Diego Figueira
email: diego.figueira@labri.fr

Varun Ramanathan
email: varun.ramanathan@labri.fr

Pascal Weil
email: pascal.weil@labri.fr

The Quantifier Alternation Hierarchy of Synchronous Relations

Keywords: 2012 ACM Subject Classification Theory of computation → Logic; Theory of computation → Transducers synchronous relations, automatic relations, first-order logic, characterization, quantifier alternation

The class of synchronous relations, also known as automatic or regular, is one of the most studied subclasses of rational relations. It enjoys many desirable closure properties and is known to be logically characterized: the synchronous relations are exactly those that are defined by a first-order formula on the structure of all finite words, with the prefix, equal-length and last-letter predicates.

Here, we study the quantifier alternation hierarchy of this logic. We show that it collapses at level Σ3 and that all levels below admit decidable characterizations. Our results reveal the connections between this hierarchy and the well-known hierarchy of first-order defined languages of finite words.

Introduction

We study classes of relations on finite words, within the class of rational relations. Synchronous relations [START_REF] Choffrut | Relations over words and logic: A chronology[END_REF] -also studied as regular relations [START_REF] Benedikt | Definable relations and first-order query languages over strings[END_REF] and automatic relations [START_REF] Blumensath | Automatic structures[END_REF]-form a subclass of rational relations which is well-behaved from many standpoints. Contrary to rational relations, they enjoy crucial effective properties such as closure under intersection and complement. As a consequence, most paradigmatic problems are decidable for synchronous relations, in the same way as they are for regular languages. Further, they admit clean characterizations both in terms of automata and logic, providing yet more evidence of the connections between logic, formal languages and automata. Due to this good behavior, this class finds various applications in verification [START_REF] Bouajjani | Regular model checking[END_REF][START_REF] Parosh | A survey of regular model checking[END_REF], automatic structures [START_REF] Blumensath | Automatic structures[END_REF], the theory of transducers and database theory [START_REF] Barceló | Expressive languages for path queries over graph-structured data[END_REF].

Synchronous relations contain natural relations such as equality, prefix, or equal-length. In fact, any letter-to-letter transduction, alphabetic morphism or length-preserving rational relation lies within synchronous relations [START_REF] Berstel | Transductions and Context-Free Languages[END_REF].

Synchronous relations are those that are accepted by multi-tape finite automata. A k-tape automaton over an alphabet A can be naturally seen as an NFA over the alphabet of k-tuples = (A ∪ {⊥}) k that reads k input words w 1 , . . . , w k ∈ A * simultaneously, from left to right, the i-th transition reading the tuple from composed of the i-th letters of each word w j (or ⊥ if i > |w j |). Synchronous relations can also be described as finite unions of the componentwise concatenation of a length-preserving rational relation with a recognizable relation -two other well-studied classes of relations [START_REF] Berstel | Transductions and Context-Free Languages[END_REF].

On the other hand, relations can be defined by logical formulae interpreted on words in A * : a formula ϕ with free variables z 1 , . . . , z k defines the k-ary relation of all tuples (w 1 , . . . , w k) such that ϕ holds with the interpretation z i → w i (1 ≤ i ≤ k). Eilenberg, Elgot and Shepherdson [START_REF] Eilenberg | Sets recognized by n-tape automata[END_REF] showed that a relation is synchronous if, and only if, it can be defined in this way by a first-order formula using the prefix, equal-length and last letter predicates. This characterization opens the possibility of exploring classes of synchronous relations specified by fragments of first-order logic. In the present work, we study the quantifier alternation hierarchy in this logic, that is, the classes of relations defined by formulae with a bounded number of alternations of existential and universal quantifier blocks. This is a natural way of providing small, well-behaved classes (closed under boolean combinations) of synchronous relations. We show that the hierarchy collapses at level Σ 3 and we give clean combinatorial characterizations for its different layers, namely Σ 1 , its boolean closure BΣ 1 , Σ 2 and BΣ 2 . These characterizations reveal strong links with the classical Σ 1 -and Σ 2 -fragments of the first-order theory on finite words with the order < relation and letter predicates. Interestingly, the notion of subwords, which plays a central role in the characterization of Σ 1 [<] and BΣ 1 [<], must be replaced here by the more subtle notion of synchronized subwords.

Preliminaries

For any set A and ā ∈ A k , we denote by ā(i) its i-th component, an element of A. If w ∈ A * is a word, we denote by |w| its length and, for any 1 ≤ i ≤ j ≤ |w|, by w[i] the letter of w in i-th position, and by w[i..j] the factor w

[i] • • • w[j]
of w between positions i and j. To simplify notation, we let w[i..j] = ε (the empty word) whenever 1 ≤ i ≤ j ≤ |w| does not hold. If u, v are words, we let u v be the longest common prefix of u and v.

We will consider relations of a fixed arity k ≥ 2, over a fixed alphabet A with at least two letters. Let ⊥ be a symbol not in A, and let A ⊥ = A ∪ {⊥}. We will often work with the alphabet A k ⊥ , the direct product of k copies of A ⊥ .

Synchronous relations

Given w 1 , . . . , w k ∈ A * , we define the synchronized word w of the tuple (w 1 , . . . , w k), written w = w 1 ⊗ •

[i](j) = w j [i] if i ≤ |w j |, and w[i](j) = ⊥ otherwise. For example, abba ⊗ c ⊗ de = (a, c, d)(b, ⊥, e)(b, ⊥, ⊥)(a, ⊥, ⊥). We let SW k be the set of all k-synchronized words, that is, SW k = {w 1 ⊗ • • • ⊗ w k : w 1 , . . . , w k ∈ A * }. For S = {s 1 , . . . , s n } ⊆ {1, . . . , k} such that s 1 < • • • < s n , we define the projection π S : SW k → (A n ⊥) * as π S (w 1 ⊗ • • • ⊗ w k) = w s1 ⊗ • • • ⊗ w sn .
In the case of a singleton S = {i}, note that π S : SW k → A * , and we simply write

π i . If R ⊆ (A *) k is a k-ary relation, the synchronized language of R, denoted by L R , is the language {w 1 ⊗ • • • ⊗ w k : (w 1 , . . . , w k) ∈ R} ⊆ (A k ⊥) * . The relation R is said to be synchronous if L R is regular.
The set of synchronous relations, of arbitrary arity, is denoted by Sync.

