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Abstract
Problems of uncertainty quantification usually involve large number realiza-

tions of a stationary spatial Gaussian random field over a regular grid points.
This paper analyzes the convergence of the continuous spectral method for gen-
erating a stationary Gaussian random field. The continuous spectral method
is the classical approach which discretizes the spectral representation integral
to construct an approximation of the field within the Fast Fourier Transform
algorithm. The method can be used as an alternative of circulant embedding
approach when the discrete covariance matrix is not valid. We demonstrate
that the method is computationally attractive when the spectral is a smooth
function and decreases rapidly to zero at infinity. In such case, The spectral
method is a very versatile approach for generating Gaussian stochastic fields.
A simulation results are realized using pseudo-random data based on Monte-
Carlo simulations to illustrate the theoretical bound of the method regarding
the regularity of the random field and its spectral density.

key words: Gaussian random field, Spectral simulation, spectral density,
Fast Fourier Transform, Monte-Carlo simulation, Weak and strong error.

1 Introduction

In recent years, Problems of uncertainty quantification has attracted a lot of
consideration in the scientific community. The common approach to deal with such
uncertainties is to adopt a probabilistic framework by modelling parameters in the
partial differential equations (PDE) with random fields. The computational aim is
to estimate quantities of interest which are a functional of the outputs (solutions of
PDE) of the model. (For example, moment and variance of the response of the model,
higher order moments, probability of failure, or other statistics of the outputs).

In the material and structural engineering field, several material and geometrical
properties (e.g., cover depth, diffusion coefficient, concrete strength, chloride external
concentration, etc.) are expected to show considerable spatial uncertainty as a result
of the effect of environmental aggressions, randomness of material composition and
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the inconsistency of the workmanship [20, 16, 21]. For example, in the transport
equation, the diffusion coefficient is classically modelled by a second-order stationary
random function, to model highly spatial variations and to consider the limited
knowledge of the material characteristics. A reasonable application is to model this
coefficient as a log-normal distribution κ = eG, where G is a Gaussian random
field (GRF) defined by a suitable spectral density or a covariance model. The log-
normal random field with exponential covariance is widely used in hydrogeology
and groundwater flow simulations, to model the hydraulic conductivity (see, e.g.,
[2, 11, 14] and the references there). For such problems, Monte Carlo simulations
are the most widely used approach to quantify the uncertainty in the output of
the problems described by a partial differential equation. This method requires
the generation of numerous realizations of the field G on a equidistant positions
of the physical space. Such realizations of the Gaussian field can be performed
by different approaches. The classical one to generate a stationary GRF is based on
Cholesky factorization or the spectral decomposition (Discrete Karhunen Loève series
expansion) of the covariance matrix. Even these decomposition is very simple, it
involve a high cost of matrix factorizations since the classical algorithm for calculating
such factorization has a computational cost of O(N3) flops.

The Circulant Embedding matrix approach [6, 7, 10, 22] has been developed
to simulate a stationary GRF. This method is seen as a Factorization method in
which the decomposition of a carefully chosen extension of the covariance matrix is
performed by Discrete Fourrier Transform (DFT). It allows to generate a Gaussian
vectors with exactly the target correlation structure. It seems that this method com-
bines the best features of both the spectral and the matrix factorization to generate
Gaussian vectors with exactly the target correlation structure via FFT. Neverthe-
less, the major disadvantages of such approach is that it requires the validity of
the covariance matrix which implies that the Circulant Embedding matrix is non-
negative definite. This sufficient condition will reached with a very large extension of
the covariance matrix. In particular, for multi-dimensional simulations. Sometimes
it yields to a truncated simulation for smooth fields (e.g. the Gaussian covariance
function). In other cases of the covariance structure, the sufficient condition of non-
negative definite matrix is almost not reached even with very large spatial extension
(e.g. the sinus-cardinal covariance function).

Given the huge cost of such matrix decompositions, The continuous spectral
method [5, 17, 18, 19] is very fast approach to simulate a stationary GRF. It can be
seen as a trapezium rule of the spectral-integral representation [5, 17, 18, 19]. This
yields to a simulation of a Gaussian random field which only approximates the desired
statistics. The authors in [18, 17] expected that the precision of the method is of
O( 1

N ) for a rough covariance model and with order O( 1
N2 ) for a smooth covariance

function [19], where N is the number of the equidistant positions. Based on the
accuracy of the quadrature approximation, authors in [13] provide error estimate of
the method with order O(δp) (for a strong error) where δp is the spacing size of
the frequency domain. This latter is chosen as the inverse of double spatial length
δp = 1

2L when we perform the quadrature by FFT. with additional assumption on the
decay of the derivatives of the spectral density, they provide week error of O((δp)2).
Further, both are not optimal since constants in the estimate bound decrease with
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the length of the domain
The main framework of the present paper is to provide an optimal error bounds

of the continuous spectral representation method which does not involves any kind
of matrix decomposition [5, 17, 18, 19]. We provide bounds estimate for both strong
and weak error of CSM. These estimates shows that the convergence of the method
depends on the regularity and the decay rate of the spectral density. In general, these
estimates bound are better than those given in [13, 18, 19, 17]. They show that the
CSM is more attractive and efficient for widely class of spectral density model used
in the practice in which the Gaussian random field and its spectral density are both
smooth functions.

The paper is organized as follows. Section 2 recalls the concept and the proprieties
of stationary GRF. Section 3 recalls the steps Spectral representation method for a
complex simulation. Section 4, we derive estimates of weak and strong error estimate
of the method. Finally, numerical illustrations are provided to illustrate the efficiency
of the method.

2 Gaussian random field

In this section, we recall the definition and some properties of the Gaussian
random field G. (Namely, a second order, stationary, isotropic, and ergodic field).

A random field is a sequence of random variable (G(x, ·))x∈D where the index x
belongs in a given domain D on Rd. Let (Ω,F , dP ) be a complete probability space
and D in Rd, then G is a measurable mapping G : D −→ Ω. For a fixed x ∈ D,
G(x, ·) is a random variable on Ω.

Definition 2.1. The field G is said to be a Gaussian field if for all linear combina-

tions:
N∑
j=1

αjG(xj , ·) has a Gaussian distribution, for any choice of {x1, . . . , xN} ⊂ D

and a real sequence α1, . . . , αN .

