Zeinab Nehaï
email: zeinab.nehai@univ-paris-diderot.frzeinab.nehai

François Bobot
email: francois.bobot@cea.fr

Deductive Proof of Industrial Smart Contracts Using Why3

Keywords: deductive verification, why3, smart contracts, solidity

In this paper, we use a formal language that performs deductive verification on industrial smart contracts, which are self-executing digital programs. Because smart contracts manipulate cryptocurrency and transaction information, if a bug occurs in such programs, serious consequences can happen, such as a loss of money. The aim of this paper is to show that a language dedicated to deductive verification, called Why3, can be a suitable language to write correct and proven contracts. We first encode existing contracts into the Why3 program; next, we formulate specifications to be proved as the absence of RunTime Error and functional properties, then we verify the behaviour of the program using the Why3 system. Finally, we compile the Why3 contracts to the Ethereum Virtual Machine (EVM). Moreover, our approach estimates the cost of gas, which is a unit that measures the amount of computational effort during a transaction.

Introduction

Smart Contracts [START_REF] Wood | Ethereum: A secure decentralised generalised transaction ledger[END_REF] are sequential and executable programs that run on Blockchains [START_REF] Nakamoto | Bitcoin: A peer-to-peer electronic cash system[END_REF]. They permit trusted transactions and agreements to be carried out among parties without the need for a central authority while keeping transactions traceable, transparent, and irreversible. These contracts are increasingly confronted with various attacks exploiting their execution vulnerabilities. Attacks lead to significant malicious scenarios, such as the infamous The DAO attack [START_REF] Atzei | A survey of attacks on ethereum smart contracts[END_REF], resulting in a loss of ∼$60M. In this paper, we use formal methods on smart contracts from an existing Blockchain application. Our motivation is to ensure safe and correct contracts, avoiding the presence of computer bugs, by using a deductive verification language able to write, verify and compile such programs. The chosen language is an automated tool called Why3 [START_REF] Filliâtre | Why3 -where programs meet provers[END_REF], which is a complete tool to perform deductive program verification, based on Hoare logic. A first approach using Why3 on solidity contracts (the Ethereum smart contracts language) has already been undertaken [START_REF]Formal verification for solidity contracts[END_REF]. The author uses Why3 to formally verify Solidity contracts based on code annotation. Unfortunately, that work remained at the prototype level. We describe our research approach through a use case that has already been the subject of previous work, namely the Blockchain Energy Market Place (BEMP) application [START_REF] Nehaï | Model-checking of smart contracts[END_REF]. In summary, the contributions of this paper are as follows:

1. Showing the adaptability of Why3 as a formal language for writing, checking and compiling smart contracts. 2. Comparing existing smart contracts, written in Solidity [START_REF] Buterin | A next-generation smart contract and decentralized application platform[END_REF], and the same existing contracts written in Why3. 3. Detailing a formal and verified Trading contract, an example of a more complicated contract than the majority of existing Solidity contracts. 4. Providing a way to prove the quantity of gas (fraction of an Ethereum token needed for each transaction) used by a smart contract.

The paper is organized as follows. Section 2 describes the approach from a theoretical and formal point of view by explaining the choices made in the study, and section 3 is the proof-of-concept of compiling Why3 contracts. A state-of-the-art review of existing work concerning the formal verification of smart contracts is described in section 4. Finally, section 5 summarizes conclusions.

2 A New Approach to Verifying Smart Contracts Using Why3

Background of the study

Deductive approach & Why3 tool. A previous work aimed to verify smart contracts using an abstraction method, model-checking [START_REF] Nehaï | Model-checking of smart contracts[END_REF]. Despite interesting results from this modelling method, the approach to property verification was not satisfactory. Indeed, it is well-known that model-checking confronts us either with limitation on combinatorial explosion, or limitation with invariant generation. Thus, proving properties involving a large number of states was impossible to achieve because of these limitations. This conclusion led us to consider applying another formal methods technique, deductive verification, which has the advantage of being less dependent on the size of the state space. In this approach, the user is asked to write the invariants. We chose the automated Why3 tool [START_REF] Filliâtre | Why3 -where programs meet provers[END_REF] as our platform for deductive verification. It provides a rich language for specification and programming, called WhyML, and relies on well-known external theorem provers such as Alt-ergo [START_REF] Bobot | The alt-ergo automated theorem prover[END_REF], Z3 [START_REF] De Moura | Z3, an efficient SMT solver[END_REF], and CVC4 [START_REF] Barrett | CVC4[END_REF]. Why3 comes with a standard library3 of logical theories and programming data structures. The logic of Why3 is a first-order logic with polymorphic types and several extensions: recursive definitions, algebraic data types and inductive predicates.

