
HAL Id: hal-02109188
https://hal.science/hal-02109188v1

Preprint submitted on 24 Apr 2019 (v1), last revised 22 Sep 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Quantifier Alternation Hierarchy of Synchronous
Relations

Diego Figueira, Varun Ramanathan, Pascal Weil

To cite this version:
Diego Figueira, Varun Ramanathan, Pascal Weil. The Quantifier Alternation Hierarchy of Syn-
chronous Relations. 2019. �hal-02109188v1�

https://hal.science/hal-02109188v1
https://hal.archives-ouvertes.fr

The Quantifier Alternation Hierarchy of
Synchronous Relations
Diego Figueira, Varun Ramanathan, Pascal Weil
Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR5800, F-33400 Talence, France
CNRS, ReLaX, UMI2000, Siruseri, India

Abstract
The class of synchronous relations, also known as automatic or regular, is one of the most studied
subclasses of rational relations. It enjoys many desirable closure properties and is known to be
logically characterized: the synchronous relations are exactly those that are defined by a first-order
formula on the structure of all finite words, with the prefix, equal-length and last-letter predicates.
Here, we study the quantifier alternation hierarchy of this logic. We show that it collapses at level
Σ3 and that all levels below admit decidable characterizations. Our results reveal the connections
between this hierarchy and the well-known hierarchy of first-order defined languages of finite words.

2012 ACM Subject Classification Theory of computation → Logic; Theory of computation →
Transducers

Keywords and phrases synchronous relations, automatic relations, first-order logic, characterization,
quantifier alternation

Funding Work supported by ANR DELTA, grant ANR-16-CE40-0007.

1 Introduction

We study classes of relations on finite words, within the class of rational relations. Synchronous
relations [8] —also studied as regular relations [3] and automatic relations [5]— form a subclass
of rational relations enjoying many desirable properties. Indeed, synchronous relations form a
well-behaved class from many standpoints. Contrary to rational relations, they enjoy crucial
effective properties such as closure under intersection and complement. As a consequence,
most paradigmatic problems are decidable for synchronous relations, in the same way as
they are for regular languages. Further, they admit clean characterizations both in terms of
automata and logic, providing yet more evidence of the connections between logic, formal
languages and automata. Due to this good behavior, this class finds various applications in
verification [6, 1], automatic structures [5], the theory of transducers and database theory [2].

Synchronous relations contain natural relations such as equality, prefix, or equal-length.
In fact, any letter-to-letter transduction, alphabetic morphism or length-preserving rational
relation lies within synchronous relations [4].

Synchronous relations are those that are accepted by multi-tape finite automata. A
k-tape automaton over an alphabet A can be naturally seen as an NFA over the alphabet of
k-tuples Â = (A ∪ {⊥})k that reads k input words w1, . . . , wk ∈ A∗ simultaneously, from left
to right, the i-th transition reading the tuple from Â composed of the i-th letters of each
word wj (or ⊥ if i > |wj |). Synchronous relations can also be described as finite unions of
the componentwise concatenation of a length-preserving rational relation with a recognizable
relation —two other well-studied classes of relations [4].

On the other hand, relations can be defined by logical formulæ interpreted on words
in A∗: a formula ϕ with free variables z1, . . . , zk defines the k-ary relation of all tuples
(w1, . . . , wk) such that ϕ holds with the interpretation zi 7→ wi (1 ≤ i ≤ k). Eilenberg, Elgot
and Shepherdson [9] showed that a relation is synchronous if, and only if, it can be defined
in this way by a first-order formula using the prefix, equal-length and last letter predicates.

mailto:CNRS, ReLaX, UMI2000, Siruseri, India

2 The Quantifier Alternation Hierarchy of Synchronous Relations

This characterization opens the possibility of exploring classes of synchronous relations
specified by fragments of first-order logic. In the present work, we study the quantifier
alternation hierarchy in this logic, that is, the classes of relations defined by formulæ with
a bounded number of alternations of existential and universal quantifier blocks. This is a
natural way of providing small, well-behaved classes (closed under boolean combinations) of
synchronous relations. We show that the hierarchy collapses at level Σ3 and we give clean
combinatorial characterizations for its different layers, namely Σ1, its boolean closure BΣ1, Σ2
and BΣ2. These characterizations reveal strong links with the classical Σ1- and Σ2- fragments
of the first-order theory on finite words with the order < relation and letter predicates.
Interestingly, the notion of subwords, which plays a central role in the characterization of
Σ1[<] and BΣ1[<], must be replaced here by the more subtle notion of synchronized subwords.

We also show that these characterizations are decidable: given a synchronous relation,
one can decide whether it is defined by a formula in Σ1 [resp. BΣ, Σ2, BΣ2]. Our results
provide therefore a complete decision procedure for the alternation hierarchy of synchronous
relations.

Section 2 introduces technical preliminaries. Our main results are all stated in Section 3,
and their proofs are given in the ensuing sections: Section 4 for the collapse of the hierarchy,
Section 5 for what concerns the Σ1- and BΣ1-fragments and Section 6 for the Σ2- and
BΣ2-fragments.

2 Preliminaries

For any set A and ā ∈ Ak, we denote by ā(i) its i-th component, an element of A. If w ∈ A∗
is a word, we denote by |w| its length and, for any 1 ≤ i ≤ j ≤ |w|, by w[i] the letter of w
in i-th position, and by w[i..j] the factor w[i] · · ·w[j] of w between positions i and j. To
simplify notation, we let w[i..j] = ε (the empty word) whenever 1 ≤ i ≤ j ≤ |w| does not
hold. If u, v are words, we let u u v be the longest common prefix of u and v.

We will consider relations of a fixed arity k ≥ 2, over a fixed alphabet A with at least
two letters. Let ⊥ be a symbol not in A, and let A⊥ = A ∪ {⊥}. We will often work with
the alphabet Ak⊥, the direct product of k copies of A⊥.

Synchronous relations

Given w1, . . . , wk ∈ A∗, we define the synchronized word w̄ of the tuple (w1, . . . , wk), written
w̄ = w1 ⊗ · · · ⊗ wk, to be the word in (Ak⊥)∗ such that:
|w̄| = max(|w1|, . . . , |wk|); and
for every i ∈ {1, . . . , |w̄|} and j ∈ {1, . . . , k}, we have w̄[i](j) = wj [i] if i ≤ |wj |, and
w̄[i](j) = ⊥ otherwise.

For example, abba ⊗ c ⊗ de = (a, c, d)(b,⊥, e)(b,⊥,⊥)(a,⊥,⊥). We let SWk be the set of
all k-synchronized words, that is, SWk = {w1 ⊗ · · · ⊗ wk : w1, . . . , wk ∈ A∗}. For S =
{s1, . . . , sn} ⊆ {1, . . . , k} so that s1 < · · · < sn, we define the projection πS : SWk → (An⊥)∗
as πS(w1 ⊗ · · · ⊗ wk) = ws1 ⊗ · · · ⊗ wsn

. In the case S is a singleton S = {i}, note that
πS : SWk → A∗, and we simply write πi. If R ⊆ (A∗)k is a k-ary relation, the synchronized
language of R, denoted by LR, is the language {w1 ⊗ · · · ⊗ wk : (w1, . . . , wk) ∈ R} ⊆ (Ak⊥)∗.
The relation R is said to be synchronous if LR is regular. The set of synchronous relations is
denoted by Sync.