The random field is second-order if G has finite variance and for such field we
can define its mean function µ := E[G] and its covariance function:

Cov(x, y) := E[(G(x, .)− µ(x))(G(y, .)− µ(y))], x, y ∈ D.

The following result shows that a Gaussian random field is completely defined by its
mean and its covariance function[23].

Theorem 2.1. Let Cov : D2 → R be a symmetric and positive, i.e: Cov(x,y)=Cov(y,x)
and

∑N
i,j Cov(xi, yj)aia

∗
j ≥ 0 for {xj}Nj=0 ⊂ D and any complex sequence {aj}Nj=0 ⊂

C. Then there exist a Gaussian field G with zero mean and covariance function Cov.

An important class of G are stationary and isotropic random fields

Definition 2.2. The Gaussian field G is stationary if:

µ(x) = µ and Cov(x, y) = C(x− y),
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and we say that G is isotropic if Cov depends on the norm r = ‖x− y‖2,

Cov(x, y) = C(r).

A Gaussian field G with mean E[G(x)] = µ(x) is said to be trend stationary if the
centred field Y := G− µ is a stationary Gaussian field.

When Cov satisfies the conditions of Theorem 2.1, we say that Cov is a valid
covariance. In what follows we consider only the stationary GRF (or trend-stationary
GRF), thus the stationary covariance function is noted to depend only on one variable
C(x). The Bochner’s theorem provides the condition ensuring that C is a valid the
stationary covariance.

Theorem 2.2. (Bochner’s theorem [3])
A continuous function C defined in Rd is non-negative, if and only if there exists

a decreasing, continuous, and bounded positive function S (spectral density) such that

C(x) =

∫
Rd
e2iπp·xS(p)dp. (1)

The formula (1) is the spectral representation of C which states that each valid
covariance is the Fourier Transform of a positive function S called a spectral density.
By isometry, this latter is given by the Fourier inverse of the covariance C,

S(p) =

∫
Rd
e−2iπp·xC(x)dx. (2)

Similar spectral representation of the GRF G states that there is a spectral
complex Gaussian measure Z such that:

G(x, ·) =

∫
Rd
e2iπpxZ(dp, ·), (3)

where the measure Z has a zero mean and the variance E|Z(dp)|2 = S(p)dp.

2.1 Mean Square Continuity and Differentiability

We now describe the mean square continuity and differentiability of the random
field G, following [1].

Definition 2.3. A random field G is said to be mean square continuous if, for all
x ∈ D ⊆ Rd

lim
h→0

E[|G(x+ h, ·)−G(x, ·)|2] = 0,

It is said to be mean square differentiable if there is Y :=
dG

dx
such that:

lim
h→0

E
[∣∣∣∣G(x+ h, ·)−G(x, ·)

h
− Y

∣∣∣∣2] = 0,
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In what follows, we consider the case when G is a stationary GRF with zero
mean and unit variance. The regularity of such random field G is characterized by
the regularity of the correlation function C [1, 23].

Proposition 2.1. Let G be a stationary GRF with mean zero and unit variance.
If C is continuous on x = 0, then G is mean-square continuous on D.
If C is differentiable on x = 0, then G is mean-square differentiable on D, and

its derivative
dG

dx
admits −d

2C

dx2
as a correlation function.

By analogy, higher-order mean square derivatives of the field G can be defined,
so when the 2mth derivative of C exists around x = 0 then G is mth mean square
differentiable. Note that mean square continuity or mean square differentiability
does not necessarily yield to the continuity or the differentiability of sample paths
of G, for a discussion of sample function continuity and differentiability see [1]. The
smoothness of G can be characterized by the behaviour and the decay of the spectral
density S(p) as |p| → ∞.

Proposition 2.2. Let G be a stationary Gaussian random field defined by spectral
density S. Suppose that S decrease at infinity with the bound:

S(p) ≤ K

|p|m+1
(4)

for some m > 0. Then G is r-times mean square differentiable for each r <
m

2
+

1

4
.

Proof: A random field is r-times mean square differentiable if the covariance C
is 2r times mean square differentiable.

The covariance function is given by the Fourier inverse of S, and if S satisfies the

bound (4) then the function p→ |p|2rS(p) is square integrable on Rd if r <
m

2
+

1

4
,

thus C is 2r-times differentiable such that

d2rC

dx
= (2iπ)2r

∫
Rd
p2rS(p)e2iπpxdp.

3 Continuous Spectral Simulations

The spectral method uses the spectral representation given in the formula (3) to
generate realizations of the GRF G. The method discretizes the integral (3) through
the trapezium rule, in which a sequence of discrete spectral measure with amplitude
S in the frequency domain are generated. Then, the Fourier inverse is performed to
construct an approximation gN of G on N equidistant points in D and constructed
by superposition of N harmonic functions with random amplitude [17, 18, 19]:

gN (x, ω) :=
√

∆p

N∑
k=1

√
S(pk)

(
Xk(ω) cos(pkx) + Yk(ω) sin(pkx)

)
, (5)
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where (pk)
N
k=0 is an equidistant set of the frequencies points, ∆p is the discretization

step of the frequency domain, for k = 1, . . . , N , Xk and Yk are a sequence of inde-
pendent Gaussian variables with zeros mean and unit variance. The discretization
of the spectral density defined by the integral (1) suggests an approximation of G by
the superposition of harmonic with random phase and deterministic amplitude as in
[15, 18]:

g̃N (x, ω) =
√

2∆p
N∑
k=1

√
S(pk) cos(pkx+ ϕk(ω)). (6)

Where (ϕk)
N
k=1 are independent random variables and uniformly distributed in (0, 2π)

Both those models have the same covariance and the ergodicity of the field is reached
when N → ∞. However, g̃N is asymptotically Gaussian for large N while gN has
a Gaussian distribution. Their covariance is only an approximation of the target
continuous covariance C. It is shown in [19] that the simulated covariance converges
with order O( 1

N ) to the target covariance for exponential model and with order
O( 1

N2 ) for the Gaussian covariance model.
In what follows, we use the complex version of the approximation (5) which

has a Gaussian distribution. The simulation is performed by the Discrete Fourier
Transform and the analysis is more practice with the complex expansion. We discuss
the convergence of the model regarding the length of the domain and the spatial
discretization N , the regularity and the decay of its spectral density. Let S(p) be the
spectral density of G, let {x0, . . . , xN} be equidistant positions in [0, L]. Assuming
that L and N is quiet large such that P = N

L satisfies S(p) ≈ 0 and C(L) ≈ 0 where
C is the covariance of G given by (1) and approximated by:

C(x) ≈
∫ P

−P
e2iπp·xS(p)dp. (7)

We define the function S̃ on the box [0, 2P ] by:

S̃ :=

{
S(p) for p ∈ [0, P/2],
S(P − p) for p ∈]P/2, P [.