Case study: Blockchain Energy Market Place. We have applied our approach to a case study provided by industry [START_REF] Nehaï | Model-checking of smart contracts[END_REF]. It is an Ethereum Blockchain application (BEMP) based on Solidity smart contracts language. Briefly, this Blockchain application makes it possible to manage energy exchanges in a peer-to-peer way among the inhabitants of a district as shown in Figure 1. The figure illustrates (1) & (1') energy production (Alice) and energy consumption (Bob).

(2) & (2') Smart meters provide production/consumption data to Ethereum blockchain.

(3) Bob pays Alice in ether (Ethereum's cryptocurrency) for his energy consumption. For more details about the application, please refer to [START_REF] Nehaï | Model-checking of smart contracts[END_REF]. In our initial work, we applied our method on a simplified version of the application, that is, a one-to-one exchange (1 producer and 1 consumer), with a fixed price for each kilowatthour. This first test allowed us to identify and prove RTE properties. The simplicity of the unidirectional exchange model did not allow the definition of complex functional properties to show the importance and utility of the Why3 tool. In a second step, we extended the application under study to an indefinite number of users, and then enriched our specifications. The use of Why3 is quite suitable for this order of magnitude. In this second version, we have a set of consumers and producers willing to buy or to sell energy. Accordingly, we introduced a simple trading algorithm that matches producers with consumers. In addition to transferring ether, users transfer crypto-Kilowatthours to reward consumers consuming locally produced energy. Hence, the system needs to formulate and prove predicates and properties of functions handling various data other than cryptocurrency. For a first trading approach, we adopted, to our case study, an order book matching algorithm [START_REF] Domowitz | A taxonomy of automated trade execution systems[END_REF].

Why3 features intended for Smart Contracts

Library modelling. Solidity is an imperative object-oriented programming language, characterized by static typing 4 . It provides several elementary types that can be combined to form complex types such as booleans, signed, unsigned, and fixed-width integers, settings, and domain-specific types like addresses. Moreover, the address type has primitive functions able to transfer ether (send(), transfer()) or manipulate cryptocurrency balances (.balance). Solidity contains elements that are not part of the Why3 language. One could model these as additional types or primitive features. Examples of such types are uint256 and address. For machine integers, we use the range feature of Why3: type uint256 = <range 0 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFF... > because it exactly represents the set of values we want to represent. Moreover why3 checks that the constants written by the user of this types are inside the bounds and converts in specifications automatically range types to the mathematical integers, e.g., int type. Indeed it is a lot more natural and clearer to express specification with mathematical integers, for example with wrap-around semantic account = old account -transfer doesn't express that the account lose money (if the account was empty it could now have the maximum quantity of money).

Based on the same reasoning, we have modelled the type Int160, Uint160 (which characterizes type uint in Solidity). We also model the address type and its members. We choose to encode the private storage (balance) by a Hashtable having as a key value an address, and the associated value a uint256 value. The current value of the balance of addresses would be balance[address]. In addition, the send function is translated by a val function, which performs operations on the balance hashtable. Moreover, we model primitive features such as the modifier function, whose role is to restrict access to a function; it can be used to model the states and guard against incorrect usage of the contract. In Why3 this feature would be an exception to be raised if the condition is not respected, or a precondition to satisfy. We will explain it in more details with an example later. Finally, we give a model of gas, in order to specify the maximum amount of gas needed in any case. We introduce a new type: type gas = int. The quantity of gas is modelled as a mathematical integer because it is never manipulated directly by the program. This part is detailed later.

It is important to note that the purpose of our work is not to achieve a complete encoding of Solidity. The interest is rather to rely on the case study in our possession (which turns out to be written in Solidity), and from its contracts, we build our own Why3 contracts. Therefore, throughout the article, we have chosen to encode only Solidity features encountered through our case study. Consequently, notions like revert or delegatecall are not treated. Conversely, we introduce additional types such as order and order_trading, which are specific to the BEMP application. The order type is a record that contains orderAddress which can be a seller or a buyer, tokens that express the crypto-Kilowatthours (wiling to buy or to sell), and price_order. The order_trading type is a record that contains seller ID; seller_index, buyer ID; buyer_index, the transferred amount amount_t, and the trading price price_t.