D. Figueira, V. Ramanathan, and P. Weil 3

MSO over finite words

In the classical setting introduced by Büchi (see [20]), languages over alphabet A are described
by formulæ interpreted over the set of positions of a finite word, using the binary word
ordering predicate < and the unary letter predicates a (a ∈ A) —where a(i) holds if the
word carries letter a in position i. Büchi’s Theorem [7, 20] states that a language is regular
if and only if it is definable by a closed monadic second order formula in this logic, written
MSO[<, {a}a∈A], or MSO[<] if A is understood. If ϕ is a closed formula in MSO[<], we
let |ϕ| be the language in A∗ it defines, and if F is a set of formulæ, |F| denote the class
{|ϕ| : ϕ ∈ F}.

First-order formulæ in Büchi’s logic define a strict subclass of regular languages, that of
star-free languages (see [19, 12, 20, 21]). The quantifier alternation hierarchy within FO[<]
forms a strict infinite hierarchy, and it has been the object of intense study (see [17, 18] for
an overview). In the sequel, we will only use results regarding the Σ1, BΣ1, Σ2 and BΣ2
fragments of FO[<], possibly enriched with the constant predicate max, which stands for
the last position in a word (see below in this section and Section 6). Recall that B designates
the boolean closure; that Σ1 is the set of existential formulæ, of the form ∃z1 · · · ∃zn ϕ with
ϕ quantifier-free; and that Σ2 consists in the formulæ of the form ∃z1 · · · ∃zn ϕ with ϕ in
BΣ1. The class Πi consists of the negations of the formulæ in Σi (eg., Π1 are all formulæ
of the form ∀z1 · · · ∀zn ϕ with ϕ quantifier-free). We will sometimes write FO[<](A∗) (or
fragments thereof) when we want to make explicit the alphabet A we work with.

FO over the structure of all finite words

We now turn to the signature introduced by Eilenberg et al. [9] to discuss synchronous
relations over A∗, namely σ = [�, eq, (`a)a∈A]. These predicates are interpreted as follows:

(w1, w2) |= x � y if and only if w1 is a prefix of w2;
(w1, w2) |= eq(x, y) if and only if w1 and w2 have equal length;
w |= `a(x) if and only if the last letter of w is a.

Every formula ϕ with free variables z1, . . . , zk defines a k-ary relation written ‖ϕ‖, namely:

‖ϕ‖ = {(w1, . . . , wk) ∈ (A∗)k : (w1, . . . , wk) |= ϕ}.

For convenience, we write x ≺ y for (x � y) ∧ ¬(y � x), and Lϕ for L‖ϕ‖. For example,
ϕ(x1, x2, x3) = (x3 � x1) ∧ (x3 � x2) ∧ ∀z (x3 ≺ z → ¬(z � x1 ∧ z � x2)) defines the set
‖ϕ‖ of all triples (w1, w2, w3) such that w3 = w1 u w2

Types and type sequences

For a letter ā = (a1, . . . , ak) ∈ Ak⊥, the type of ā is the subset of {1, . . . , k}2 type(ā) =
{(i, j) : ai = aj 6= ⊥}. The type of a synchronized word w̄ = ā1 · · · ān is given by
type(w̄) =

⋂
1≤i≤n type(āi). For example, type(a,⊥, a, b) = {(1, 3), (3, 1), (1, 1), (3, 3), (4, 4)}

and type((a,⊥, a, b)(⊥,⊥, b, b)) = {(3, 3), (4, 4)}.
In particular, if w̄ ∈ SWk, the successive values T1) T2 · · ·) Tn taken by the types

of the prefixes of w̄ form the type sequence of w̄, written type-seq(w̄). In such a sequence,
we say that Ti is an end type if either i = n, or (j, j) ∈ Ti \ Ti+1 for some j ≤ k —that is,
if w̄ = w1 ⊗ · · · ⊗ wk, Ti is an end type in type-seq(w̄) if the length of the longest prefix
of w̄ of type Ti is equal to |wj | for some j. If T is a type, we let AT be the set of T -
compatible letters, AT = {ā ∈ Ak⊥ : T ⊆ type(ā) ⊆ T ?}, where T ? = {(i, j) : (i, i), (j, j) ∈ T};
and let A−,T = {ā ∈ Ak⊥ : T = type(ā)}. If T ′ is a type such that T (T ′, we also let

4 The Quantifier Alternation Hierarchy of Synchronous Relations

AT ′,T = {ā ∈ Ak⊥ : T = T ′ ∩ type(ā)}. Hence, if w̄ā ∈ SWk and w̄ has type T [resp. T ′], then
type(w̄ā) = T if and only if ā ∈ AT [resp. T (T ′ and ā ∈ AT ′,T].

It follows that, if T̄ = (T1, . . . , Tn) is a type sequence and K(T̄) is the set of synchronized
words w̄ such that type-seq(w̄) = T̄ , then

K(T̄) = A−,T1A∗T1
AT1,T2A∗T2

· · ·ATn−1,Tn
A∗Tn

. (1)

Note that this product of languages is deterministic, that is, given w̄, we can determine
type-seq(w̄) and its unique factorization in the product (1) by reading w̄ from left to right:
the first letter determines T1, the next factor is the longest written in AT1 , the first letter
out of AT1 (together with T1) determines T2, etc.

If w̄ = w̄1 · · · w̄n is this factorization, with w̄i ∈ ATi−1,Ti
A∗Ti

for each i (AT−,Ti
A∗Ti

for
i = 1), we say that w̄i is the i-th type factor of w̄, written type-factori(w̄).

Synchronized subwords

We denote by v the (scattered) subword relation on A∗ (sometimes called subsequence):
if u, v ∈ A∗, we have u v v if there exists a strictly increasing function p : {1, . . . , |u|} →
{1, . . . , |v|}, called the witness function, such that, for all i ∈ {1, . . . , |u|}, u[i] = v[p(i)].

Given w̄ = w1⊗· · ·⊗wk and w̄′ = w′1⊗· · ·⊗w′k, we say that w̄ is a synchronized subword
of w̄′, denoted by w̄ vs w̄′ if and only if w̄ v w̄′, with a witness function p which is

type preserving: type(w̄[1..i]) = type(w̄′[1..p(i)]) for all 1 ≤ i ≤ |w̄|; and
end preserving: p(|wj |) = |w′j | for all j ∈ {1, . . . , k}.

I Lemma 1. For ū, ū′ ∈ SWk with type sequences T̄ and T̄ ′, we have ū vs ū′ if and only if
T̄ is a subsequence of T̄ ′ with a witness function t : {1, . . . , |T̄ |} → {1, . . . , |T̄ ′|} so that, for
every i, the i-th type factor of ū is a subword of the t(i)-th type factor of ū′, and they further
have the same last letter if T̄i is an end type of T̄ .

Proof. Suppose first that ū vs ū′ and let p : {1, . . . , |ū|} → {1, . . . , |ū′|} be a witness function.
Let T̄ and T̄ ′ be the type sequences of ū and ū′ and let ū = ū1 · · · ūn, ū′ = ū′1 · · · ū′m be the
type factorizations of ū and ū′. For each 1 ≤ i ≤ n, if v̄i = ū1 · · · ūi, then Ti = type(v̄i) =
type(ū′[1..p(|v̄i|)]), so T̄ is a subsequence of T̄ ′. Let t(i) be such that T ′t(i) = Ti. Since p is
type-preserving, the factor ūi is a subword of ū′t(i). Both have the same last letter if Ti is an
end type for ū, since p is end-preserving.