We consider p0 = 0 < p1 = ∆ < . . . < p2N = P , a uniform discretization of the
frequencies in [0, P/2] and ∆p = 1

2L . Assuming that the position x is chosen such
that 2Px is an integer, then equation (7) is equivalent to:

C(x) ≈
∫ P

0
e2iπp·xS̃(p)dp. (8)

Therefore, by performing the trapezium approximation to the integral (8), the co-
variance function C is approximated by the following approximation:

CN (x) := ∆p

2N−1∑
k=0

S̃(pk)e
2iπpkx (9)

Or equivalently with the co-sinus expansion we get,

CN (x) = ∆p(S(p0) + S(pN ) cos(2πpNx)) +
1

L

N−1∑
k=1

S(pk) cos(2πpkx) (10)
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Now, we consider {ξk}2N−1
k=0 to be a set of independent and complex Gaussian vari-

ables, where the real and imaginary part of each ξk have zero mean and unit variance
and define the discrete Gaussian field GN :

GN (x, ·) :=
√

∆p
2N−1∑
k=0

√
S̃(pk)e

2iπpkxξk. (11)

Thus, the real and imaginary parts of GN give an approximation of G as shown by
the following proposition.

Proposition 3.1. Both the real and imaginary part of GN defined in (11) are inde-
pendent Gaussian fields with zero mean, and admit CN as a covariance function.

Indeed, let G∗N be the conjugate of GN , x1 and x2 in [0, L], we have:

E[GN (x1)GN (x2)∗] = ∆pE
[(2N−1∑

k=0

√
S̃(pk)e

2iπpkx1ξk

)(2N−1∑
k=0

√
S̃(pl)e

−2iπplx2ξ∗l

)]

= ∆p

2N−1∑
k,l=0

√
S̃(pk)S̃(pl)e

2iπpk(x1−x2)E[ξkξ
∗
l ]

= 2∆p
2N−1∑
k=0

S̃(pk)e
2iπpk(x1−x2) = 2CN (x1 − x2).

Since the real part and the imaginary part of ξk are independent, the real and
imaginary part of GN (x) are independent and follow a Gaussian distribution with
zeros mean and admit CN as a covariance function.

The spectral approximation given by the expansion (11) can be seen as the com-
plex version of the truncated Karhunen-Loève expansion [12] of a Gaussian field G∞
defined by some covariance function Ψ. Indeed, this covariance is the periodization
of C on the interval [−L,L],

Ψ =
∑
k∈Z

C(x+ 2kL), x ∈ [−L,L]

The set { 1
2Le

2iπpkx}∞k=−∞ form a complete system of the space L2([−L,L]) and
they are orthonormal eigenfunctions with their corresponding eigenvalues {S(pk)}∞k=−∞
of the operator TΨ defined by,

TΨ(u(y)) :=

∫ L

−L
Ψ(x− y)u(x)dx, ∀u ∈ L2([−L,L]),

Since we have,

TΨ(e2iπpkx) :=

∫ L

−L

∑
k∈Z

C(x− y + 2kL)e2iπpkxdx

= e2iπpky

∫ ∞
−∞

C(x)e2iπpkxdx

= S(pk)e
2iπpky.
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Therefore, The accuracy of the representation (11) depends on the finite spatial range
L truncation of C and the truncated term N

L .

Remark 3.1. The discretization (11) is very versatile when we sample numerous
realizations of G with Monte-Carlo sampling since it gives two independent sam-
ple paths of G in each simulation. However, if we want to perform a deterministic
sampling method such that Quasi-Monte Carlo methods [9] or sparse grid colloca-
tion method [8], it is crucial to use a real discretization of G from (5). This latter
simulation is obtained from (4) by choosing the set {ξk}2N−1

k=0 as real of independent
standard variables and set gN = real(GN )+Im(GN ) as a sum of real and imaginary
part of GN .

The Continuous spectral method is performed using FFT algorithm only once
time with easy implementation which is computed in O(N log(N)) flops. First, we
recall the DFT of any vector X with length N ,

Yn := F(X)(n) =
N−1∑
k=0

Xke
−2iπkn
N ,

and its inverse:

Xk = F−1(Y )(k) =
1

N

N−1∑
n=0

Yne
2iπkn
N .

The 1d-frequencies {pk}Nk=0 are given by pk = k∆p where ∆p = 1
2L . They are linked

with the set of N + 1 equidistant positions H := {xn}Nn=0. The algorithm of the
method is given as follows:

Unidimensional case

• Step 1. Sample the density S at the frequencies {pk}Nk=0.

• Step 2. Generate a Gaussian complex vector ξ = ξ1 + iξ2 of dimension 2N ,
where the components of ξ1 and ξ2 have zero mean and unit variance.

• Step 3. Compute X the complex vector defined by Xk = ξk
√

∆pS(pk), for
k = 0, . . . , N and Xk = ξk

√
∆pS(p2N−k), for k = N + 1, . . . , 2N − 1.

• Step 4. Perform the iFFT of the vector 2NX to obtain a complex vector GN .
The real and imaginary parts of the first N + 1 entries in GN provide two
independent realizations of the field G over the grid H.

Not that by the symmetry of S and the set of the Gaussian variables, we can
perform the FFT of the vector X.
Multi-dimensional case

The extension to 2d and 3d (or higher dimension) can be easily performed from
one-dimensional simulations with tensor product. In the 2d simulation, consider
D = [0, L1] × [0, L2] and consider the points {xk,l}N1,N2

l,k=1 ⊂ D, and {pk,l}N1,N2

k,l=0 its
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corresponding frequencies points defined by pk,l = (k∆p1, l∆p2), where ∆p1 = 1
2L1

and ∆p2 = 1
2L2

are the step-size in x-direction and y-direction respectively. Then
the steps of the method are given by:

• Step 1. Sample the density S at {pk,l}N1,N2

k,l=0 .