MSO over finite words

In the classical setting introduced by Büchi (see [START_REF] Straubing | Finite Automata, Formal Logic, and Circuit Complexity[END_REF]), languages over an alphabet A are described by formulae interpreted over the set of positions of a finite word, using the binary word ordering predicate < and the unary letter predicates a (a ∈ A) -where a(i) holds if the word carries letter a in position i. Büchi's Theorem [START_REF] Büchi | On a decision method in restricted second-order arithmetic[END_REF][START_REF] Straubing | Finite Automata, Formal Logic, and Circuit Complexity[END_REF] states that a language is regular if and only if it is definable by a closed monadic second order formula in this logic, written MSO[<, {a} a∈A], or MSO[<] if A is understood. If ϕ is a closed formula in MSO[<], we let |ϕ| be the language in A * it defines, and if F is a set of formulae, |F| denotes the class {|ϕ| : ϕ ∈ F}.

First-order formulae in Büchi's logic define a strict subclass of regular languages, that of star-free languages (see [START_REF] Paul | On finite monoids having only trivial subgroups[END_REF][START_REF] Mcnaughton | Counter-Free Automata[END_REF][START_REF] Straubing | Finite Automata, Formal Logic, and Circuit Complexity[END_REF][START_REF] Straubing | An introduction to automata theory[END_REF]). The quantifier alternation hierarchy within FO[<] forms a strict infinite hierarchy, and it has been the object of intense study (see [START_REF] Place | The tale of the quantifier alternation hierarchy of first-order logic over words[END_REF][START_REF] Place | Concatenation hierarchies: New bottle, old wine[END_REF] for an overview). In the sequel, we will only use results regarding the Σ 1 , BΣ 1 , Σ 2 and BΣ 2 fragments of FO[<], possibly enriched with the constant predicate max, which stands for the last position in a word (see below in this section and Section 6). Recall that B designates the boolean closure; that Σ 1 is the set of existential formulae, of the form ∃z 1 • • • ∃z n ϕ with ϕ quantifier-free; and that Σ 2 consists in the formulae of the form ∃z 1 • • • ∃z n ϕ with ϕ in BΣ 1 . The Π i fragment consists of the negations of the formulae in Σ i (e.g., Π 1 are all formulae of the form ∀z 1 • • • ∀z n ϕ with ϕ quantifier-free). We will sometimes write FO[<](A *) (or fragments thereof) when we want to make explicit the alphabet A we work with.

FO over the structure of all finite words

We now turn to the signature introduced by Eilenberg et al. [START_REF] Eilenberg | Sets recognized by n-tape automata[END_REF] to discuss synchronous relations over A * , namely σ = [, eq, (a) a∈A]. These predicates are interpreted as follows:

(w 1 , w

ϕ = {(w 1 , . . . , w k) ∈ (A *) k : (w 1 , . . . , w k) |= ϕ}.
Let FO[σ] denote the set of first order formulae with signature σ, and for any F ⊆ FO[σ] let F denote the set of relations definable by formulae in F. For convenience, we write x ≺ y for (x y) ∧ ¬(y x), and L ϕ for L ϕ . For example, ϕ(

x 1 , x 2 , x 3) = (x 3 x 1) ∧ (x 3 x 2) ∧ ∀z (x 3 ≺ z → ¬(z x 1 ∧ z x 2)
) defines the set ϕ of all triples (w 1 , w 2 , w 3) such that w 3 = w 1 w 2 .

Types and type sequences

For a letter ā = (a 1 , . . . , a k) ∈ A k ⊥ , the type of ā is the subset of {1, . . . , k} 2 type(ā) = {(i, j) : a i = a j = ⊥}. The type of a synchronized word w = ā1 • • • ān is given by type(w) = 1≤i≤n type(ā i). For example, type((a, ⊥, a, b)) = {(1, 3), [START_REF] Benedikt | Definable relations and first-order query languages over strings[END_REF][START_REF] Parosh | A survey of regular model checking[END_REF], (1, 1), [START_REF] Benedikt | Definable relations and first-order query languages over strings[END_REF][START_REF] Benedikt | Definable relations and first-order query languages over strings[END_REF], (4, 4)} and type((a, ⊥,

a, b)(⊥, ⊥, b, b)) = {(3, 3), (4, 4)}.
In particular, if w ∈ SW k , the successive values

T 1 T 2 • • •
T n taken by the types of the prefixes of w form the type sequence of w, written type-seq(w). In such a sequence, we say that

T i is an end type if either i = n, or (j, j) ∈ T i \ T i+1 for some j ≤ k -that is, if w = w 1 ⊗ • • • ⊗ w k , T i is an end type in type-seq(w) if the length of the longest prefix of w of type T i is equal to |w j | for some j. If T is a type, we let A T be the set of T - compatible letters, A T = {ā ∈ A k ⊥ : T ⊆ type(ā) ⊆ T }, where T = {(i, j) : (i, i), (j, j) ∈ T }; and let A -,T = {ā ∈ A k ⊥ : T = type(ā)}.
If T is a type such that T T , we also let

A T ,T = {ā ∈ A k ⊥ : T = T ∩ type(ā)}.
Hence, if wā ∈ SW k and w has type T (resp. T), then type(wā) = T if and only if ā ∈ A T (resp. T T and ā ∈ A T ,T).