Conversely, suppose that Ti = T ′t(i) and that ūi v ū′t(i), with witness function pi (with
domain {1, . . . , |ūi|}). Let p be the function on {1, . . . , |ū|} obtained by ‘concatenating‘
the pi: p(|ū1 · · · ūi−1|+ h) = |ū′1 · · · ū′t(i)−1|+ pi(h). It is directly verified that p witnesses
ū vs ū′. J

Given a quasi-order � over a domain X, the �-upward closure of an element x ∈ X is
the set ↑�x = {x′ ∈ X : x � x′}. If S ⊆ X, we also let ↑�S =

⋃
x∈S ↑� x. Finally, S is

�-upward closed if S = ↑�S. Henceforward, we write ↑w and ↑S as short for ↑vw and ↑vS;
and we write ↑sw̄ and ↑sS as short for ↑vsw and ↑vsS.

A well-quasi-order (wqo) is a quasi-order (X,�) such that for every infinite sequence
(xi)i∈N of elements of X, there exist i < j so that xi � xj . A crucial observation is that, if
� is a wqo, then any set has a finite number of �-minimal elements.

It is a classical result (Higman’s lemma [10], see also [11, chap. 6]) that the subword
order on A∗ is a wqo. Unsurprisingly, the same holds for the synchronized subword order.

I Proposition 2. For every k, (SWk,vs) is a well-quasi-order.

D. Figueira, V. Ramanathan, and P. Weil 5

Proof. If (w̄n)n is an infinite sequence of elements of SWk, we can extract an infinite
subsequence of elements with the same type sequence T̄ = (T1, . . . , Tn) (since there are only
finitely many type sequences). Similarly, we can further extract an infinite subsequence
where, for each end type Ti, all the i-th type factors end with the same letter.

On this subsequence, vs coincides with the intersection of the subword order applied to
each of the n type factors. The result follows since the subword order is a wqo and wqo’s are
closed under intersection. J

Bounded subword and synchronized subword classes

It is well-known [20] that |Σ1[<]| is the set of languages of the form ↑S, where S is a set of
words (which can be assumed to be finite by the wqo property). Similarly, |BΣ1[<]| is the
set of finite unions of languages of the form ↑S \ ↑S ′, where S,S ′ are finite sets of words. For
h ∈ N, let ∼h be the equivalence relation on A∗ defined by w1 ∼h w2 if and only if w1 and
w2 have the same subwords of length at most h. Then we also know [13, 20] that |BΣ1[<]|
is the set of finite unions of ∼h-classes, also known as the set of piecewise testable languages.

We introduce analogous definitions for synchronized subwords. If h ∈ N, we let ≈h be
the equivalence relation on synchronized words, defined by w̄1 ≈h w̄2 if w̄1 and w̄2 have the
same set of synchronized subwords of length less than or equal to h. We let Vh be the set of
equivalence classes of ≈h and V̄h be its Boolean closure. Finally, we let V̄ =

⋃
h∈N V̄h.

3 Summary of results

We start with an overview of our main results. Their proofs are discussed in the next sections.
Theorem 3 refines the already mentioned 1969 result of Eilenberg et al. [9], which states that
the relations definable in ‖FO[σ]‖ are exactly the synchronous relations.

I Theorem 3. For any alphabet having at least two letters,

‖Σ1[σ]‖ (‖BΣ1[σ]‖ (‖Σ2[σ]‖ (‖BΣ2[σ]‖ (‖Σ3[σ]‖ = ‖FO[σ]‖ = Sync.

The characterizations of the Σ1[σ]- and the BΣ1[σ]-fragments are in terms of synchronized
subwords, rather than ordinary subwords as in the case of word languages.

I Theorem 4. For any relation R, R ∈ ‖Σ1[σ]‖ if and only if LR = ↑sLR.

I Theorem 5. For any relation R, R ∈ ‖BΣ1[σ]‖ if and only if LR ∈ V̄.

We note the following corollary of Theorem 4, which follows from the wqo property of
the synchronized subword order (Proposition 2).

I Corollary 6. For every formula ϕ ∈ Σ1[σ] with k free variables, there exists a finite set
S ⊆ SWk such that Lϕ = ↑sS.

In contrast, the characterizations of the Σ2[σ]- and the BΣ2[σ]-fragments reduce to the
corresponding logical fragments for word languages.

I Theorem 7. For any relation R, R ∈ ‖Σ2[σ]‖ if and only if LR ∈ |Σ2[<]|.

I Corollary 8. For any relation R, R ∈ ‖BΣ2[σ]‖ if and only if LR ∈ |BΣ2[<]|.

These characterizations can then be used to prove the decidability of the membership
problems for the different fragments of FO[σ].

6 The Quantifier Alternation Hierarchy of Synchronous Relations

I Theorem 9. Given a fragment F ∈ {Σ1[σ],BΣ1[σ],Σ2[σ],BΣ2[σ]} and a synchronous
relation R (say, an automaton accepting LR), it is decidable whether R ∈ ‖F‖.

I Remark 10. The decidability of membership in ‖Σ2[σ]‖ and ‖BΣ2[σ]‖ follows directly from
the decidability of |Σ2[<]| [15] and |BΣ2[<]| [16], see also [17].

4 Collapse of the alternation hierarchy

Here we prove Theorem 3. The equality ‖FO[σ]‖ = Sync was proved in [9]. The collapse
at level Σ3 is established by a folklore argument, in which the runs of a classical (1-tape)
automaton are first-order encoded using additional tapes.

Specifically, let R be a k-ary synchronous relation and let A be a DFA accepting the
language LR, with state set Q. We fix 0, 1, two distinct letters of A, which will be used to
encode the runs of A. If w̄ ∈ SWk and if q ∈ Q, we let uq be the word of length |w̄| which
carries letter 1 at each position i such that A is in state q after reading the i first letters of
w̄, and carries letter 0 everywhere else.

A Σ3[σ]-formula ϕ with free variables z1, . . . , zk defining R is obtained as follows. A
tuple of variables Y = (yq)q∈Q is quantified existentially, and the rest of the formula, in
BΣ2[σ], verifies that the words uq (q ∈ Q) assigned to these variables encode the run of
A as above. More precisely, each of these words must have length |w̄| (verified in Π2[σ])
and at every position, exactly one of them carries a 1 (verified in Π1[σ]). Moreover, the
first letter of each uq must be 1 exactly when q is the state reached from the initial state
when reading the tuple of first letters of the words assigned to z1, . . . , zk; the notion of first
letter, or rather of length 1 prefix is Π2[σ]-definable. Similarly, the last state must be one of
the final states of A, which is readily verified using (without any quantifier) the last letter
predicates `a. Finally, the compatibility of the uq’s with the transitions of the run of A on w̄
can be encoded with a Π2[σ]-formula. Thus Sync is contained in ‖Σ3[σ]‖

We now turn to the proof of the strictness of containments in Theorem 3. We observe
that a unary relation on A is nothing but a language in A∗. In that case, the notion of
type is trivial, and w vs w′ if and only if w v w′ and they have the same last letter. In
view of Theorems 4 and 5, it follows that a∗ is in ‖BΣ1[σ]‖ but not in ‖Σ1[σ]‖. The other
containments are strict because they are in the classical framework. This completes the proof
of Theorem 3.

5 Σ1[σ] and its boolean closure

We prove Theorems 4 and 5, and we exhibit a decision procedure for membership in (B)Σ1[σ].