• Step 2. Generate a Gaussian complex matrix ξ = ξ1 + iξ2 of size 2N1 × 2N2,
where the components of ξ1 and ξ2 have zero mean and unit variance.

• Step 3. Compute X the complex random matrix with 2N1 × 2N2 compo-
nents, Xk,l = ξk,l

√
∆p1∆p2S(pk,l), k = 0, . . . , N1, l = 0, . . . , N2 and Xk,l =

ξk,l

√
∆p1∆p2S(p2N1−k,2N2−l), k = N1+1, . . . , 2N1−1, l = N2+1, . . . , 2N2−1.

• Step 4. Perform the 2d FFT of the matrix X to obtain a complex matrix GN .
The real and imaginary parts of the first (N1 + 1) × (N2 + 1) entries in GN
give two independent realizations of G over the grid H.

The method uses FFT algorithm, which provide a discrete field GN at equidistant
points only with O(N log(N) operations. Thus, simulations with this method is
greatly fast, and in some case it can be very efficient regardless methods using a
matrix factorization. Sampling of the field on non-uniformly spaced sample positions
K can obtained by simulating G with spectral simulation on a given smallest grid
which cover the set positions K and then extract the desired positions form GN . In
section which follows we discuss the errors bounds (weak and strong error estimate)
of the method regarding the smoothness of the field G and its spectral density S.

4 Error estimation and convergence

4.1 Decay rate of the covariance function

The spectral method is very fast regardless methods based on the decomposition
of the covariance matrix. However, the method is not exact, which means that
the covariance matrix of the discrete GN is only an approximation of the target
covariance C. In this section, we show that both convergence (strong and weak)
is very fast regardless of the decay of S and C to zero. Given the convergence of
Fourier series [4], the continuous spectral representation method convergence either
with geometric or algebraic decay. For a sake of clarity of the presentation, we
provide the error estimate of the spectral method in 1d-dimensional simulation, the
case of 2d and 3d the convergence is concluded as sum of the error interpolation in
each direction. First, we characterize the decay of the covariance C at infinity, it is
linked with the regularity of the spectral density S.

For each positive real s > 0, we define the following Sobolev space:

Hs(R) :=
{
u ∈ L2(R); (1 + |x|s)û ∈ L2(R)

}
,

where û denotes the Fourier transform of the function u. The regularity of the
spectral density S provides the way in which the covariance function C behaves at
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infinity. The following Lemma characterizes this decay of C regarding the smoothness
of S.

Lemma 4.1. Suppose that S belongs in Hs(R) for some s > 0. Then, there exists
K1 > 0 such that C decreases at infinity with the following decay bound,

C(x) ≤ K1

|x|s+
1
2

, x > 0. (12)

Proof: Since S belongs in Hs(R) and C its Fourier transform, Thus, the function
(1 + |x|s)C is square integrable, then at least it decreases at infinity with the decay
bound (1 + |x|s)C ∼ 1

|x|ε for some ε > 1
2 , thus there exists K1 > 0 which depends

only on s such that |C(x)| ≤ K1

|x|s+
1
2

.

The decay rate to zero at infinity of the covariance C is better when the sth
derivative of S has a bounded variation as states the following Lemma.

Lemma 4.2. Suppose that S has s continuous derivatives in the space L2(D) such
that the derivative dsS

dps has a bounded variation. Then, there exists K2 > 0 such that
C decreases at infinity with the decay bound:

C(x) ≤ K2

|x|s+1
, x > 0. (13)

Proof: The sth derivative of the spectral density S has a bounded variation, so

its Fourier transform d̂sS
dps decreases at infinity with the bound O(

1

x
) (see [?]) and

satisfies d̂s

dpsS = (2iπx)sC. Therefore, there exists K2 > 0 which depends on s such

that |C(x)| ≤ K2

|x|s+1
.

When the spectral density is infinitely differentiable i.e. s = ∞, the covariance
function C decreases fast and exponentially at infinity like the following decay bound,

C(x) ≤ K3e
−qxr , x > 0. (14)

for some non-negative real numbers q > 0, r > 0 and K3 > 0.
Similarly, we can predict the decay rate of the spectral density S at infinity

from the smoothness of the covariance function C. The density S has an algebraic
decay when C belongs in Hm(R) and an exponential decay when C is infinitely
differentiable.

4.2 Weak error estimate

The covariance of the discrete GRF GN from (11) admits the function CN in
(9) as a covariance which is seen as the classical trapezium approximation of the
integral (8). In [13] it is shown that CN converges to C with a bound O( 1

L) or with
the bound O( 1

L2 ) under some additional assumption on the smoothness of S and
the decay of its derivatives. Both these bounds are given up a neglected truncated
range error O( L

Nm ). On the other hand, the error of the spectral method is expected
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in [18, 19] to decay with the bound O( 1
N2 ). Further, all the constant of these error

bounds increase with the length of the spatial domain.
The theorem 4.2 provides an optimal bound of the method. The field GN can

be seen as a truncated Karhunen-Loève decomposition of a Gaussian field with a
covariance function Ψ, the periodization of C on a spatial box [−L,L] for some L
in which the discrete covariance is valid. Therefore, the error is decomposed on two
contributions, the discretized error and the truncated error, the first one depends
on the smoothness of the GRF G (described by the decay of S) and the second one
depend on the smoothness of S.

We assume that the correlation length θ = 1 ( without loss of generality, by
changing the size L by L/θ). The following Theorem gives an algebraic decay of the
error bound on the covariance of the spectral simulation in the box (−L,L),

Theorem 4.1. Suppose that S belongs in Hs(R) and satisfies the decay condition
(4). Then the discrete covariance function CN defined in (9) converges to C as:

‖C − CN‖L∞([−L,L]) ≤ κ
[(

L

N

)m
+

1

Ls+1

]
. (15)

Where the constant κ depends only on m and s (independent of L and N).