Remark: In our methodology, we make the choice to encode some primitives of Solidity but not all. For example, the send() function in Solidity can fail (return False) due to an out-of-gas, e.g. an overrun of 2300 units of gas. The reason is that in certain cases the transfer of ether to a contract involves the execution of the contract fallback, therefore the function might consume more gas than expected. A fallback function is a function without a signature (no name, no parameters), it is executed if a contract is called and no other function matches the specified function identifier, or if no data is supplied. As we made the choice of a private blockchain type, all users can be identified and we have control on who can write or read from the blockchain. Thus, the Why3 send() function does not need a fallback execution, it only transfers ether from one address to another. The Why3 send() function does not return a boolean, because we require that the transfer is possible (enough ether in the sending contract and not too much in the receiving) and we want to avoid Denial-of-service attack [START_REF]Solidity hacks and vulnerabilities[END_REF]. Indeed if we allow to propagate errors and accept to send to untrusted contracts, it could always make our contract fail and revert. So we can't prove any property of progress of our contract. In Tezos blockchain [START_REF] Goodman | Tezos: A self-amending crypto-ledger position paper[END_REF], call to other contracts are postponed to after the execution of the current contract. So another contract should not be able to make the calling contract fail.

Encoding and verifying functions from the BEMP application.

Oracle notions. Developping smart contracts often rely on the concept of Oracles [START_REF]Ethereum foundation : Ethereum and oracles[END_REF]. An oracle can be seen as the link between the blockchain and the "real world". Some smart contracts functions have arguments that are external to the blockchain. However, the blockchain does not have access to information from an off-chain data source which is untrusted. Accordingly, the oracle provides a service responsible for entering external data into the blockchain, having the role of a trusted third party. However, questions arise about the reliability of such oracles and accuracy of information. Oracles can have unpredictable behaviour, e.g. a sensor that measures the temperature might be an oracle, but might be faulty; thus one must account for invalid information from oracles. Based on this distinction, we defined two types of functions involved in contracts, namely Private functions and Public functions. We noted that some functions are called internally, by other smart contracts functions, while others are called externally by oracles. Functions that interact with oracles are defined as public functions. The proof approach of the two types is different. For the private functions one defines pre-conditions and post-conditions, and then we prove that no error can occur and that the function behaves as it should. It is thus not necessary to define exceptions to be raised throughout the program; they are proved to never occur. Conversely, the public functions are called by oracles, the behaviour of the function must, therefore, take into account any input values and it is not possible to require conditions upstream of the call. So in contrast, the exceptions are necessary; we use so-called defensive proof in order to protect ourselves from the errors that can be generated by oracles. No constraints are applied on post-conditions. Thus, valid data (which does not raise exceptions) received by a public function will satisfy the pre-conditions of the public function that uses it, because pre-conditions are proved.

Methodology of proving BEMP functions. To illustrate our methodology, we take an example from BEMP. Error (" Tokens couldn 't be transferred from market ") ;}}

The function allows transferring _value (expressing cryptokwh) from the market to _to address. The mapping exportBalanceOf[] stores balances corresponding to addresses that export tokens. The function can be executed solely by the market (the modifier function onlyMarket). The program checks if the market has enough tokens to send to _to. If this condition is verified, then the transfer is done. If the condition is not verified, the function returns false and triggers an Error event (a feature that allows writing logs in the blockchain) 5 . This process is internal to the blockchain, there is no external exchange, hence the function is qualified as private. According to the modelling approach, we define complete pre-conditions and post-conditions to verify and prove the function. The corresponding Why3 function is:

let transferFromMarket (_to : address) (_value : uint) : bool requires {!onlymarket ∧ _value > 0 } requires {marketBalanceOf[market] ≥ _value } requires {importBalanceOf[_to] ≤ max_uint -_value} ensures {(old marketBalanceOf[market]) + (old importBalanceOf[_to]) = marketBalanceOf[market] + importBalanceOf[_to]} = (* The program *)
The pre-condition in line 2 expresses the modifier onlyMarket function. Note that marketBalanceOf is the hashtable that records crypto-Kilowatthours balances associated with market addresses, and importBalanceOf is the hashtable that records the amount of crypto-Kilowatthours intended for the buyer addresses. From the specification, we understand the behaviour of the function without referencing to the program. To be executed, transferFromMarket must respect RTE and functional properties:

-RTE properties: (1) Positive values; a valid amount of crypto-Kilowatthours to transfer is a positive amount (Line 2). (2) Integer overflow ; no overflow will occur when _to receives _value (Line 4). -Functional properties: (1) Acceptable transfer ; the transfer can be done, if the market has enough crypto-Kilowatthours to send (Line 3). (2) Successful transfer ; the transaction is completed successfully if the sum of the sender and the receiver balance before and after the execution does not change (Line 5).