5.1 Characterization of Σ1[σ]
The proof of Theorem 4 is a consequence of the following three properties:

if ϕ is a formula of Σ1[σ], then Lϕ is vs-upward closed (Lemma 12 below);
the relation defined by the vs-upward closure of any synchronized word is Σ1[σ]-definable
(Lemma 13 below);
vs is a well-quasi-ordering on SWk (Proposition 2 above).

We first show how these three properties imply Theorem 4.

Proof of Theorem 4. If R is Σ1[σ]-definable, then LR = ↑sLR by Lemma 12. Conversely,
suppose that LR = ↑sLR and let S be a vs-minimal subset of LR, so that ↑sS = ↑sLR. Since
vs is a wqo by Proposition 2, S is finite, say, S = {w̄1, . . . , w̄m}. By Lemma 13, for every

D. Figueira, V. Ramanathan, and P. Weil 7

1 ≤ i ≤ m, there exists a formula ϕi ∈ Σ1[σ] such that Lϕi = ↑sw̄i. Letting ϕ =
∨

1≤i≤m ϕi,
we see that Lϕ =

⋃
1≤i≤m ↑sw̄i = ↑sS = ↑sLR = LR, and hence R = ‖ϕ‖ ∈ ‖Σ1[σ]‖. J

Before we prove Lemma 12, we establish the following technical lemma.

I Lemma 11. Let w̄ = w1 ⊗ · · · ⊗ wk, and w̄′ = w′1 ⊗ · · · ⊗ w′k such that w̄ vs w̄′. For all
u ∈ A∗, there exists u′ ∈ A∗ such that w̄ ⊗ u vs w̄′ ⊗ u′.

Proof. Let p : {1, . . . , |w̄|} → {1, . . . , |w̄′|} be the witness function for w̄ vs w̄′. Let s1 =
maxi≤k |u u wi| and ` ≤ k be such that |u u w`| = s1. Finally, let s2 = min(|w̄|, |u|), and
u[s1+1..s2] = a1 · · · am. That is, u = (uuw`) (a1 · · · am) u[s2+1..|u|], with the understanding
that u[s2 + 1..|u|] = ε if |u| ≤ |w̄|.

For 1 ≤ i ≤ m, let ni = p(s1 + i)− p(s1)− 1, and nm+1 = |w̄′| − p(s2). Let also z be an
arbitrary letter of A. We then define

u′ = w′`[1..p(s1)] zn1 a1 · · · znm am z
nm+1 u[s2 + 1..|u|].

Example. Let w̄ = w1 ⊗ w2, w̄′ = w′1 ⊗ w′2 and u be defined as follows.

` = 2

w1 = a b a b b a
w2 = a b b a b
u = a b b b a a b

w0
1 = a a b b a b b b b a b a

w0
2 = a a b b b a b a b

u0 = a a b b b z z b a a z z b

s1 s2

1 2 3 4 5 6 7 p(1) p(2)p(3) p(4) p(5)p(6)

u u w2 u0 u w0
2

| {z } | {z }
n1 n4n2 = n3 = 0

p0(7)

Now let p′ be the function defined on {1, . . . ,max(|w̄|, |u|)}, which extends p by letting
p′(|w̄|+ j) = |w̄′|+ j for 1 ≤ j ≤ |u| − |w̄|. We show that p′ is a witness for w̄⊗ u vs w̄′⊗ u′.

By construction, p′ is increasing and (w̄⊗u)[i] = (w̄′⊗u′)[p′(i)] for every i ≤ max(|w̄|, |u|) =
|w̄⊗u|. We must now show that, for each such i, type((w̄⊗u)[1..i]) = type((w̄′⊗u)[1..p′(i)]),
and that p′(|u|) = |u′|. For convenience, we write w̄u for w̄ ⊗ u and w̄′u′ for w̄′ ⊗ u′.

If 1 ≤ i ≤ s1, then p′(i) = p(i), the u-component of each letter of w̄u[1..i] coincides
with its w`-component, and the u′-component of each letter of w̄′u′ [1..p(i)] coincides with
its w′`-component. It follows that type(w̄u[1..i]) is the equivalence relation generated
by type(w̄[1..i]) ∪ {(`, k + 1)}. Similarly, type(w̄′u′ [1..p(i)]) is the equivalence relation
generated by type(w̄′[1..p(i)]) ∪ {(`, k + 1)}. Since type(w̄[1..i]) = type(w̄′[1..p(i)]), we
have type(w̄u[1..i]) = type(w̄′u′ [1..p′(i)]). In particular, we have u[i] = w`[i] = w′`[p′(i)] =
u′[p′(i)]. If i = |u|, then s1 = i and, by definition, u′ = w′`[1..p(i)]. It follows that
|u′| = p(i) = p′(i).
If s1 < i ≤ s2, again we have p′(i) = p(i). Moreover, type(w̄u[1..i]) = type(w̄[1..i])∪ {(k+
1, k+1)} since the u-component differs from any other component on at least one position
less than or equal to i. For the same reason, type(w̄′u′ [1..p′(i)]) = type(w̄′[1..p(i)]) ∪ {(k +
1, k + 1)} = type(w̄u[1..i]). Also, by definition of the nj , we get u[i] = u′[p(i)] and, as
above, if i = |u|, we find that p(i) = p(|u′|).
If s2 < i ≤ |u|, then p′(i)− |w̄′| = i− |w̄| = |u[s2 + 1..i]|. In particular, p′(|u|) = |w̄′|+
|u[s2 + 1..i]| = |u′|. Moreover, type(w̄u[1..i]) = {(k + 1, k + 1)} = type(w̄′u′ [1..p′(i)]). J

I Lemma 12. If ϕ is a formula in Σ1[σ], then Lϕ is vs-upward closed.

Proof. First observe that if the synchronized words w̄ = w1⊗· · ·⊗wk and w̄′ = w′1⊗· · ·⊗w′k
satisfy w̄ vs w̄′, then, for all i, j ∈ {1, . . . , k}, we have:

wi � wj if and only if w′i � w′j ;
|wi| = |wj | if and only if |w′i| = |w′j |;

8 The Quantifier Alternation Hierarchy of Synchronous Relations

if |wi| = |w′i| > 0, then wi and w′i have the same last letter.
We now proceed by induction on the number of quantified variables of ϕ. If ϕ is quantifier-free,
these three properties show that Lϕ is vs-upward closed.

If ϕ is not quantifier-free, we have ϕ(y1, . . . , yk) = ∃x ψ(y1, . . . , yk, x) for some ψ ∈ Σ1[σ].
Let w̄, w̄′ ∈ SWk such that w̄ vs w̄′ and w̄ |= ϕ. Then there is u ∈ A∗ such that w̄ ⊗ u |= ψ.
By Lemma 11, there also exists u′ ∈ A∗ such that w̄⊗ u vs w̄′ ⊗ u′. Since ‖ψ‖ is vs-upward
closed by induction, w̄′ ⊗ u′ |= ψ, and hence w̄′ |= ϕ. This completes the proof. J

I Lemma 13. If w̄ is a synchronized word, then the relation defined by ↑sw̄ is Σ1[σ]-definable.