Proof:
Consider the periodization of the covariance C on R defined (a.e) in (−L,L):

Ψ(x) :=
∞∑

k=−∞
C(x+ 2kL),

since Ψ(x+ 2L) = Ψ(x), the function Ψ is 2L-periodic. Therefore, its Fourier series
representation is given by:

Ψ(x) =
∞∑

k=−∞
ψke

2iπpkx,

where each Fourier coefficient ψk satisfies:

ψk :=
1

2L

∫ L

−L
Ψ(x)e−2iπpkxdx

=
1

2L

∫
R
C(x)e−2iπpkxdx

= ∆pS(pk).

Since the function S is even, the expansion of Ψ is reduced on the cousins basis,

Ψ =
1

2L
S(p0) +

1

L

∞∑
k=1

S(pk) cos(2πpkx).

Now, considering its truncated function

ΨN :=
1

2L
(S(p0) + S(pN ) cos(2πpNx)) +

1

L

N−1∑
k=1

S(pk) cos(2πpkx) = CN .

11



Then, the following estimate hold:

‖Ψ− CN‖∞ ≤
1

L

∞∑
k=N

S(pk).

By using the bound from (4), we get a bound of the error due to the frequencies
truncation,

‖Ψ− CN‖∞ ≤
K2m+1

m

(
L

N

)m
. (16)

The error due to the finite spatial range is quantified by ‖C(x) − Ψ(x)‖L∞([−L,L]),
thus for each x ∈ [−L,L],

|C(x)−Ψ(x)| =

∣∣∣∣∣
∞∑
k=1

C(x+ 2kL) +
−1∑

k=−∞
C(x+ 2kL)

∣∣∣∣∣
From the bound (13), we obtain:

|C(x)−Ψ(x)| ≤
∞∑
k=1

|C(x+ 2kL)|+
−1∑

k=−∞
|C(x+ 2kL)|

≤ 1

Ls+1

∞∑
k=1

2K2

(2k − 1)s+1

≤ K2

sLs+1
(17)

On the other hand we have,

‖C − CN‖L∞([−L,L]) ≤ ‖C −Ψ‖L∞([−L,L]) + ‖Ψ− CN‖L∞([−L,L])

Therefore, the estimate of Theorem 4.1 follows by combining the upper bounds (16)
and (17).

From the estimate of Theorem4.1, the convergence of CN to C is given by the
decay of the spectral density S and the covariance C to zero. It depends on 1/L (error
due to the space truncation) and the ratio L

N (error due to the frequency truncation).
The size N is controlled by the decay of S at infinity and L is controlled by the decay
of C. Therefore, when C and S decrease rapidly to zeros at infinity, the Spectral
method becomes effective and more attractive.

When the random field has infinite derivatives in the quadratic sense, the spectral
density S decays exponentially to zeros at infinity. Further, the covariance function
C decays exponentially if the density S is infinitely differentiable. In such case the
continuous spectral method is very efficient since it provides accurate simulations
even with small length L and a small number N of points of discretization.

The following proposition gives the estimate error of the method in the week
sense when both G and S are infinitely differentiable.

12



Proposition 4.1. Suppose that both S and C decay exponentially to zero at infinity
with the following bounds

S(p) = O(e−2qspr), C(x) = (Oe−qcx
ν
), qs, qc > 0, r, ν > 0 (18)

Then the discrete covariance function CN defined in (9) converges geometrically to
C with the bound:

‖C − CN‖L∞([−L,L]) ≤ κ̂
(
e−qs(

N
L

)r + e−qcL
ν

)
. (19)

The constant κ̂ is independent of L and N .

The proof of the estimate 19 is similar to the proof of the Theorem 4.1 by using
adequately the exponential decays (18).

4.3 Error in the norm of L2(Ω)

The continuous spectral method converges in L2 norm (strong convergence) when
the ratio N/L→∞ together with L→∞. The strong error is defined by the root-
mean-square quantity ‖G−GN‖L2(Ω,C) := (E[|G−GN |2])

1
2 . The following theorem

provides the upper bound of the error in the L2(Ω)-norm. It is similar to the upper
bound in (15) up the power 1/2.

Theorem 4.2. Suppose that S belongs in Hs(R) and satisfies the decay condition
(4). Further assume that C is convex on [L,∞]. Then the discrete GRF GN from
(11) converges to G with the following bound:

‖G−GN‖L2(Ω,C) ≤ κ̃
[(

L

N

)m
2

+

(
1

L

) s+1
2
]
. (20)

The constant κ̃ depends only on m and s (independent of L and N).

Proof:
In order to compare G with GN within E := ‖G−GN‖L2(Ω,C) the mean-squared

error, we develop G on the Discrete Fourier basis. For this reason G is expanded
by the circulant embedding approach which is an exact representation under the
sufficient condition of non-negative definite. Therefore, following representation of
G holds through the circulant embedding approach [5, 7, 13] :

G(xn) =
2N−1∑
k=0

1√
2N

√
dke

2iπpkxnξk, n = 0, 1, . . . , N,

here, each coefficient dk equals,

dk =

2N−1∑
n=0

C̃ne
−2iπpkxn

13



were we define the vector C̃ := (C(x0) . . . , C(xN ), C(xN−1), . . . , C(x1))). Therefore,
the square of the error E2 is bounded by,

E2 =
2N−1∑
k=0

(
1√
2N

√
dk −

√
4p
√
S(pk)

)2

(21)

≤ 4p
2N−1∑
k=0

∣∣∣∣ 1

P
dk − S̃(pk)

∣∣∣∣
≤ 1

L

N∑
k=0

∣∣∣∣ 1

P
dk − S(pk)

∣∣∣∣ (22)

where P = N
L , pk = k4p, xn = n

P . Now, considering the periodization of the spectral
density S which is P -periodic and defined (a.e) in the interval (−P

2 ,
P
2 ):

S(p) :=
∞∑

l=−∞
S(p+ lP ),

its Fourier series representation at each pk is given by:

S(pk) =
∞∑

n=−∞
sne
−2iπpkxn

=
dk
P

+ C(xN ) cos(2πpkxN ) +
2

P

∞∑
n=N+1

C(xn) cos(2πpkxn)

since each Fourier coefficient sn satisfies the equation

sn :=
1

P

∫ P/2

−P/2
S(p)e2iπpxndp

=
1

P

∫
R
S(p)e2iπpxndx =

1

P
C(xn).