It follows that, if T = (T 1 , . . . , T n) is a type sequence and K(T) is the set of synchronized words w such that type-seq(w) = T , then

K(T) = A -,T1 A * T1 A T1,T2 A * T2 • • • A Tn-1,Tn A * Tn . (1
)
Note that this product of languages is deterministic, that is, given w, we can determine type-seq(w) and its unique factorization in the product (1) by reading w from left to right: the first letter determines T 1 , the next factor is the longest written in A T1 , the first letter not in A T1 (together with T 1) determines T 2 , etc.

If w = w1 • • • wn is this factorization, with wi ∈ A Ti-1,Ti A * Ti for each i (A T-,Ti A * Ti for i = 1
), we say that wi is the i-th type factor of w, written type-factor i (w).

Synchronized subwords

We denote by the (scattered) subword relation on A * (sometimes called subsequence): if u, v ∈ A * , we have u v if there exists a strictly increasing function p : {1, . . . , |u|} → {1, . . . , |v|}, called the witness function, such that, for all i ∈ {1, . . . , |u|}, Lemma 1. For ū, ū ∈ SW k with type sequences T and T , we have ū s ū if and only if T is a subsequence of T with a witness function t : {1, . . . , | T |} → {1, . . . , | T |} such that, for every i, the i-th type factor of ū is a subword of the t(i)-th type factor of ū , and they further have the same last letter if Ti is an end type of T .

u[i] = v[p(i)]. Given w = w 1 ⊗ • • • ⊗ w k and w = w 1 ⊗ • • • ⊗ w k ,
Proof. Suppose first that ū s ū and let p : {1, . . . , |ū|} → {1, . . . , |ū |} be a witness function. Let T and T be the type sequences of ū and ū and let ū = ū1

• • • ūn , ū = ū 1 • • • ū m be the type factorizations of ū and ū . For each 1 ≤ i ≤ n, if vi = ū1 • • • ūi , then T i = type(v i) = type(ū [1..p(|v i |)]), so T is a subsequence of T . Let t(i) be such that T t(i) = T i . Since p is type-preserving,
: p(|ū 1 • • • ūi-1 | + h) = |ū 1 • • • ū t(i)-1 | + p i (h). It is directly verified that p witnesses ū s ū .
Given a quasi-order over a domain X, the -upward closure of an element x ∈ X is the set ↑

x = {x ∈ X : x x }. If S ⊆ X, we also let ↑ S = x∈S ↑ x. Finally, S is -upward closed if S = ↑ S.
Henceforward, we write ↑w and ↑S as short for ↑ w and ↑ S; and we write ↑ s w and ↑ s S as short for ↑ s w and ↑ s S.

A well-quasi-order (wqo) is a quasi-order (X,) such that for every infinite sequence (x i) i∈N of elements of X, there exist i < j such that x i x j . A crucial observation is that, if is a wqo, then any set has a finite number of -minimal elements.

It is a classical result (Higman's lemma [START_REF] Higman | Ordering by divisibility in abstract algebras[END_REF], see also [12, chap. 6]) that the subword order on A * is a wqo. Unsurprisingly, the same holds for the synchronized subword order. Proposition 2. For every k, (SW k , s) is a well-quasi-order.

Proof. If (wn) n is an infinite sequence of elements of SW k , we can extract an infinite subsequence of elements with the same type sequence T = (T 1 , . . . , T n) (since there are only finitely many type sequences). Similarly, we can further extract an infinite subsequence where, for each end type T i , all the i-th type factors end with the same letter.

On this subsequence, s coincides with the intersection of the subword order applied to each of the n type factors. The result follows since the subword order is a wqo and wqo's are closed under intersection.

Bounded subword and synchronized subword classes

It is well-known [START_REF] Straubing | Finite Automata, Formal Logic, and Circuit Complexity[END_REF] that |Σ 1 [<]| is the set of languages of the form ↑S, where S is a set of words (which can be assumed to be finite by the wqo property). Similarly, |BΣ 1 [<]| is the set of finite unions of languages of the form ↑S \ ↑S , where S, S are finite sets of words. For h ∈ N, let ∼ h be the equivalence relation on A * defined by w 1 ∼ h w 2 if and only if w 1 and w 2 have the same subwords of length at most h. Then we also know [START_REF] Pin | Varieties of Formal Languages[END_REF][START_REF] Straubing | Finite Automata, Formal Logic, and Circuit Complexity[END_REF] that |BΣ 1 [<]| is the set of finite unions of ∼ h -classes, also known as the set of piecewise testable languages.

We introduce analogous definitions for synchronized subwords. If h ∈ N, we let ≈ h be the equivalence relation on synchronized words defined by w1 ≈ h w2 if w1 and w2 have the same set of synchronized subwords of length less than or equal to h. We let V h be the set of equivalence classes of ≈ h and Vh be its Boolean closure. Finally, we let V = h∈N Vh .

Summary of results

We start with an overview of our main results. Their proofs are discussed in the next sections. Theorem 3 refines the already mentioned 1969 result of Eilenberg et al. [START_REF] Eilenberg | Sets recognized by n-tape automata[END_REF], which states that the relations definable in FO[σ] are exactly the synchronous relations.

Theorem 3. For any alphabet having at least two letters,

Σ 1 [σ] BΣ 1 [σ] Σ 2 [σ] BΣ 2 [σ] Σ 3 [σ] = FO[σ] = Sync.
The characterizations of the Σ 1 [σ]-and the BΣ 1 [σ]-fragments are in terms of synchronized subwords, rather than ordinary subwords as in the case of word languages.