Proof. Let w̄ = w1 ⊗ · · · ⊗ wk ∈ SWk. We define a formula ϕ(z1, . . . , zk) (dependent on w̄)
whose synchronized language is ↑sw̄, using existential quantification on a set consisting of
one variable for each wi and one for each position within wi. Formally, let X = {xi,j : 1 ≤
i ≤ k, 1 ≤ j ≤ |wi|}. Then ϕ(z1, . . . , zk) = ∃X.ψ(z1, . . . , zk, X), where ψ is the conjunction
of the following formulæ for every i ∈ {1, . . . , k}:
(1) zi = xi,|wi|;
(2) for every 1 ≤ j < |wi|: xi,j ≺ xi,j+1;
(3) for every 1 ≤ j ≤ |wi|: `wi[j](xi,j);
(4) for every 1 ≤ i′ ≤ k and j ≤ min{|wi|, |wi′ |}: eq(xi,j , xi′,j);
(5) for every 1 ≤ i′ ≤ k and j ≤ min{|wi|, |wi′ |} such that wi[1..j] = wi′ [1..j]: xi,j = xi′,j .

Let w̄′ = w′1 ⊗ · · · ⊗ w′k. First assume that w̄′ ∈ ↑sw̄: we want to show that w̄′ ∈ Lϕ.
Let p be a witness function for w̄ vs w̄′. For each 1 ≤ i ≤ k and 1 ≤ j ≤ |wi|, let the
word w′i[1..p(j)] be assigned to variable xi,j . It is readily verified that (w′1, . . . , w′k) satisfies
ϕ(z1, . . . , zk) and hence w̄ ∈ ‖ϕ‖.

Conversely, suppose that w̄′ ∈ Lϕ. There exists an assignment α for the variables in ϕ
such that (w̄, α) � ϕ. We define a function p : {1, . . . , |w̄|} → {1, . . . , |w̄′|} as follows.

If 1 ≤ j ≤ |w̄|, there exists 1 ≤ i ≤ k such that j ≤ |wi|, and we let p(j) = |α(xi,j)|.
Condition (4) in the definition of ϕ shows that p is well-defined. Condition (2) shows that it
is increasing and Condition (3) shows that w̄[j] = w̄′[p(j)], so that p is a witness function
for w̄ v w̄′. Finally, Conditions (5) and (1) show that p is type- and end-preserving, thus
establishing that it is a witness for w̄ vs w̄′. J

5.2 Characterization of BΣ1[σ]
The following lemma establishes one of the implications of Theorem 5.

I Lemma 14. For every ϕ ∈ BΣ1[σ], Lϕ ∈ V̄.

Proof. It is a folklore result that ϕ is logically equivalent to a finite disjunction
∨n
i=1 ψi ∧ψ′i,

where ψi ∈ Σ1[σ] and ψ′i ∈ Π1[σ] for every i. By Corollary 6, there exist finite sets Si
and S ′i (1 ≤ i ≤ n) of synchronized words such that Lψi

= ↑sSi and L¬ψ′
i

= ↑sS ′i. Let
S =

⋃n
i=1 Si ∪ S ′i and let h = max{|ū| : ū ∈ S}.

If w̄, w̄′ are synchronized words such that w̄ ≈h w̄′, then w̄ and w̄′ have the same
synchronized subwords of length at most h, and hence the same synchronized subwords in
each Si and each S ′i (since these sets contain only words of length at most h). If w̄ ∈ Lϕ,
then for some i, w̄ contains a synchronized subword in Si and none in S ′i. The same holds
therefore for w̄′, and w̄′ ∈ Lϕi∧ψ′i . Thus w̄

′ ∈ Lϕ, which completes the proof. J

To establish the converse implication, we consider h ∈ N and L ∈ V̄h, so that L is a finite
union of ≈h-classes [w̄1]h, . . . , [w̄n]h, and we show that L = Lϕ for some ϕ ∈ BΣ1[σ].

D. Figueira, V. Ramanathan, and P. Weil 9

For each 1 ≤ i ≤ n, let Si be the set of synchronized subwords of w̄i of length at most h,
and S ′i be the complement of Si within the set of synchronized words of length at most h.
Both are finite and, by Lemma 13, there exist Σ1[σ]-formulæ ψi and ψ′i such that Lψi

= ↑sSi
and Lψ′

i
= ↑sS ′i. Then, for each 1 ≤ i ≤ n, [w̄i]h = ↑sSi \ ↑sS ′i = Lψi∧¬ψ′i and hence, L = Lϕ

with ϕ =
∨
i ψi ∧ ¬ψ′i. This completes the proof of Theorem 5, since ϕ ∈ BΣ1[σ].

5.3 Deciding membership in ‖Σ1[σ]‖
In view of Theorem 4 and of the properties of regular languages (namely the decidability of
equality), membership decidability for ‖Σ1[σ]‖ reduces to proving the following proposition.

I Proposition 15. Given a regular language L ⊆ SWk, its upward-closure ↑sL is regular
and computable.

We begin with some preliminary definitions, which will also be used in the next section. For
S ⊆ SWk, let ↑` S = {w̄ ∈ SWk : ∃ū ∈ S ū v w̄ and ū, w̄ have the same last letter}. Let A
be a deterministic automaton accepting L, with state set Q and initial state q0. For p, r ∈ Q,
we let A(p, r) be the same as A, with p as initial state and {r} as final states.

We say that a state sequence q̄ = (q1, . . . , qn) ∈ Qn is T̄ -compatible in A if q1 is reachable
from q0 by reading a word in A−,T1A∗T1

, q2 is reachable from q1 by reading a word in
AT1,T2A∗T2

, etc. In addition, we require qn to be a final state of A. Observe that, given T̄ ,
the set of T̄ -compatible state sequences is finite and computable.

If q̄ is T̄ -compatible, we let L(T̄ , q̄, i) be the intersection of the language accepted
by A(qi−1, qi) with ATi−1,Ti

A∗Ti
(A−,T1A∗T1

if i = 1). In particular, if w̄ ∈ SWk and
type-seq(w̄) = T̄ , then w̄ ∈ L if and only if there exists a T̄ -compatible sequence q̄ such that
w̄ ∈ L(T̄ , q̄, 1) · · ·L(T̄ , q̄, n) (uniquely determined, due to determinism). Note that the n
factors of w̄ thus determined are its type factors. In particular, L =

⋃
L(T̄ , q̄, 1) · · ·L(T̄ , q̄, n),

where the union runs over all type sequences T̄ and all T̄ -compatible state sequences q̄ of A.
This is a finite union, all of whose terms are explicitly computable.

Proof of Proposition 15. For L, A, T̄ , q̄, i as above, let L̂(T̄ , q̄, i) be L̂(T̄ , q̄, i) = ↑L(T̄ , q̄, i)∩
A∗Ti

if Ti is not an end type or L̂(T̄ , q̄, i) = ↑`L(T̄ , q̄, i) ∩ A∗Ti
otherwise. We now show that

↑sL =
⋃
L̂(T̄ , q̄, 1) · · · L̂(T̄ , q̄, n).

Since the operation L(T̄ , q̄, i) 7→ L̂(T̄ , q̄, i) is computable, this implies Proposition 15.
The proof is essentially an application of Lemma 1. Suppose first that w̄ ∈ ↑sL, that is,

there exists ū ∈ L such that ū vs w̄. Let T̄ = type-seq(ū) = (T1, . . . , Tn) and let q̄ be the
T̄ -compatible state sequence determined by reading ū in A. By Lemma 1, T̄ v type-seq(w̄),
with a witness function t so that, for each 1 ≤ i ≤ n, the i-th type factor ūi of ū is a subword
of w̄t(i), the t(i)-th type factor of w̄ (with an additional last letter condition if Ti is an end
type). Therefore ūi is also a subword of w̄t(i−1)+1 · · · w̄t(i), with the same last letter condition
in the case of end types. Since ūi ∈ L(T̄ , q̄, i), this means that w̄t(i−1)+1 · · · w̄t(i) ∈ L̂(T̄ , q̄, i)
and hence w̄ ∈ L̂(T̄ , q̄, 1) · · · L̂(T̄ , q̄, n).