Therefore, by substituting the term dk
P in the bound (22) the error E2 is decomposed

in two parts as follows,

E ≤ 1

N

N∑
k=0

∣∣∣∣C(xN ) cos(2pkxN ) + 2
∞∑

n=N+1

C(xn) cos(2pkxn)

∣∣∣∣︸ ︷︷ ︸
Ik

+
1

L

2N∑
k=0

∣∣∣∣S(pk)−S(pk)

∣∣∣∣︸ ︷︷ ︸
II

)

(23)
The second term II of the error E2 is due to the discretization, it can be bounded

14



by using the decay rate of the spectral density as follows,

II ≤ 1

L

N∑
k=0

∑
l∈Z∗

S(pk + lP )

≤ 2

L

N∑
k=0

∞∑
l=1

1

(−pN + lP )m+1

≤ 2

L

N∑
k=0

(
L

N

)m+1 ∞∑
l=1

1

(l + 0.5)m+1

≤ 2m+2

3mm

(
L

N

)m
(24)

From the decay rate of the covariance function C in (13), the partial term of the
error due to the range truncation Ik is finite and independent of N . In order to bound
the total error of the range truncation

∑N
k=0 Ik , we first introduce the Dirichlet and

Féjer kernels

Dn(ν) :=


N∑
k=0

αk cos(2πkν) =
sin(πν(2n+ 1))

sin(πν)
if ν ∈ R/2πZ

2n+ 1 if ν ∈ 2πZ

Fn(ν) :=
n∑
l=0

Dl(ν) =

(
sin(πν(n+ 1))

sin(πν)

)2

We also define the error term Jk :=

∞∑
n=0

αnC(L+xn) cos(2pkxn) where the coefficients

α0 = 1, αn = 2 for n > 0 and eventually we have |Jk| = Ik. Upon Abel’s summations
by parts, each partial term Jk is positive, Indeed,

Jk =

∞∑
n=0

(
C(L+ xn)− C(L+ xn+1))

)
Dn(k/2N)

=

∣∣∣∣ ∞∑
n=0

(
C(L+ xn)− 2C(L+ xn+1) + C(L+ xn+2)

)
Fn(k/2N) ≥ 0

since C is convex for x > L, the term C(L+ xn)− 2C(L+ xn+1) + C(L+ xn+2) is
positive and the Féjer kernels are non-negative. Therefore we get,

Ik =

∞∑
n=0

αnC(L+ xn) cos(2pkxn) (25)

The total error of the range truncation satisfies the following equations,
N∑
k=0

Ik =
∞∑
n=0

C(L+ xn)
N∑
k=0

ak cos(2πkn/2N)

=

∞∑
n=0

C(L+ xn)DN (n/2N)
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since DN (n/2N) = 2N + 1 if n is a multiple of 2N and DN (n/2N) = (−1)n

otherwise, we get:

N∑
k=0

Ik =

∞∑
n=0

(−1)nC(L+ xn) + 2N

∞∑
l=0

C((2l + 1)L)

by using the decay rate of C from (13), the total error of the range truncation is
bounded by,

1

N

N∑
k=0

Ik ≤ 1

NLs+1

∫ ∞
0

1

(1 + x/N)s+1
dx+

2

Ls+1

∫ ∞
0

1

(2x+ 1)s+1
dx

≤ 2

s

1

Ls+1
(26)

Therefore, by combining estimates (24) and (26) we get,

E2 ≤ κ̃2

[(
L

N

)m
+

1

Ls+1

]
, (27)

where κ̃2 := max(
2

s
,
2m+2

3mm
). Thus the estimate of Theorem 4.2 follows by taking the

square root of the bound 27.
From the estimate of Theorem4.2, the convergence of GN to G in the L2(Ω)-

norm is algebraic when the spectral density S and the field G are both smooth.
Further, when they are both infinitely differentiable, the convergence of GN to G in
the L2(Ω)-norm is sub-geometric as provided by the following proposition.

Proposition 4.2. Suppose that both S and C decay exponentially to zero at infinity
with the bounds

S(p) = O(e−2qspr), C(x) = (Oe−2qcxν ), qs, qc > 0, r, ν > 0 (28)

Then the discrete covariance function CN defined in (9) converges to C with bound:

‖G−GN‖L2(Ω,C) ≤ κ̄
(
e−qs(

N
L

)ν + e−qcL
r

)
. (29)

The constant κ̄ > 0 is independent of L and N .

The proof of the estimate (29) is similar to the proof of the Theorem 4.2 by using
adequately the exponential decays (28).

5 Numerical example

In this section we provide numerical experiments to illustrate the theoretical
estimates of the continuous spectral method detailed above. We consider realizations
of 1d and 2d Gaussian random field G with zero mean, unit variance and defined by
the Matérn covariance model.
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5.1 Matérn-Whittle model

The Matérn covariance functions are the commonly used model in the practice
for the Gaussian field. There are got from the Matérn model of the following spectral
densities:

S(p) =
α

(θ2 + |p|2)ν+d/2
(30)

where the parameters ν, α and θ are non-negative real numbers, d is the space
dimension, the parameter θ is the correlation length and p is a wave vector in Rd.

The corresponding covariance (Matérn model) of this spectral density S is given
by the following function:

C(r) =
2ν−1

Γ(ν)

(√
2νr

θ

)ν
Kν
(√

2νr

θ

)
(31)

where r is the Euclidean distance between two points, Kν denotes the modified
Bessel function of the second kind and Γ is the gamma function. When ν = 1

2 the
Matérn covariance coincides with the exponential covariance, c(r) = e−r/θ which is a
Hölder continuous function. When ν −→ ∞, the Matérn covariance approaches the
Gaussian covariance, c(r) = e−r.

2/(2θ2). In this case, the covariance is an analytic
function as far as the sample paths of the Gaussian field are also analytic, almost
everywhere in Ω.

The non-negative parameter ν > 0 characterizes the smoothness of C, as far
as the mean-square differentiability of the field G. Indeed, this can be seen from
the decay rate of the spectral density S which is polynomial decay or exponential
decay when ν approaches the infinity. Further, there is a roughness of G for a
small value of ν, say ν ≤ 1. Furthermore since the spectral density function is
infinitely differentiable, the Matérn model decreases exponentially with the length
of the domain. Figure1 illustrates this decay for both functions with four values of
the parameter ν.