Theorem 4. For any relation R, R ∈ Σ 1 [σ] if and only if L R = ↑ s L R . Theorem 5. For any relation R, R ∈ BΣ 1 [σ] if and only if L R ∈ V.
We note the following corollary of Theorem 4, which follows from the wqo property of the synchronized subword order (Proposition 2). Corollary 6. For every formula ϕ ∈ Σ 1 [σ] with k free variables, there exists a finite set

S ⊆ SW k such that L ϕ = ↑ s S.
In contrast, the characterizations of the Σ 2 [σ]-and the BΣ 2 [σ]-fragments reduce to the corresponding logical fragments for word languages. [START_REF] Place | Going higher in the first-order quantifier alternation hierarchy on words[END_REF], see also [START_REF] Place | The tale of the quantifier alternation hierarchy of first-order logic over words[END_REF].

Theorem 7. For any relation R, R ∈ Σ 2 [σ] if and only if L R ∈ |Σ 2 [<]|. Corollary 8. For any relation R, R ∈ BΣ 2 [σ] if and only if L R ∈ |BΣ 2 [<]|.

Collapse of the alternation hierarchy

Here we prove Theorem 3. The equality FO[σ] = Sync was proved in [START_REF] Eilenberg | Sets recognized by n-tape automata[END_REF]. The collapse at level Σ 3 is established by a folklore argument, in which the runs of a classical (1-tape) automaton are first-order encoded using additional tapes. Specifically, let R be a k-ary synchronous relation and let A be a DFA accepting the language L R , with state set Q. We fix 0, 1, two distinct letters of A, which will be used to encode the runs of A. If w ∈ SW k and if q ∈ Q, we let u q be the word of length | w| which carries the letter 1 at each position i such that A is in state q after reading the i first letters of w, and carries letter 0 everywhere else.

A Σ 3 [σ]-formula ϕ with free variables z 1 , . . . , z k defining R is obtained as follows. A tuple of variables Y = (y q) q∈Q is quantified existentially, and the rest of the formula, in BΣ 2 [σ], verifies that the words u q (q ∈ Q) assigned to these variables encode the run of A as above. More precisely, each of these words must have length | w| (verified in Π 2 [σ]) and at every position, exactly one of them carries a 1 (verified in Π 1 [σ]). Moreover, the first letter of each u q must be 1 exactly when q is the state reached from the initial state when reading the tuple of first letters of the words assigned to z 1 , . . . , z k ; the notion of first letter, or rather of length 1 prefix is Π 2 [σ]-definable. Similarly, the last state must be one of the final states of A, which is readily verified using (without any quantifier) the last letter predicates a . Finally, the compatibility of the u q 's with the transitions of the run of A on w can be encoded with a Π 2 [σ]-formula. Thus Sync is contained in Σ 3 [σ] We now turn to the proof of the strictness of containments in Theorem 3. We observe that a unary relation on A is nothing but a language in A * . In that case, the notion of type is trivial, and w s w if and only if w w and they have the same last letter. In view of Theorems 4 and 5, it follows that a * is in BΣ 1 [σ] but not in Σ 1 [σ] . The other containments are strict because they are in the classical framework. This completes the proof of Theorem 3.

Σ 1 [σ] and its boolean closure

We prove Theorems 4 and 5, and we exhibit a decision procedure for membership in (B)Σ 1 [σ].

Characterization of Σ 1 [σ]

The proof of Theorem 4 is a consequence of the following three properties:

if ϕ is a formula of Σ 1 [σ], then L ϕ is s -upward closed (Lemma 12 below);
the relation defined by the s -upward closure of any synchronized word is Σ 1 [σ]-definable (Lemma 13 below);

s is a well-quasi-order on SW k (Proposition 2 above). We first show how these three properties imply Theorem 4. Lemma 12. Conversely, suppose that L R = ↑ s L R and let S be a s -minimal subset of L R , such that ↑ s S = ↑ s L R . Since s is a wqo by Proposition 2, S is finite, say, S = { w1 , . . . , wm }. By Lemma 13, for every 1 ≤ i ≤ m, there exists a formula

Proof of Theorem

4. If R is Σ 1 [σ]-definable, then L R = ↑ s L R by
ϕ i ∈ Σ 1 [σ] such that L ϕi = ↑ s wi . Letting ϕ = 1≤i≤m ϕ i , we see that L ϕ = 1≤i≤m ↑ s wi = ↑ s S = ↑ s L R = L R , and hence R = ϕ ∈ Σ 1 [σ] .
Before we prove Lemma 12, we establish the following technical lemma.

[s 1 +1..s 2] = a 1 • • • a m . That is, u = (u w) (a 1 • • • a m) u[s 2 +1..|u|], with the understanding that u[s 2 + 1..|u|] = ε if |u| ≤ | w|. For 1 ≤ i ≤ m, let n i = p(s 1 + i) -p(s 1) -1, and n m+1 = | w | -p(s 2)
. Let also z be an arbitrary letter of A. We then define

u = w [1..p(s 1)] z n1 a 1 • • • z nm a m z nm+1 u[s 2 + 1..|u|].
Example. Let w = w 1 ⊗ w 2 , w = w 1 ⊗ w 2 and u be defined as follows.

(3) for every 1 ≤ j ≤ |w i |: wi[j] (x i,j); (4) for every 1 ≤ i ≤ k and j ≤ min{|w i |, |w i |}: eq(x i,j , x i ,j); (5) for every 1

≤ i ≤ k and j ≤ min{|w i |, |w i |} such that w i [1..j] = w i [1..j]: x i,j = x i ,j . Let w = w 1 ⊗ • • • ⊗ w k .
First assume that w ∈ ↑ s w: we want to show that w ∈ L ϕ . Let p be a witness function for w s w . For each 1 ≤ i ≤ k and 1 ≤ j ≤ |w i |, let the word w i [1..p(j)] be assigned to variable x i,j . It is readily verified that (w 1 , . . . , w k) satisfies ϕ(z 1 , . . . , z k) and hence w ∈ ϕ .

Conversely, suppose that w ∈ L ϕ . There exists an assignment α for the variables in ϕ such that (w, α) ϕ. We define a function p : {1, . . . , | w|} → {1, . . . , | w |} as follows.