Conversely, suppose that w̄ ∈ L̂(T̄ , q̄, 1) · · · L̂(T̄ , q̄, n) for some type sequence T̄ and T̄ -
compatible state sequence q̄. For each 1 ≤ i ≤ n, let ūi ∈ L(T̄ , q̄, i) such that ūi v w̄i, with
witness function pi (and so that pi(|ui|) = |wi| if Ti is an end type). By construction of the
L(T̄ , q̄, i)’s, the word ū = ū1 · · · ūn is in L, with type factors ū1, . . . , ūn. Moreover ū vs w̄ for
the witness function obtained by ‘concatenating’ the functions pi: p(i) = p1(i) for i ≤ |ū1|,
and p(|ū1 · · · ūi−1|+ h) = |w̄1 · · · w̄i−1|+ pi(h) for every 1 < i ≤ n and 1 ≤ h ≤ |ūi|. J

10 The Quantifier Alternation Hierarchy of Synchronous Relations

5.4 Deciding membership in ‖BΣ1[σ]‖
As a first step, we note the following.

I Lemma 16. If T̄ is a type sequence, then K(T̄) is BΣ1[σ]-definable.

Proof. Let ST̄ be the set of vs-minimal elements of K(T̄), a finite set by Proposition 2. Then
K(T̄) ⊆ ↑sST̄ . Moreover, if ū ∈ ↑sST̄ , then T̄ v type-seq(ū) by Lemma 1. It follows that
K(T̄) = ↑sST̄ \

⋃
{↑sST̄ ′ : T̄ v T̄ ′, T̄ 6= T̄ ′}. The statement then follows from Theorem 4. J

Since there are finitely many type sequences T̄ and each K(T̄) is computable, membership
of a language L in ‖BΣ1[σ]‖ is equivalent to the membership of each L ∩K(T̄) in ‖BΣ1[σ]‖.

We now fix a type sequence T̄ = (T1, . . . , Tn). Our next step is a technical characterization
of ‖BΣ1[σ]‖ for languages within K(T̄). For each 1 ≤ i ≤ n, let Fi = BΣ1[<,max](A∗Ti

) if
Ti is an end type in T̄ , and Fi = BΣ1[<](A∗Ti

) otherwise. Let also G1 = {A−,T1A∗T1
∩H : H ∈

|F1|} and, for i ≥ 2, Gi = {ATi−1,Ti
A∗Ti
∩H : H ∈ |Fi|}.

I Lemma 17. A regular language L ⊆ K(T̄) is in ‖BΣ1[σ]‖ if and only if, for each T̄ -
compatible state sequence q̄, L(T̄ , q̄, i) ∈ Gi for each 1 ≤ i ≤ n.

Proof. For convenience, we write L(q̄, i) for L(T̄ , q̄, i). First assume that every L(q̄, i) ∈
Gi, that is, there exists a BΣ1[<]-definable language H(q̄, i) ⊆ A∗Ti

such that L(q̄, i) =
ATi−1,TiA∗Ti

∩H(q̄, i) (or, if i = 1, L(q̄, 1) = A−,T1A∗T1
∩H(q̄, 1)). Then H(q̄, i) is the finite

union of languages of the form H(q̄, i, j) = ↑S(q̄, i, j) \ ↑S′(q̄, i, j) (or ↑`S(q̄, i, j) \ ↑`S′(q̄, i, j)
if Ti is an end type), for 1 ≤ j ≤ nq̄,i, where the S(q̄, i, j)’s and S′(q̄, i, j)’s are finite
sets. Then L(q̄, i) is the union of the L(q̄, i, j) = ATi−1,TiA∗Ti

∩ H(q̄, i, j) (or, if i = 1,
L(q̄, 1, j) = A−,T1A∗T1

∩ H(q̄, 1, j)). If ̄ = (j1, . . . , jn) is such that 1 ≤ ji ≤ nq̄,i for each
1 ≤ i ≤ n, let L(q̄, ̄) = L(q̄, 1, j1) · · ·L(q̄, n, jn). Then L is the (finite) union of the L(q̄, ̄).
Now let
S(q̄, ̄) = {w̄ ∈ K(T̄) : for all i ∈ {1, . . . , n}, type-factori(w̄) ∈ S(q̄, i, ji)} and
S ′(q̄, ̄) = {w̄ ∈ K(T̄) : for some i ∈ {1, . . . , n}, type-factori(w̄) ∈ S′(q̄, i, ji)}.

Then, L(q̄, ̄) = K(T̄) ∩ (↑S(q̄, ̄) \ ↑S ′(q̄, ̄)) ∈ ‖BΣ1[σ]‖. It follows that L ∈ ‖BΣ1[σ]‖.
Conversely, suppose that for some q̄ and some i, L(q̄, i) /∈ Gi. In view of Theorem 5, we

want to show that L is not ≈r-saturated for any r ≥ 1. Let r be now fixed. We only need to
exhibit words w̄ ∈ L and w̄′ /∈ L such that w̄ ≈r w̄′.

Let ∼ir be the relation on A∗Ti
given by ū ∼ir v̄ if ū ∼r v̄ and, either the first letters

of ū and v̄ are both in ATi−1 or neither is. By means of contradiction, suppose L(q̄, i)
is the finite union of the ∼ir classes [ū1], . . . , [ūm]. Then each ūj ∈ ATi−1,Ti

A∗Ti
and, by

definition of ∼ir, [ūj] = ATi−1,Ti
A∗Ti
∩ [[ūj]], where [[ūj]] denotes the ∼r-class of ūj . Therefore

L(q̄, i) = ATi−1,Ti
A∗Ti
∩M , where M is the union of the [[ūj]]’s. Since M ∈ |BΣ1[<](ATi

)|,
this shows that L(q̄, i) ∈ Gi, a contradiction. (In the case where Ti is an end type, we need
to reason with the intersection of ∼ir with the same-last-letter equivalence.)

Now, since L(q̄, i) is not ∼ir-saturated, there exist words ūi, ū′i ∈ ATi−1,Ti
A∗Ti

such that
ūi ∼r ū′i (and if Ti is an end type they have the same last letter) and exactly one of them is in
L(q̄, i). Say ūi ∈ L(q̄, i), so that ūi ∈ L(A(qi−1, qi)) and ū′i ∈ L(A(qi−1, q

′
i)) for some qi 6= q′i.

Assuming wlog that A is minimal for L, there exists a word ȳ and states p, p′ of which exactly
one is accepting, such that ȳ ∈ L(A(qi, p)) ∩ L(A(q′i, p′)). Let x̄ ∈ L(q̄, 1) · · ·L(q̄, i − 1),
w̄ = x̄ūiȳ and w̄′ = x̄ū′iȳ. Then exactly one of w̄, w̄′ is in L. Since L ⊆ K(T̄), this implies
that ȳ ∈ A∗Ti

ATi,Ti+1A∗Ti+1
· · ·ATn−1,TnA∗Tn

(A∗Tn
if i = n). Consequently, w̄ and w̄′ have

the same type sequence T̄ , with the same type factors except for the i-th one. Moreover,
type-factori(w̄) = ūiū

′ and type-factori(w̄′) = ū′iū
′, where ū′ is the longest A∗Ti

prefix of ū.
Since ūi ∼r ū′i, ūiū′ ∼r ū′iū′. Then w̄ ≈r w̄′ is a consequence of Lemma 1. J

D. Figueira, V. Ramanathan, and P. Weil 11

In view of Lemma 17 and since each L(T̄ , q̄, i) is computable (Section 5.3), the decidability
of ‖BΣ1[σ]‖ will be established if we show that membership in each Gi is decidable, which is
the object of the following lemma.