(3) modifier function; the function can be executed only by the market (Line 2).

The set of specifications is necessary and sufficient to prove the expected behaviour of the function.

The following function illustrates a Solidity public function. The first exception (Line 3) is the modifier function which restricts the function execution to the owner, the caller function. It is not possible to pre-condition inputs of the function, so we manage exceptional conditions during the execution of the program. To be executed, registerSmartMeter must respect RTE and functional properties:

-RTE properties: Duplicate record ; if a smart meter and its owner is recorded twice, raise an exception (Line 4) -Functional properties: (1) modifier function; the function can be executed only by the owner, thus we raise OnlyOwner when the caller of the function is not the owner (Line 3). (2) Successful record ; at the end of the function execution, we ensure (Line 5) that a record has made. (3) Existing record ; the registered smart meter has been properly recorded in the hashtable addressOf (Line 6).

The set of specifications is necessary and sufficient to prove the expected behaviour of the function.

Trading contract. The trading algorithm allows matching a potential consumer with a potential seller, recorded in two arrays buy_order and sell_order taken as parameters of the algorithm. In order to obtain an expected result at the end of the algorithm, properties must be respected. We define specifications that make it possible throughout the trading process. -RTE properties: positive values; parameters of the functions must not be empty (empty array) (Line 2), and a trade cannot be done with null or negative tokens (Lines 5, 6).

-Functional requirements: sorted orders; the orders need to be sorted in a decreasing way. Sellers and buyers asking for the most expensive price of energy will be at the top of the list (Lines 3, 4). -Functional properties: (1) correct trading (Lines 7, 8); for a trading to be qualified as correct, it must satisfy two properties:

• the conservation of buyer and seller tokens that states no loss of tokens during the trading process : forall i:uint. 0 ≤ i < length sell_order → sum_seller (list_trading) i ≤ sell_order[i].tokens. For the buyer it is equivalent by replacing seller by buyer. • a successful matching; a match between a seller and a buyer is qualified as correct if the price offered by the seller is less than or equal to that of the buyer, and that the sellers and buyers are valid indices in the array. (2) Best tokens exchange; we choose to qualify a trade as being one of the best if it maximize the total number of tokens exchanged. Line 8 ensures that no correct trading list can have more tokens exchanged than the one resulting from the function. The criteria could be refined by adding that we then want to maximize or minimize the sum of paid (best for seller or for buyer). (3) Gas consumption; Lines 9 and 10 ensures that no extra-consumption of gas will happen (see the following paragraph).

Gas consumption proof. Overconsumption of gas can be avoided by the gas model. Instructions in EVM consume an amount of gas, and they are categorized by level of difficulty; e.g., for the set W verylow = {ADD, SU B, ...}, the amount to pay is G verylow = 3 units of gas, and for a create operation the amount to pay is G create = 32000 units of gas [START_REF] Wood | Ethereum: A secure decentralised generalised transaction ledger[END_REF]. The price of an operation is proportional to its difficulty. Accordingly, we fix for each Why3 function, the appropriate amount of gas needed to execute it. Thus, at the end of the function instructions, a variable gas expresses the total quantity of gas consumed during the process. We introduce a val ghost function that adds to the variable gas the amount of gas consumed by each function calling add_gas (see section 3 for more details on gas allocation). The specifications of the function above require positive values (Line 2). Moreover, at the end of the function, we ensure that there is no extra gas consumption (Lines 3, 4). Line 5 specifies the changing variables.