If 1 ≤ j ≤ | w|, there exists 1 ≤ i ≤ k such that j ≤ |w i |, and we let p(j) = |α(x i,j)|. Condition (4) in the definition of ϕ shows that p is well-defined. Condition [START_REF] Barceló | Expressive languages for path queries over graph-structured data[END_REF] shows that it is increasing and Condition [START_REF] Benedikt | Definable relations and first-order query languages over strings[END_REF] shows that w[j] = w [p(j)], so that p is a witness function for w w . Finally, Conditions (5) and [START_REF] Parosh | A survey of regular model checking[END_REF] show that p is type-and end-preserving, thus establishing that it is a witness for w s w .

Characterization of BΣ 1 [σ]

The following lemma establishes one of the implications of Theorem 5.

Lemma 14. For every

ϕ ∈ BΣ 1 [σ], L ϕ ∈ V.
Proof. By a standard transformation, ϕ is logically equivalent to a formula

n i=1 ψ i ∧ ψ i in disjunctive normal form, where ψ i ∈ Σ 1 [σ] and ψ i ∈ Π 1 [σ]
for every i. By Corollary 6, there exist finite sets S i and S i (1 ≤ i ≤ n) of synchronized words such that L ψi = ↑ s S i and

L ¬ψ i = ↑ s S i . Let S = n i=1 S i ∪ S i and let h = max{|ū| : ū ∈ S}.
If w, w are synchronized words such that w ≈ h w , then w and w have the same synchronized subwords of length at most h, and hence the same synchronized subwords in each S i and each S i (since these sets contain only words of length at most h). If w ∈ L ϕ , then for some i, w contains a synchronized subword in S i and none in S i . The same holds therefore for w , and w ∈ L ϕi∧ψ i . Thus w ∈ L ϕ , which completes the proof.

To establish the converse implication, we consider h ∈ N and L ∈ Vh , such that L is a finite union of ≈ h -classes [w1] h , . . . , [wn] h , and we show that L = L ϕ for some ϕ ∈ BΣ 1 [σ].

For each 1 ≤ i ≤ n, let S i be the set of synchronized subwords of wi of length at most h, and S i be the complement of S i within the set of synchronized words of length at most h. Both are finite and, by Lemma 13, there exist Σ 1 [σ]-formulae ψ i and ψ i such that L ψi = ↑ s S i and

L ψ i = ↑ s S i . Then, for each 1 ≤ i ≤ n, [wi] h = ↑ s S i \ ↑ s S i = L ψi∧¬ψ i and hence, L = L ϕ with ϕ = i ψ i ∧ ¬ψ i . This completes the proof of Theorem 5, since ϕ ∈ BΣ 1 [σ].

Deciding membership in Σ 1 [σ]

In view of Theorem 4 and of the properties of regular languages (namely the decidability of equality), membership decidability for Σ 1 [σ] reduces to proving the following proposition.

Proposition 15. Given a regular language L ⊆ SW k , its upward-closure ↑ s L is regular and computable.

We begin with some preliminary definitions, which will also be used in the next section. For S ⊆ SW k , let ↑ S = { w ∈ SW k : ∃ū ∈ S ū w and ū, w have the same last letter}. Let A be a deterministic automaton accepting L, with state set Q and initial state q 0 . For p, r ∈ Q, we let A(p, r) be the same as A, with p as initial state and {r} as final states, and denote by Lang(A(p, r)) the language accepted by A(p, r).

We say that a state sequence q = (q 1 , . . . , q n) ∈ Q n is T -compatible in A if q 1 is reachable from q 0 by reading a word in A -,T1 A * T1 , q 2 is reachable from q 1 by reading a word in A T1,T2 A * T2 , etc. In addition, we require q n to be a final state of A. Observe that, given T , the set of T -compatible state sequences is finite and computable.

If q is T -compatible, we let L(T , q, i) be the intersection of the language accepted by A(q i-1 , q i) with A Ti-1,Ti A * Ti (A -,T1 A * T1 if i = 1). In particular, if w ∈ SW k and type-seq(w) = T , then w ∈ L if and only if there exists a T -compatible sequence q such that w ∈ L(T , q, 1) • • • L(T , q, n) (uniquely determined, due to determinism). Note that the n factors of w thus determined are its type factors. In particular, L = L(T , q, 1)

• • • L(T , q, n),
where the union runs over all type sequences T and all T -compatible state sequences q of A. This is a finite union, all of whose terms are explicitly computable.

Proof of Proposition 15. For L, A, T , q, i as above, let L(T , q, i) be L(T , q, i) = ↑L(T , q, i)∩

A * Ti if T i is not an end type or L(T , q, i) = ↑ L(T , q, i) ∩ A * Ti otherwise. We now show that ↑ s L = L(T , q, 1) • • • L(T , q, n).
Note that the closure ↑K of a regular language K is regular and computable (by adding self loops to the states of an automaton accepting K), and the operation L(T , q, i) → L(T , q, i) is therefore computable, implying Proposition 15.

The proof is essentially an application of Lemma 1. Suppose first that w ∈ ↑ s L, that is, there exists ū ∈ L such that ū s w. Let T = type-seq(ū) = (T 1 , . . . , T n) and let q be the T -compatible state sequence determined by reading ū in A. By Lemma 1, T type-seq(w), with a witness function t such that, for each 1 ≤ i ≤ n, the i-th type factor ūi of ū is a subword of wt(i) , the t(i)-th type factor of w (with an additional last letter condition if T i is an end type). Therefore ūi is also a subword of wt(i-1)+1 • • • wt(i) , with the same last letter condition in the case of end types. Since ūi ∈ L(T , q, i), this means that wt(i-1)+1 • • • wt(i) ∈ L(T , q, i) and hence w ∈ L(T , q, 1)

• • • L(T , q, n).
Conversely, suppose that w ∈ L(T , q, 1) • • • L(T , q, n) for some type sequence T and Tcompatible state sequence q. For each 1 ≤ i ≤ n, let ūi ∈ L(T , q, i) be such that ūi wi , with witness function p i (and such that p i (|u i |) = |w i | if T i is an end type). By construction of the L(T , q, i)'s, the word ū = ū1 • • • ūn is in L, with type factors ū1 , . . . , ūn . Moreover ū s w for the witness function obtained by 'concatenating' the functions p i : p(i) = p 1 (i) for i ≤ |ū 1 |, and p(|ū

1 • • • ūi-1 | + h) = | w1 • • • wi-1 | + p i (h) for every 1 < i ≤ n and 1 ≤ h ≤ |ū i |.