I Lemma 18. Let A be an alphabet and B ⊆ A. Then, it is decidable whether a regular
language is in WB = {BA∗ ∩ L : L ∈ BΣ1[<](A)}.

Proof. The result follows directly from the following characterization of WB, which we
prove below: a regular language K ∈ WB if and only if K ⊆ BA∗ and for every b ∈ B,
b−1K = {u ∈ A∗ : bu ∈ K} ∈ |BΣ1[<](A)|.

If K ∈ WB, then K = BA∗ ∩ L for some L ∈ |BΣ1[<](A)|. Therefore, K ⊆ BA∗ and,
for every b ∈ B, b−1K = b−1L ∈ |BΣ1[<]| (since BΣ1[<] is closed under left quotients).

Conversely, suppose that each b−1K (b ∈ B) is a BΣ1[<]-languages. Then there exists r
such that each of these languages is ∼r-saturated. Say that u ∼Br+1 v if u ∼r+1 v and, either
u, v have the same first letter in B or both their first letters are in A \ B. Suppose there
exist words u, v such that u ∼Br+1 v and u ∈ K. Then u ∈ BA∗ and v has same first letter
as u, say b, so that u = bu′ and v = bv′. In particular, u′ ∼r v′. Since u′ ∈ b−1K and b−1K

is ∼r-saturated, it follows that v′ ∈ b−1K and hence v ∈ K. Therefore, K is the union of
the ∼Br+1-classes of a finite set of words u1, . . . , un and if L is the union of the ∼r+1-classes
of the same words, then L ∈ |BΣ1[<]| and L ∩BA∗ = K. That is, K ∈ WB . J

6 Σ2[σ] and its boolean closure

For any alphabet A, an A-monomial is a language of the form A∗1a1A
∗
2a2 · · ·A∗nanA∗n+1,

where A1, A2, . . . , An+1 ⊆ A and a1, a2, . . . , an ∈ A. An A-polynomial is a finite union of
A-monomials.
I Remark 19. It is known [14] that Σ2[<](A) sentences define exactly the set of A-polynomials.
A non-trivial consequence is that the set of A-polynomials is closed under intersection.

Not every Ak⊥-polynomial respects the structural properties (on the positions of ⊥) of
synchronized words. For example (a,⊥)∗(b, b)(a, a)∗ is a polynomial over Ak⊥ for A = {a, b}
and k = 2 but it does not define a relation. In order to characterize subsets of SWk which
are polynomials, we introduce the notion of ⊥-consistency.

If ā = a1 ⊗ · · · ⊗ ak is a synchronized letter in Ak⊥, we denote by τ(ā) the set {i ∈
{1, . . . , k} : ai = ⊥}. A non-empty subset Ā ⊆ Ak⊥ is said to be ⊥-consistent if all the
τ(ā) (ā ∈ Ā) take the same value. If that is the case, we let τ(Ā) = τ(ā) (for any ā ∈ Ā).
Finally we say that a monomial Ā∗0ā1Ā

∗
1 . . . ānĀ

∗
n (over Ak⊥) is ⊥-consistent if and only if

every non-empty Āi is ⊥-consistent and the sequence τ(Ā0), τ(ā1), τ(Ā1), . . . , τ(ān), τ(Ān)
is ⊆-increasing (where the term τ(Āi) is skipped if Āi = ∅).

We denote by P̄ the set of all ⊥-consistent polynomials, that is, of finite unions of
⊥-consistent monomials. The following statement follows directly from this definition.

I Lemma 20. Let L = Ā∗0ā1Ā
∗
1 . . . ānĀ

∗
n be an Ak⊥-monomial. Then L ⊆ SWk if and only

if L ∈ P̄. Moreover, if L is ⊥-consistent and S ⊆ {1, . . . , k}, then πS(L) is a ⊥-consistent
monomial as well.

We can now proceed with the proof of Theorem 7. We first show that a Σ2[σ]-
definable k-ary relation R satisfies LR ∈ P̄. Indeed, without loss of generality, R is
defined by a Σ2[σ]-formula ϕ with free variables S = {z1, . . . , zk}, of the form ϕ =
∃x1 . . . ∃xn ψ(x1, . . . , xn, z1, . . . , zk), with ψ ∈ Π1[σ]. In particular, ‖ψ‖ is a (n + k)-ary
relation and R = πS(‖ψ‖). Lemmas 20 and 21 therefore establish that LR ∈ P̄.

12 The Quantifier Alternation Hierarchy of Synchronous Relations

I Lemma 21. If R ∈ ‖Π1[σ]‖ then LR ∈ P̄.

Proof. Since R ∈ ‖Π1[σ]‖, it is the complement of a Σ1[σ]-definable relation. By Corollary 6,
we have LR = SWk \ ↑sS for some finite set S. Since P̄ is closed under intersection (see
Remark 19), we only need to show that SWk \ ↑sw̄ ∈ P̄ for a single synchronized word w̄.

Let T̄ = (T1, . . . , Tn) = type-seq(w̄). By Lemma 1, we see that ū ∈ LR if and only either
(1) T̄ 6v type-seq(ū), or (2) T̄ v type-seq(ū), with witness function t and w̄i 6v ūt(i) for some
1 ≤ i ≤ n or, (3) again T̄ v type-seq(ū) with witness t, where w̄i and ūt(i) do not have the
same last letter for some i such that Ti is an end-type for w̄.

The first condition means that ū ∈
⋃
K(T̄ ′), where the union runs over type sequences T̄ ′

such that T̄ 6v T̄ ′. We saw in Section 2 that this union is in P̄. The second condition places
ū in Ci = A−,T1A∗T1

· · ·ATi−2,Ti−1A∗Ti−1
Li ATi,Ti+1A∗Ti+1

· · ·ATn−1,Tn
A∗Tn

, where Li is the set
of words in ATi−1Ti

A∗Ti
that do not have w̄i as a subword. Then Li is Π1[<]-, and hence

Σ2[<]-definable. As a consequence, Li ∈ P̄ and, by associativity, Ci ∈ P̄. Finally, the third
condition places ū in C ′i = A−,T1A∗T1

· · ·ATi−2,Ti−1A∗Ti−1
L′i ATi,Ti+1A∗Ti+1

· · ·ATn−1,Tn
A∗Tn

,
where L′i = (ATi \ATi−1)A∗Ti

∩A∗Ti
Bi, with Bi the set of letters of ATi different from the last

letter of w̄i. Here too, L′i ∈ P̄ and hence C ′i ∈ P̄. J

The following lemma then concludes the proof of Theorem 7.

I Lemma 22. If R is a relation such that LR is a ⊥-consistent polynomial, then R ∈ ‖Σ2[σ]‖.

