

Hybrid MBE-CBE Growth and Characterization of Al_{0.48}In_{0.52}As on InP(100) for avalanche photodiode applications

Thierno M. Diallo, PhD student

A.B.P. Mbeunmi, M. El-Gahouchi, M. Jellite, R. Arès, S. Fafard, A. Boucherif.

thierno.mamoudou.diallo@usherbrooke.ca

Motivation

Al_{0.48}In_{0.52}As as a promising APD multiplication layer

Advantages over InP

S. Xie doctor of philosophy University of Sheffield (2012).

Al_{0.48}In_{0.52}As as a promising APD multiplication layer

Advantages over InP

D.S.G.Ong et al. 19th IPRM (2007)

Better thermal stability for Vbr Device temperature control not critical

thierno.mamoudou.diallo@usherbrooke.ca

Al_{0.48}In_{0.52}As as a promising APD multiplication layer

Challenges on APD

- Low noise
- ✤ High sensitivity
- ✤ High gain
- ✤ High GBP

Advantages of Al_{0,48}In_{0,52}As

- ✤ Large band gap
- ✤ Low excess noise
- High ionization ratio
- ✤ Good Thermal stability

Challenges on AlInAs growth

- ✤ Residual background doping (GS)
- $\clubsuit \quad \text{Clustering effect (SS)}$
- ✤ Lattice matching control
- ✤ Control of cations migration (SS)

Need of a versatile and adapted growth approach

Our approach: Hybrid MBE-CBE

Advantages

- * Low risk of contamination of Al based compounds
- Improve uniformity
- Reactor under UHV

Experimental results

7

AllnAs growth by standard CBE using TEAI

Growth condition

- TMIn, TEAI and cracked AsH₃.
- Growth $T = 500^{\circ}C$
- Growth rate = 0.61 μ m\h

Nomarski

Epitaxial structure

Poor surface quality
Poor crystalline quality
High residual background

Growth of hybrid AllnAs Using In(CH₃)₃, Solid AI and thermally cracked AsH₃

AllnAs growth: Sources calibration

TMIn Flux Calibration

✤ T-kcell= 1050°C, ✤ TMIn= 0.56 Torr

Intrinsic AllnAs growth by hybrid MBE-CBE

Growth conditions

Sample ID	TMIn (torr)	Cracked AsH ₃ (torr - °C)		T AI K-cell (°C)	Growth T (°C)	Growth rate (µm/h)
А	0,562	10	950	1050	500	0,34
В	0,556					
С	0,562					
D	0,562					

Epitaxial structure

RHEED pattern

- Layer by layer growth mode
- Single crystal growth
- Good crystalline quality

Hybrid AllnAs growth: morphology

Homogenous surface
No visible defects

Smooth surface

ន

UNIVERSITÉ DE SHERBROOKE

AllnAs growth: crystalline and structural quality

Sample	mismatch	Composition %	Thickness (μm)
С	127 ppm	48 Al 52 In	0.3

High structural quality
High crystalline quality
Sharp interfaces

Thick AllnAs growth: HRXRD, HE and PL

XRD)	μm	(Arcs)
7.3 Al 52.7 In	1.6	42
osition % PL	Thickness µm	FWHM (meV)
.536 eV 49 Al 51 In		31
	7.3 Al 52.7 In 50 osition % PL 49 Al 51 In	ARD)µm7.3 Al1.652.7 InThicknessposition %ThicknessPLµm49 Al1.651 In1.6

UNIVERSITÉ DE SHERBROOKE

AllnAs growth: growth parameters effects

thierno.mamoudou.diallo@usherbrooke.ca

Conclusion

- Hybrid OM-solid source epi growth has been demonstrated.
- Growth of good quality AI based compounds and others III-V materials.
- Promising approach for the growth of III-V materials based devices.

Mismatch	RMS	Eg	FWHM PL at 20K	Carrier density
(ppm)	(nm)	(eV)	(meV)	(cm ⁻³)
140	0,2	1,51	8	7E14

Next steps:

Optimisation of optical and electrical properties of AllnAs

Growth and fabrication of an AllnAs based APD

Thanks for your attention!

Questions: thierno.mamoudou.diallo@usherbrooke.ca

17