Deciding membership in BΣ 1 [σ]

As a first step, we note the following.

Lemma 16. If T is a type sequence, then K(T) is BΣ 1 [σ]-definable.
Proof. Let S T be the set of s -minimal elements of K(T), a finite set by Proposition 2. Then K(T) ⊆ ↑ s S T . Moreover, if ū ∈ ↑ s S T , then T type-seq(ū) by Lemma 1. It follows that K(T) = ↑ s S T \ {↑ s S T : T T , T = T }. The statement then follows from Theorem 4.

Since there are finitely many type sequences T and each K(T) is computable, membership of a language L in BΣ 1 [σ] is equivalent to the membership of each L ∩ K(T) in BΣ 1 [σ] .

We now fix a type sequence T = (T 1 , . . . , T n). Our next step is a technical characterization of BΣ 1 [σ] for languages within K(T). For each 1 ≤ i ≤ n, let

F i = BΣ 1 [<, max](A * Ti) if
T i is an end type in T , and

F i = BΣ 1 [<](A * Ti) otherwise. Let also G 1 = {A -,T1 A * T1 ∩ H : H ∈ |F 1 |} and, for i ≥ 2, G i = {A Ti-1,Ti A * Ti ∩ H : H ∈ |F i |}. Lemma 17. A regular language L ⊆ K(T) is in BΣ 1 [σ]
if and only if, for each Tcompatible state sequence q and 1 ≤ i ≤ n, L(T , q, i) ∈ G i .

Proof. For convenience, we write L(q, i) for L(T , q, i). First assume that every L(q, i) ∈ G i , that is, there exists a BΣ 1 [<]-definable language H(q, i) ⊆ A * Ti such that L(q, i) = A Ti-1,Ti A * Ti ∩ H(q, i) (or, if i = 1, L(q, 1) = A -,T1 A * T1 ∩ H(q, 1)). Then H(q, i) is the finite union of languages of the form H(q, i, j) = ↑S(q, i, j) \ ↑S (q, i, j) (or ↑ S(q, i, j) \ ↑ S (q, i, j) if T i is an end type), for 1 ≤ j ≤ n q,i , where the S(q, i, j)'s and S (q, i, j)'s are finite sets. Then L(q, i) is the union of the L(q, i, j

) = A Ti-1,Ti A * Ti ∩ H(q, i, j) (or, if i = 1, L(q, 1, j) = A -,T1 A * T1 ∩ H(q, 1, j)). If  = (j 1 , . . . , j n) is such that 1 ≤ j i ≤ n q,i for each 1 ≤ i ≤ n, let L(q, ) = L(q, 1, j 1) • • • L(q, n, j n).
Then L is the (finite) union of the L(q, ). Now let S(q, ) = { w ∈ K(T) : for all i ∈ {1, . . . , n}, type-factor i (w) ∈ S(q, i, j i)} and S (q, ) = { w ∈ K(T) : for some i ∈ {1, . . . , n}, type-factor i (w) ∈ S (q, i, j i)}. Then, L(q, ) = K(T) ∩ (↑S(q, ) \ ↑S (q, ))

∈ BΣ 1 [σ] . It follows that L ∈ BΣ 1 [σ] .
Conversely, suppose that for some q and some i, L(q, i) / ∈ G i . In view of Theorem 5, we want to show that L is not a union of ≈ r -classes for any r ≥ 1. Let r be now fixed. We only need to exhibit words w ∈ L and w / ∈ L such that w ≈ r w . Let ∼ i r be the relation on A * Ti given by ū ∼ i r v if ū ∼ r v and, either the first letters of ū and v are both in A Ti-1 or neither is. By means of contradiction, suppose L(q, i) is the finite union of the

∼ i r classes [ū 1], . . . , [ū m]. Then each ūj ∈ A Ti-1,Ti A * Ti and, by definition of ∼ i r , [ū j] = A Ti-1,Ti A * Ti ∩ [[ū j]],
where [[ū j]] denotes the ∼ r -class of ūj . Therefore L(q, i) = A Ti-1,Ti A * Ti ∩ M , where M is the union of the [[ū j]]'s. Since M ∈ |BΣ 1 [<](A Ti)|, this shows that L(q, i) ∈ G i , a contradiction. (In the case where T i is an end type, we need to reason with the intersection of ∼ i r with the same-last-letter equivalence.) Now, since L(q, i) is not a union of ∼ i r -classes, there exist words ūi , ū i ∈ A Ti-1,Ti A * Ti such that ūi ∼ r ū i (and if T i is an end type they have the same last letter) and exactly one of them is in L(q, i). Say ūi ∈ L(q, i), such that ūi ∈ Lang(A(q i-1 , q i)) and ū i ∈ Lang(A(q i-1 , q i)) for some q i = q i . Assuming wlog that A is minimal for L, there exist a word ȳ and states p, p of which exactly one is accepting, such that ȳ ∈ Lang(A(q i , p)) ∩ Lang(A(q i , p)). Let x ∈ L(q, 1) • • • L(q, i -1), w = xū i ȳ and w = xū i ȳ. Then exactly one of w, w is in L.