Proof. By definition of P̄ , the proof reduces to the case where LR is a ⊥-consistent monomial,
say LR = Ā∗0ā1Ā

∗
1 · · · ānĀ∗n. We now construct a Σ2[σ]-formula ϕ, with set of free variables

Z = {z1, . . . , zk}, which defines R.
Let w1, . . . , wk ∈ A∗ be such that w̄ = w1 ⊗ · · · ⊗ wk = ā1 · · · ān (they exist due to

⊥-consistency). Let X = {xi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ |wi|} and Y = {y1, . . . , yk} be sets of
variables. We first let ψ1(X,Z) be the conjunction of the following formulæ for 1 ≤ i ≤ k: (1)
for every 1 ≤ j < |wi|: xi,j ≺ xi,j+1; (2) xi,|wi| � zi; (3) for every 1 ≤ j ≤ |wi|: `wi[j](xi,j);
(4) for every 1 ≤ i′ ≤ k and j ≤ min{|wi|, |wi′ |}: eq(xi,j , xi′,j). Notice that ū ∈ SWk satisfies
∃X ψ1(X,Z) if and only if w̄ is a subword of x̄ with witness function given by p(j) = |xh,j |
for any 1 ≤ h ≤ k.

The variables in Y are meant to represent the k components of a prefix of ū, which is
expressed by ψ2(X,Y), the disjunction over all subsets H of {1, . . . , k} (H represents the
components of ū which are shorter than that prefix) of the formulæ∧

h∈H

(yh � zh ∧ eq(yh, zh)) ∧
∧

h,i6∈H

(yh ≺ zh) ∧ eq(yh, yi)) ∧
∧

h∈H,i6∈H

∃r(r � yi ∧ eq(r, yh)).

Next, for ā ∈ Ak⊥ and Ā ⊆ Ak⊥, and recalling that τ(ā) = {h : πh(ā) = ⊥}, we define
ψā(Y) =

∧
h/∈τ(ā) `πh(ā)(yh) and ψĀ(Y) =

∨
ā∈Ā ψā(Y). Once ȳ is a prefix of ū and w̄ is

a subword of ū with witness function p, if for some 1 ≤ j ≤ n, we have |ȳ| = p(j), then
ȳ satisfies ψāj

. We now only need to verify that if |ȳ| sits between p(j) and p(j + 1) (for
some 0 ≤ j ≤ n), then ȳ satisfies ψĀj

. This is done by the formula ψ3(X,Y) =
∧n
j=0 χj ,

where χ0(X,Y) =
(∧

h/∈τ(Ā0) yh ≺ xh,1
)
→ ψĀ0

(Y), χn(X,Y) =
(∧

h/∈τ(Ān) xh,n ≺ yh
)
→

ψĀn
(Y), and for every 0 < j < n,

χj(X,Y) =

 ∧
h/∈τ(Āj)

(xh,j ≺ yh) ∧ (yh ≺ xh,j+1)

→ ψĀj
(Y).

Finally, R is defined by the Σ2[σ] formula ϕ(Z) = ∃Xψ1(X,Z) ∧ ∀Y (ψ2(X,Y) ∧ ψ3(X,Y)).
J

D. Figueira, V. Ramanathan, and P. Weil 13

References
1 Parosh Aziz Abdulla, Bengt Jonnson, Marcus Nilsson, and Mayank Saksena. A survey of

regular model checking. In International Conference on Concurrency Theory (CONCUR),
pages 35–48, 2003.

2 Pablo Barceló, Leonid Libkin, Anthony Widjaja Lin, and Peter T. Wood. Expressive languages
for path queries over graph-structured data. ACM Transactions on Database Systems (TODS),
37(4):31, 2012. doi:10.1145/2389241.2389250.

3 Michael Benedikt, Leonid Libkin, Thomas Schwentick, and Luc Segoufin. Definable relations
and first-order query languages over strings. Journal of the ACM, 50(5):694–751, 2003.
doi:10.1145/876638.876642.

4 Jean Berstel. Transductions and Context-Free Languages. B. G. Teubner, 1979.
5 Achim Blumensath and Erich Grädel. Automatic structures. In Annual IEEE Symposium

on Logic in Computer Science (LICS), pages 51–62. IEEE Computer Society Press, 2000.
doi:10.1109/LICS.2000.855755.

6 Ahmed Bouajjani, Bengt Jonsson, Marcus Nilsson, and Tayssir Touili. Regular model checking.
In International Conference on Computer Aided Verification (CAV), pages 403–418. Springer,
2000.

7 J. Richard Büchi. On a decision method in restricted second-order arithmetic. In Proc. Int.
Congr. for Logic, Methodology, and Philosophy of Science, pages 1–11. Stanford Univ. Press,
1962.

8 Christian Choffrut. Relations over words and logic: A chronology. Bulletin of the EATCS,
89:159–163, 2006.

9 Samuel Eilenberg, Calvin C. Elgot, and John C. Shepherdson. Sets recognized by n-tape
automata. Journal of Algebra, 13(4):447–464, 1969. doi:10.1016/0021-8693(69)90107-0.

10 Graham Higman. Ordering by divisibility in abstract algebras. Proceedings of the London
Mathematical Society (3), 2(7):326–336, 1952. doi:10.1112/plms/s3-2.1.326.

11 M. Lothaire. Combinatorics on Words, volume 17 of Encyclopedia of Mathematics and its
Applications. Addison-Wesley, Reading, MA, 1983. Reprinted by Cambridge University Press,
1997.

12 Robert McNaughton and Seymour Papert. Counter-Free Automata. The MIT Press, Cambridge,
Mass., 1971.

13 Jean-Éric Pin. Varieties of Formal Languages. North Oxford Academic, London, 1986.
14 Jean-Éric Pin and Howard Straubing. Monoids of upper triangular matrices. In Colloquia

Mathematica Societatis Janos Bolyai, pages 259–272, 1981.
15 Jean-Éric Pin and Pascal Weil. Polynomial closure and unambiguous product. Theory of

Computing Systems, 30(4):383–422, 1997.
16 Thomas Place and Marc Zeitoun. Going higher in the first-order quantifier alternation hierarchy

on words. In International Colloquium on Automata, Languages and Programming (ICALP),
pages 342–353, 2014. doi:10.1007/978-3-662-43951-7_29.

17 Thomas Place and Marc Zeitoun. The tale of the quantifier alternation hierarchy of first-order
logic over words. SIGLOG News, 2(3):4–17, 2015. doi:10.1145/2815493.2815495.

18 Thomas Place and Marc Zeitoun. Concatenation hierarchies: New bottle, old wine. In
International Computer Science Symposium in Russia (CSR), pages 25–37, 2017. doi:10.
1007/978-3-319-58747-9_5.

19 Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Information
and Control, 8:190–194, 1965.

20 Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser,
Boston, Basel and Berlin, 1994.

21 Howard Straubing and Pascal Weil. An introduction to automata theory. In Deepak D’Souza
and Priti Shankar, editors, Modern applications of automata theory, volume 2 of I.I.Sc.
Monographs, pages 3–43. World Scientific, 2012.

http://dx.doi.org/10.1145/2389241.2389250
http://dx.doi.org/10.1145/876638.876642
http://dx.doi.org/10.1109/LICS.2000.855755
http://dx.doi.org/10.1016/0021-8693(69)90107-0
http://dx.doi.org/10.1112/plms/s3-2.1.326
http://dx.doi.org/10.1007/978-3-662-43951-7_29
http://dx.doi.org/10.1145/2815493.2815495
http://dx.doi.org/10.1007/978-3-319-58747-9_5
http://dx.doi.org/10.1007/978-3-319-58747-9_5

	Introduction
	Preliminaries
	Summary of results
	Collapse of the alternation hierarchy
	1[] and its boolean closure
	Characterization of 1[]
	Characterization of B1[]
	Deciding membership in "026B30D 1[]"026B30D
	Deciding membership in "026B30D B1[]"026B30D

	2[] and its boolean closure

