)]2

=
(1− r2)(1− s2)k2 + 2(1 − r)(1− s)k

2 [(1 + k)(1 + krs)− (1 + kr)(1 + ks)]2
≤ 0,

since 0 < r ≤ 1, s ≥ 1 and k > 0. Thus f has no local minimum on [0, 1], then f(x) ≥ 0 for all
x ∈ [0, 1] since f(0) ≥ 0 and f(1) ≥ 0.

Since det(M̃)− tr(M̃ ) + 1 = f(cos2 χ) ≥ 0, this concludes the proof of the lemma.
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