Compiling WhyContracts and Proving Gas Consumption

The final step of the approach is the deployment of Why3 contracts. EVM is designed to be the runtime environment for the smart contracts on the Ethereum blockchain [START_REF] Wood | Ethereum: A secure decentralised generalised transaction ledger[END_REF]. The EVM is a stack-based machine (word of 256 bits) and uses a set of instructions (called opcodes) 6 to execute specific tasks. The EVM features two memories, one volatile that does not survive the current transaction and a second for storage that does survive but is a lot more expensive to modify. The goal of this section is to describe the approach of compiling Why3 contracts into EVM code and proving the cost of functions. The compilation7 is done in three phases: (1) compiling to an EVM that uses symbolic labels for jump destination and macro instructions. (2) computing the absolute address of the labels, it must be done inside a fixpoint because the size of the jump addresses has an impact on the size of the instruction. Finally, (3) translating the assembly code to pure EVM assembly and printed. Most of Why3 can be translated, the proof-ofconcept compiler allows using algebraic datatypes, not nested pattern-matching, mutable records, recursive functions, while loops, integer bounded arithmetic (32, 64,128, 256 bits). Global variables are restricted to mutable records with fields of integers. It could be extended to hashtables using the hashing technique of the keys used in Solidity. Without using specific instructions, like for C, Why3 is extracted to garbage collected language, here all the allocations are done in the volatile memory, so the memory is reclaimed only at the end of the transaction.

We have not formally proved yet the correction of the compilation, we only tested the compiler using reference interpreter [] and by asserting some invariants during the transformation. However, we could list the following arguments for the correction:

the compilation of why3 (ML-language) is straightforward to stack machine.

the precondition on all the arithmetic operations (always bounded) ensures arithmetic operations could directly use 256bit operations raise accepted only in public function before any mutation so the fact they are translated into revert does not change their semantics. try with are forbidden.

only immutable datatype can be stored in the permanent store. Currently, only integers can be stored, it could be extended to other immutable datatye by copying the data to and from the store. -The send function in why3 only modifies the state of balance of the contracts, requires that the transfer is acceptable and never fail, as discussed previously. So it is compiled similarly to the solidity function send function with a gas limit small enough to disallow modification of the store. Additionally, we discard the result.

The execution of each bytecode instruction has an associated cost. One must pay some gas when sending a transaction; if there is not enough gas to execute the transaction, the execution stops and the state is rolled back. So it is important to be sure that at any later date the execution of a smart contract will not require an unreasonable quantity of gas. The computation of WCET is facilitated in EVM by the absence of cache. So we could use techniques of [START_REF] Amadio | Certified complexity (cerco)[END_REF] which annotate in the source code the quantity of gas used, here using a function add_gas used allocations. The number of allocations is important because the real gas consumption of EVM integrates the maximum quantity of volatile memory used. The compilation checks that all the paths of the function have a cost smaller than the sum of the add_gas g a on it. The paths of a function are defined on the EVM code by starting at the function-entry and loop-head and going through the code following jumps that are not going back to loop-head. let rec mk_list42 [@ evm:gas_checking] (i:int32) : list int32 requires { 0 ≤ i } ensures { i = length result } variant { i } ensures { !gas -old !gas ≤ i * 185 + 113 } ensures { !alloc -old !alloc ≤ i * 96 + 32 } = if i ≤ 0 then (add_gas 113 32; Nil) else (let l = mk_list42 (i-1) in add_gas 185 96; Cons (0x42:int32) l)

Currently, the cost of the modification of storage is over-approximated; using specific contract for the functions that modify it we could specify that it is less expansive to use a memory cell already used.

Related Work

Since the DAO attack, the introduction of formal methods at the level of smart contracts has increased. Raziel is a framework to prove the validity of smart contracts to third parties before their execution in a private way [START_REF] Sánchez | Raziel: Private and verifiable smart contracts on blockchains[END_REF]. In that paper, the authors also use a deductive proof approach, but their concept is based on Proof-Carrying Code (PCC) infrastructure, which consists of annotating the source code, thus proofs can be checked before contract execution to verify their validity. Our method does not consist in annotating the Solidity source code but in writing the contract program and thus getting a correct-by-construction program. Another widespread approach is static analysis tools. One of them is called Oyente. It has been developed to analyze Ethereum smart contracts to detect bugs. In the corresponding paper [START_REF] Luu | Making smart contracts smarter[END_REF], the authors were able to run Oyente on 19,366 existing Ethereum contracts, and as a result, the tool flagged 8,833 of them as vulnerable. Although that work provides interesting conclusions, it uses symbolic execution, analyzing paths, so it does not allow to prove functional properties of the entire application. We can also mention the work undertaken by the F* community [START_REF] Bhargavan | Short paper: Formal verification of smart contracts[END_REF] where they use their functional programming language to translate Solidity contracts to shallow-embedded F* programs. Just like [START_REF] Ahrendt | Verification of smart contract business logic[END_REF] where the authors perform static analysis by translating Solidity contracts into Java using KeY [START_REF] Ahrendt | Deductive software verification-the key book[END_REF]. The initiative of the current paper is directly related to a previous work [START_REF] Nehaï | Model-checking of smart contracts[END_REF], which dealt with formally verifying the smart contracts application by using model-checking. The paper established a methodology to construct a three-fold model of an Ethereum application, with properties formalized in temporal logic CTL. However, because of the limitation of the model-checker used, ambitious verification could not be achieved (e.g., a model for m consumers and n producers). This present work aims to surpass the limits encountered with model-checking, by using a deductive proof approach on an Ethereum application using the Why3 tool.