Since L ⊆ K(T), this implies that ȳ ∈ A * Ti A Ti,Ti+1 A * Ti+1 • • • A Tn-1,Tn A * Tn (A * Tn if i = n).
Consequently, w and w have the same type sequence T , with the same type factors except for the i-th one. Moreover, type-factor i (w) = ūi ū and type-factor i (w) = ū i ū , where ū is the longest A * Ti prefix of ū. Since ūi ∼ r ū i , ūi ū ∼ r ū i ū . Then w ≈ r w is a consequence of Lemma 1.

In view of Lemma 17 and since each L(T , q, i) is computable (Section 5.3), the decidability of BΣ 1 [σ] will be established if we show that membership in each G i is decidable, which is the object of the following lemma.

Lemma 18.

Let A be an alphabet and B ⊆ A. Then, it is decidable whether a regular language is in W B = {BA * ∩ L : L ∈ BΣ 1 [<](A)}. 1of words in A Ti-1Ti A * Ti that do not have wi as a subword. Then L i is Π 1 [<]-, and hence Σ 2 [<]-definable. As a consequence, L i ∈ P and, by associativity, C i ∈ P. Finally, the third condition places ū in C i = A -,T1 A * T1 • • • A Ti-2,Ti-1 A * Ti-1 L i A Ti,Ti+1 A * Ti+1 • • • A Tn-1,Tn A * Tn , where L i = (A Ti \ A Ti-1)A * Ti ∩ A * Ti B i , with B i the set of letters of A Ti different from the last letter of wi . Here too, L i ∈ P and hence C i ∈ P.

The following lemma then concludes the proof of Theorem 7. Let w 1 , . . . , w k ∈ A * be such that w = w 1 ⊗ • • • ⊗ w k = ā1 • • • ān (they exist due to ⊥-consistency). Let X = {x i,j : 1 ≤ i ≤ k, 1 ≤ j ≤ |w i |} and Y = {y 1 , . . . , y k } be sets of variables. We first let ψ 1 (X, Z) be the conjunction of the following formulae for 1 ≤ i ≤ k:

(1) for every 1 ≤ j < |w i |: x i,j ≺ x i,j+1 ; (2) x i,|wi| z i ; (3) for every 1 ≤ j ≤ |w i |: wi[j] (x i,j); (4) for every 1 ≤ i ≤ k and j ≤ min{|w i |, |w i |}: eq(x i,j , x i ,j). Notice that ū ∈ SW k satisfies ∃X ψ 1 (X, Z) if and only if w is a subword of x with witness function given by p(j) = |x h,j | for any 1 ≤ h ≤ k.

The variables in Y are meant to represent the k components of a prefix of ū, which is expressed by ψ 2 (X, Y), the disjunction over all subsets H of {1, . . . , k} (H represents the components of ū which are shorter than that prefix) of the formulae h∈H (y h z h ∧ eq(y h , z h)) ∧ h,i ∈H (y h ≺ z h) ∧ eq(y h , y i)) ∧ h∈H,i ∈H ∃r(r y i ∧ eq(r, y h)).

Next, for ā ∈ A k ⊥ and Ā ⊆ A k ⊥ , and recalling that τ (ā) = {h : π h (ā) = ⊥}, we define ψ ā(Y) = h / ∈τ (ā) π h (ā) (y h) and ψ Ā(Y) = ā∈ Ā ψ ā(Y). Once ȳ is a prefix of ū and w is a subword of ū with witness function p, if for some 1 ≤ j ≤ n, we have |ȳ| = p(j), then ȳ satisfies ψ āj . We now only need to verify that if |ȳ| sits between p(j) and p(j + 1) (for some 0 ≤ j ≤ n), then ȳ satisfies ψ Āj . This is done by the formula ψ 3 (X, Y) = Finally, R is defined by the Σ 2 [σ] formula ϕ(Z) = ∃Xψ 1 (X, Z) ∧ ∀Y (ψ 2 (X, Y) ∧ ψ 3 (X, Y)).

Theorem 9 .

 9 These characterizations can then be used to prove the decidability of the membership problems for the different fragments ofFO[σ]. Given a fragment F ∈ {Σ 1 [σ], BΣ 1 [σ], Σ 2 [σ], BΣ 2 [σ]}and a synchronous relation R (say, an automaton accepting L R), it is decidable whether R ∈ F . Remark 10. The decidability of membership in Σ 2 [σ] and BΣ 2 [σ] follows directly from the decidability of |Σ 2 [<]| [16] and |BΣ 2 [<]|

Lemma 11 .

 11 Let w = w 1 ⊗ • • • ⊗ w k , and w = w 1 ⊗ • • • ⊗ w k such that w s w . For all u ∈ A * , there exists u ∈ A * such that w ⊗ u s w ⊗ u .Proof. Let p : {1, . . . , | w|} → {1, . . . , | w |} be the witness function for w s w . Let s 1 = max i≤k |u w i | and ≤ k be such that |u w | = s 1 . Finally, let s 2 = min(| w|, |u|), and u

Lemma 22 .

 22 If R is a relation such that L R is a ⊥-consistent polynomial, then R ∈ Σ 2 [σ] .Proof. By definition of P, the proof reduces to the case whereL R is a ⊥-consistent monomial, say L R = Ā * 0 ā1 Ā * 1 • • • ān Ā * n .We now construct a Σ 2 [σ]-formula ϕ, with set of free variables Z = {z 1 , . . . , z k }, which defines R.

n

 j=0 χ j , where χ 0 (X, Y) = h / ∈τ (Ā0) y h ≺ x h,1 → ψ Ā0 (Y), χ n (X, Y) = h / ∈τ (Ān) x h,n ≺ y h → ψ Ān (Y), and for every 0 < j < n,χ j (X, Y) =   h / ∈τ (Āj) (x h,j ≺ y h) ∧ (y h ≺ x h,j+1)   → ψ Āj (Y).