5.2 Generation of 1D field

Here we consider for the clarity of the illustration, the correlation length θ = 1
and the space domain is meshed with N equidistant points to perform the FFT
algorithm. Figure 2 gives examples of realizations of 1d generated Gaussian fields
defined by the spectral density S (30), with four values of the parameter ν. Each
simulation is the real and imaginary part of the discrete field in (11). We remark the
path is rough for both cases ν = 1

2 and ν = 1, the sample path is smooth for ν = 4
and ν =∞.

Both the upper bounds for weak and strong convergence decay to zero when
the space length L → ∞ and the frequency length P = N

L → ∞. Further, all the
constants in the upper bound for the error are independent of L and P = N

L in
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Figure 1: Matérn covariance function C(r) (left), Spectral density S(p) (right)

Figure 2: Examples of generated Gaussian fields with N = 400.

both theorems. In order to illustrate the behaviour of the the weak error of the
continuous spectral method with respect to L and P ; we consider the case when
ν = 1

2 , 1, 4, and ν = ∞. First we analyse the error with respect to P by fixing the
length L = 20 in which the space-truncated error is neglected since C(x) decreases
exponentially to zeros as x → ∞. Figure3 illustrate The absolute error |C − CN |
between the covariance C from (31) and the approximation CN from (10), with
N = 400, It shows that the error decreases when ν increases since the decay of
the spectral density decreases with ν. Figure10 plots the covariance matrix of GN
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Figure 3: absolute error |C − CN |, N =
400 and L = 20

Figure 4: Covariance matrix with MC
sampling, ν = 2, N = 400 and L = 20
.

computed with MC sampling from (33) through M = 106 MC simulations. Figure

Figure 5: ‖C − CN‖∞ with respect to P . Figure 6: ‖C − CN‖∞ with respect to L.

5 plots the error ‖C − CN‖∞ := max
0≤x≤L

|C(x) − CN (x)| as function of the length of

the frequencies domain P = (1 : 1 : N
L ). As expected, figure shows that the error

with respect to P is algebraic since the spectral density S decreases algebraically as
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p becomes large. Figure14 plots the error ‖C − CN‖∞ with respect of the length
of the space domain L = (1 : 1 : 15).,In each case of ν we take a large number
of equidistant points N to overcome the error due to the discretization (frequency
domain truncation). As expected, figure shows that the error with respect to L is
sup-geometric since the covariance function decreases exponentially at infinity.

Figure 7: ‖G − CN‖L2(Ω) with respect to
P .

Figure 8: ‖G− CN‖L2(Ω) with respect to
L.

Figure7 illustrates the theoretical bounds of the strong error ‖G −GN‖L2(Ω) :=√
E[|G−GN |2], as computed in (22). This bound is illustrated with respect of the

length of the frequency domain P = (1 : 1 : N
L ). As expected, figure shows that

the error with respect to P is algebraic. Figure8 plots the bound of the strong
error ‖C − CN‖∞ := max0≥x≤L |C(x) − CN (x)| as function of L the length of the
space domain L = (1 : 1 : 15), where for each case of ν we take a large number
of equidistant points N to overcome the error due to the discretization (frequency
domain truncation). As expected, figure shows that the error with respect to L is
sup-geometric. Further, theses figures shows that the strong error is large than the
weak error (error on the covariance) as illustrated in Figures 5 and 14, this is because
the power 1

2 in the bound of strong error.
In order to illustrate the accuracy of the method from numerical simulations, we

computed the error bound from sampling simulations of the field GN . Therefore, the
discrete covariance CN from (9) by Monte-Carlo sampling. However, because the
statistical error of the MC is very slow (O( 1√

M
), A large number of MC simulations

is needed to reach a very small precision. For this raison, we consider the case where
the field is not differentiable for example ν = 1

2 , 1, 2. We recall that the discrete
covariance function of the discrete field GN is estimated by the MC sampling with
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average sum:

CN (xi) ≈
1

M

M∑
l=1

GN (xi, ωl)G
∗
N (x0, ωl) (32)

and the covariance matrix by the following average,

RN (i, j) ≈ 1

M

M∑
l=1

GN (xi, ωl)G
∗
N (xj , ωl) (33)

Figure9 illustrates the error on the covariance ‖C−CN‖∞ of the continuous spectral
method as function of the frequency step from P = 1 to P = N

L , where N = 100
and L = 10. The discrete covariance is computed from (32) by simulating M = 1010

trajectories of GN in order to hide the statistical error due to the MC sampling.
Figure10 plots ‖C − CN‖∞ with respect to the space step from L = 1 to L = 10,
where N = 100 for each step. Similarly, the discrete covariance is computed from
(32) by simulating M = 1010 trajectories of GN . However as we can see from the
figure the statistical error du to MC sampling is not removed with M = 1010 for
L = 10 since the error on the covariance decays exponentially with L. Both upper
bounds for the approximation error converge to zero as L and P become large. We
can conclude from the value of the error at the origin that all the constants in the
upper bound are very small and independent of N and L. The predicted growth of
the covariance error is clearly seen in Figure 9 and 10.

Figure 9: ‖C − CN‖∞ with respect to P . Figure 10: ‖C−CN‖∞ with respect to L.

5.3 Generation of 2D field

Here we consider a standard and isotropic Gaussian field G with correlation
length θ = 1 and defined by the covariance model from (31). The space domain is
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the square D := [0, Lx] × [0, Ly] and meshed with Nx × Ny equidistant points to
perform the FFT algorithm. Figure 11 gives examples of realizations of G as detailed
in the algorithm of Section 3 , with two values of the parameter ν = 1

2 and ν = 4.
We remark a roughness of the path for ν = 1

2 and a smoothness of the sample path
for ν = 4.

Figure 11: Two realization of Gaussian field with spectral method (left: ν = 1
2 , right:

ν = 4) Lx = 10, Ly = 10 and Nx = Ny = 200.

Figure 12: CN with MC sampling. Figure 13: Absolute error |C − CN | with
MC sampling
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Figure13 illustrates the absolute error |C −CN | between the covariance C from (31)
and the discrete covariance CN computed using MC sampling from (33) which is
plotted in Figure 12 with ν = 1

2 , Nx = Ny = 300, and Lx = Ly = 10. The
approximation is performed with M = 106 MC simulations.

Figure 14: ‖C −CN‖∞ with respect to P . Figure 15: ‖C−CN‖∞ with respect to L.