Conclusions

In this paper, we applied concepts of deductive verification to a computer protocol intended to enforce some transaction rules within an Ethereum blockchain application. The aim is to avoid errors that could have serious consequences. Reproducing, with Why3, the behaviour of Solidity functions showed that Why3 is suitable for writing and verifying smart contracts programs. The presented method was applied to a use case that describes an energy market place allowing local energy trading among inhabitants of a neighbourhood. The resulting modelling allows establishing a trading contract, in order to match consumers with producers willing to make a transaction. In addition, this last point demonstrates that with a deductive approach it is possible to model and prove the operation of the BEMP application at realistic scale (e.g. matching m consumers with n producers), contrary to model-checking in [START_REF] Nehaï | Model-checking of smart contracts[END_REF], thus allowing the verifying of more realistic functional properties.

Fig. 1 .

 1 Fig. 1. BEMP Process

Fig. 2 .

 2 Fig. 2. Link between on-chain and off-chain

Figure 2

 2 Figure 2 illustrates the three communication stages between various systems in the real world with the blockchain: (1) the collection of off-chain raw data; (2) this data is collected by oracles; and finally, (3) oracles provide information to the blockchain (via smart contracts).

 function t r a n s f e r F r o m M a r k e t (address _to , uint _value) onlyMarket returns (bool success) { if (e xp or tB a la nc eO f [market] >= _value) { /* Transferring _value from market to _to */ } else { success = false ;

 val ghost add_gas (used : gas) (allocation: int): unit requires { 0 ≤ used ∧ 0 ≤ allocation } ensures { !gas = (old !gas) + used } ensures { !alloc = (old !alloc) + allocation } writes { gas, alloc}

 Appendix B : WCET of function with allocation type list α = Nil | Cons α (list α)

 The algorithm is a private function type because it runs on-chain. Thus no exceptions are defined but preconditions are. The Trading contract has no Solidity equivalent because it is a function added to the original BEMP project. Below is the set of properties of the function:

	let trading (buy_order : array order) (sell_order : array order) : list order_trading
	requires { length buy_order > 0 ∧ length sell_order > 0}
	requires {sorted_order buy_order}
	requires {sorted_order sell_order}

requires {forall j:int. 0 ≤ j < length buy_order → 0 < buy_order[j].tokens } requires {forall j:int. 0 ≤ j < length sell_order → 0 < sell_order[j].tokens } ensures { correct result (old buy_order) (old sell_order) } ensures { forall l. correct l (old buy_order) (old sell_order) → nb_token l ≤ nb_token result } ensures {!gas ≤ old !gas + 374 + (length buy_order + length sell_order) * 363} ensures {!alloc ≤ old !alloc + 35 + (length buy_order + length sell_order) * 35} = (* The program *)

 _purchase.amount_p) > 0 ∧ (_purchase.price_p) > 0 } requires {(Bal.([]) marketBalanceOf !market) > 0} requires {acceptableAmountTransaction marketBalanceOf importBalanceOf !market ((Ord.([]) buyOrd.ord buyId).orderAddress) _purchase.amount_p} requires {acceptableEtherTransaction balance (Ord.([]) buyOrd.ord buyId).orderAddress (Ord.([]) sellOrd.ord sellId).orderAddress (_purchase.price_p)} requires {!onlyAlgo} requires { sellId ≥ 0 ∧ buyId ≥ 0 } requires {Ord.mem_ sellOrd.ord sellId} requires {Ord.mem_ buyOrd.ord buyId} requires {uniqueAddress (Ord.([]) sellOrd.ord sellId). orderAddress (Ord.([]) buyOrd.ord buyId).orderAddress} ensures {etherTransactionCompletedSuccessfully (old balance) balance (Ord.([]) buyOrd.ord buyId).orderAddress (Ord.([]) sellOrd.