 2) |= x y if and only if w 1 is a prefix of w 2 ; (w 1 , w 2) |= eq(x, y) if and only if w 1 and w 2 have equal length; w |= a (x) if and only if the last letter of w is a. Every formula ϕ with free variables z 1 , . . . , z k defines a k-ary relation written ϕ , namely:

 the factor ūi is a subword of ū t(i) . Both have the same last letter if T i is an end type for ū, since p is end-preserving.Conversely, suppose that T i = T t(i) and that ūi ū t(i) , with witness function p i (with domain {1, . . . , |ū i |}). Let p be the function on {1, . . . , |ū|} obtained by 'concatenating' the p i

The proof of this lemma contains an error in the MFCS proceedings version, found by Dietrich Kuske and Christian Schwarz. The current proof is the corrected version.

Funding Work supported by ANR DeLTA, grant ANR-16-CE40-0007.

Now let p be the function defined on {1, . . . , max(| w|, |u|)}, which extends p by letting p (| w| + j) = | w | + j for 1 ≤ j ≤ |u| -| w|. We show that p is a witness for w ⊗ u s w ⊗ u .

By construction, p is increasing and (w⊗u)[i] = (w ⊗u)[p (i)] for every i ≤ max(| w|, |u|) = | w ⊗ u|. We must now show that, for each such i, type((w ⊗ u) [1..i]) = type((w ⊗ u) [1..p (i)]), and that p (|u|) = |u |. For convenience, we write wu for w ⊗ u and w u for w ⊗ u .

If

Proof. First observe that if the synchronized words w = w 1 ⊗ • • • ⊗ w k and w = w 1 ⊗ • • • ⊗ w k satisfy w s w , then, for all i, j ∈ {1, . . . , k}, we have:

then w i and w i have the same last letter. We now proceed by induction on the number of quantified variables of ϕ. If ϕ is quantifier-free, these three properties show that L ϕ is s -upward closed.

If ϕ is not quantifier-free, we have ϕ(y 1 , . . . , y k) = ∃x ψ(y 1 , . . . , y k , x) for some ψ ∈ Σ 1 [σ]. Let w, w ∈ SW k such that w s w and w |= ϕ. Then there is u ∈ A * such that w ⊗ u |= ψ. By Lemma 11, there also exists u ∈ A * such that w ⊗ u s w ⊗ u . Since ψ is s -upward closed by induction, w ⊗ u |= ψ, and hence w |= ϕ. This completes the proof.

Lemma 13. If w is a synchronized word, then the relation defined by

We define a formula ϕ(z 1 , . . . , z k) (dependent on w) whose synchronized language is ↑ s w, using existential quantification on a set consisting of one variable for each w i and one for each position within w i . Formally, let X = {x i,j :

, where ψ is the conjunction of the following formulae for every i ∈ {1, . . . , k}: [START_REF] Parosh | A survey of regular model checking[END_REF]

Proof. Given a regular language K ⊆ BA * , we will check whether K ∈ W B by reducing it to an instance of the BΣ 1 [<]-separation problem. For any class C of languages, the C-separation problem is as follows: given a pair of languages (L 1 , L 2), does there exist a language L (called the separator) in C such that L 1 ⊆ L ⊆ L c 2 ? The BΣ 1 [<]-separation problem is known to be decidable [START_REF] Czerwinski | Efficient separability of regular languages by subsequences and suffixes[END_REF][START_REF] Place | Separating regular languages by locally testable and locally threshold testable languages[END_REF]. Now, given K ⊆ BA * , it is easily verified that K ∈ W B if and only if (K, K c ∩ BA *) has a separator in BΣ 1 [<]. This completes the proof.

Σ 2 [σ] and its boolean closure

For any alphabet A, an A-monomial is a language of the form

Remark 19. It is known [START_REF] Pin | Monoids of upper triangular matrices[END_REF] that Σ 2 [<](A) sentences define exactly the set of A-polynomials. A non-trivial consequence is that the set of A-polynomials is closed under intersection.

Not every A k

⊥ -polynomial respects the structural properties (on the positions of ⊥) of synchronized words. For example (a, ⊥) * (b, b)(a, a) * is a polynomial over A k ⊥ for A = {a, b} and k = 2 but it does not define a relation. In order to characterize subsets of SW k which are polynomials, we introduce the notion of ⊥-consistency.

⊥ is said to be ⊥-consistent if all the τ (ā) (ā ∈ Ā) take the same value. If that is the case, we let τ (Ā) = τ (ā) (for any ā ∈ Ā). Finally we say that a monomial Ā *

We denote by P the set of all ⊥-consistent polynomials, that is, of finite unions of ⊥-consistent monomials. The following statement follows directly from this definition. We can now proceed with the proof of Theorem 7. We first show that a Σ 2 [σ]definable k-ary relation R satisfies L R ∈ P. Indeed, without loss of generality, R is defined by a Σ 2 [σ]-formula ϕ with free variables S = {z 1 , . . . , z k }, of the form ϕ = ∃x 1 . . . ∃x n ψ(x 1 , . . . , x n , z 1 , . . . , z k), with ψ ∈ Π 1 [σ]. In particular, ψ is a (n + k)-ary relation and R = π S (ψ). Lemmas 20 and 21 therefore establish that L R ∈ P.

for some finite set S. Since P is closed under intersection (see Remark 19), we only need to show that SW k \ ↑ s w ∈ P for a single synchronized word w.

Let T = (T 1 , . . . , T n) = type-seq(w). By Lemma 1, we see that ū ∈ L R if and only either (1) T type-seq(ū), or (2) T type-seq(ū), with witness function t and wi ūt(i) for some 1 ≤ i ≤ n or, (3) again T type-seq(ū) with witness t, where wi and ūt(i) do not have the same last letter for some i such that T i is an end-type for w.

The first condition means that ū ∈ K(T), where the union runs over type sequences T such that T T . We saw in Section 2 that this union is in P. The second condition places