Figure 14 illustrates the theoretical estimate bound of the weak error (on the
covariance) ‖C − CN‖∞ := max

(x,y)∈D
|C(‖x − y‖2) − CN (‖x − y‖2)| with respect to

length of the frequencies domain P = (1 : 1 : N
L ) in each direction. The discrete

covariance matrix of the 2− d discrete field GN is given by,

CN (‖x− y‖2) =
1

4LxLy

2Nx−1∑
k=0

2Ny−1∑
l=0

S̃(pk, pl)e
2iπpkx+ply,

where S̃ is the symmetry of S in two directions. As expected, figure shows that the
error with respect to P is algebraic since the spectral density S decreases algebraically
as p becomes large. Figure14 plots the error ‖C − CN‖∞ with respect of the length
of a square domain where L = (1 : 1 : 15). For each case of ν we take a large number
of equidistant points N = 103 to hide the error due to the discretization (frequency
domain truncation). As expected, figure shows that the error with respect to L is
sup-geometric since the covariance function decreases exponentially at infinity.

6 Conclusion

We have discussed the convergence of the spectral method that will, under suit-
able assumptions of the smoothness, produce realizations of a stationary and possibly
anisotropic random process with minimal cost, through the FFT algorithm. Further,
The spectral simulation is seen as the Karhunen-Loève discretization of a Gaussian
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random field defined by a truncated of the target covariance function. Thus, we
provide upper bounds of the convergence (in the weak and strong norm) of the spec-
tral method. Both estimates show the efficiency of the method for smooth random
field and defined by a regular spectral density function. For such random fields, the
spectral representation discretization gives clearly accurate simulations regarding the
methods based on the matrix decomposition. In particular, the circulant embedding
approach for a model with covariance matrix which reaches the positivity for large
spatial length or with truncation, while the spectral simulation method being con-
siderably easier to implement and having a much lower computational. In contrast,
when the Gaussian random field is rough, the method is not accurate because the
roughness forces the discretization of the field on adequate large grid before to extract
the desired simulation. The roughness of the spectral density forces the simulation
on a suitable large length of spatial domain yielding to an additional computational
effort.

References

[1] Robert J. Adler The Geometry of Random Fields, Classics in Applids Math-
ematics, SIAM 1981.

[2] A. Beaudoin, J.-R. de Dreuzy, J. Erhel and G. Pichot Convergence anal-
ysis of macro spreading in 3D heterogeneous porous media, ESAIM Proceedings.
December 2013, Vol. 41, p. 59-76.

[3] Bochner, S. Harmonic Analysis and the Theory of Probability, Berkeley and
Los Angeles University of California Press, 1955.

[4] John P. Boyd. Chebyshev and Fourier spectral methods . Dover Publications
Inc., Mineola, NY, second edition, 2001.

[5] Chilès, J.-P., and Delfiner, P, Geostatistics: Modeling Spatial Uncertainty,
New York: Wiley (1999).

[6] Dietrich, C. et G. Newsam. A fast and exact method for multidimensional
Gaussian stochastic simulation. Water Resour. Res., (8), 2861-2869, 1993.

[7] Dietrich, C. et G. Newsam. Fast and exact simulation of stationary Gaussian
processes throught circulant embedding of the covariance matrix. SIAM J. SCI.
COMPUT. Vol. 18, No. 4, pp. 1088-1107, July 1997.

[8] J. Erhel, Z. Mghazli, M. Oumouni An adaptive sparse grid method for el-
liptic PDEs with stochastic coefficients.

[9] I.G. Graham, F.Y. Kuo, D. Nuyens, R. Scheichl, I.H. SloanQuasi-Monte
Carlo methods for elliptic PDEs with random coefficients and applications. Jour-
nal of Computational Physics, 230 (2011) 3668-3694.

[10] I.G. Graham, F.Y. Kuo, D. Nuyens, R. ScheichlAnalysis of
circulant embedding methods for sampling stationary random fields,
arXiv:1710.00751v1[math.NA] 2 Oct 2017

24



[11] L. W. Gelhar. Stochastic Subsurface Hydrology. Engelwood Cliffs. 1993.

[12] M. Loève: Probability Theory I,II, fourth edition, in: Graduate Texts in
Mathematics, vol. 45,46, Springer-Verlag, New York, 1977-1978.

[13] G. Lord, C. Powell, T. Shardlow, An Introduction to Computational
Stochastic PDEs, Cambridge University Press, Cambridge, 2014.

[14] R.L. Naff, D.F. Haley, and E.A. Sudicky, High-resolution Monte Carlo
simulation of flow and conservative transport in heterogeneous porous media 1.
Methodology and flow results, Water Resour. Res., 34, 663-677, 1998.

[15] Mircea Grigoriu. On the spectral representation method in simulation. Prob-
abilistic Engineering Mechanics 1993.

[16] M.Oumouni, F.Schoefs, B.Castanier. Modeling time and spatial variabil-
ity of degradation through gamma processes for structural reliability assessment.
Structural Safety, V 76, 2019, 162-173.

[17] Shinozuka, M. and C.-M. Jan. Digital simulation of random processus and
its applications. Journal of Sound and Vibration 1972 25 (l), 111-128

[18] Shinozuka, M. et G. Deodatis. Stochastic process models for earthquake
ground motion. Probabilistic Engineering Mechanics, 1988, Vol. 3, No. 3

[19] Shinozuka, M. et G. Deodatis. Simulation of stochastic processes by spectral
representation. App. Mech. Rev., 44(4), 191-204, 1991.

[20] Papakonstantinou KG, Shinozuka M. Probabilistic model for steel corro-
sion in reinforced concrete structures of large dimensions considering crack ef-
fects. J Eng Struct; 57:306-326, 2013.

[21] Stewart M., Mullard JA. Spatial time-dependent reliability analysis of cor-
rosion damage and the timing of first repair for RC structures. Eng Struct,
29:1457-64, 2007.

[22] Wood, A. T. A., and Chan, G. Simulation of Stationary Gaussian Processes
in [0, 1]d. Journal of Computational and Graphical Statistics, 3, 409-432, 1994.

[23] A.M. YAGLOM, Correlation Theory of Stationary and Related Random Func-
tions, Springer-Verlag, New York, 1987.

25