	Appendix A : BEMP Application type order = {orderAddress : address; tokens: uint; price_order: uint let rec lemma matching_same_price (order: list order_trading) (b_order (*I sort my arrays in a decreasing way*) assert { forall l. correct l (old buy_order) (old assert { forall k: int. 0 ≤ k < Arr.length buy_order → k requires { !marketOpen} (* private function *)
	} (*It can be buy or sell , tokens = energy materializes in token*) : Seq.seq order) (s_order : Seq.seq order) (b_order' : Seq.seq order assert{sorted_order buy_order}; sell_order) → = !i → buy_order[k].orderAddress == (buy_order[k].orderAddress at requires {(_buy_pursh.amount_p) > 0} let transferToMarket (_from : address) (_value : uint) : unit (*
) (s_order' : Seq.seq order) label Before in nb_token l ≤ nb_token !order_list + Before) }; requires {(_buy_pursh.price_p) > 0} value are green tokens to send *)
	module DCC (*the module that materializes the smart meters*) clone array.Sorted as Sort with type elt = order requires { matching order b_order s_order } nb_token (!others l) }; (*I create a new record that I will store in my order list*) =
	use my_library.Uint requires { Seq.length b_order = Seq.length b_order' } let ghost others = ref (fun (l:list order_trading) → l) in assert { forall l. correct l (old buy_order) (old let registered_order = { eTPMarket_buy (_buy_pursh); requires {!onlymarket} val onlyAlgo : ref bool (*modifier*)
	use my_library.SmartMeterID val sorted_array (a: array order) : unit requires { Seq.length s_order = Seq.length s_order' } let ghost buy_order0 = pure { buy_order.elts } in sell_order) → seller_index = !j; add_gas (abuy_gas_consumed) requires { _value > 0 } constant mcomplete_gas_consumed : gas
	use my_library.Address ensures {forall i j: int. 0 ≤ j ≤ i < Arr.length a → Uint.to_int requires {forall j:int. 0 ≤ j < Seq.length b_order → b_order'[j]. let ghost sell_order0 = pure { sell_order.elts } in matching (!others l) buy_order sell_order buyer_index = !i; requires { (Bal.([]) marketBalanceOf !market) = 0 }
	use array.Array (a[i].price_order) ≤ Uint.to_int(a[j].price_order)} price_order = b_order[j].price_order } }; amount_t = amount_transfered; requires { acceptableAmountTransaction exportBalanceOf axiom mcomplete_gas: mcomplete_gas_consumed ≥ 0
	writes {a} requires {forall j:int. 0 ≤ j < Seq.length s_order → s_order'[j]. while Uint.(<) !i (Arr.length buy_order) && Uint.(<) !j (Arr. assert { forall l. correct l (old buy_order) (old } in marketBalanceOf _from !market _value}
	(*records of potential selleur and buyeur, with the purchase (price_b price_order = s_order[j].price_order } length sell_order) do sell_order) → order_list := Cons registered_order !order_list; (* private function *) ensures {amountTransactionCompletedSuccessfully (old (* private function *)
) and sale (price_s) price*) ensures { matching order b_order' s_order' } forall k :int. 0 ≤ k < Len.length (! (*I go to the next seller so that the buyer can exchange let eTPAccount_complete (_sellerAddress : address) (_callerFunction exportBalanceOf) exportBalanceOf (old marketBalanceOf) let eTPMarket_complete (sellId: Peano.t) (buyId : Peano.t) (
	(*amount_b the needed token quantity, and amount_s the token quantity predicate sorted_order (a: Seq.seq order) = variant { order } invariant {0 ≤ !i ≤ Arr.length (buy_order at Before) ∧ 0 ≤ !j others l) → with another seller*) : address) (_price : uint) : unit marketBalanceOf _from !market } _purchase : purchase) : unit
	on sale*) forall k1 k2 : int. 0 ≤ k1 ≤ k2 < Seq.length a → = ≤ Arr.length (sell_order at Before)} !i ≤ (nth k (!others l)).buyer_index ∧ j := !j + 1 requires {acceptableEtherTransaction balance _callerFunction = requires {!onlymarket}
	type pot_buy = {address_b : address; smb_id: smartMeterID; price_b: uint; amount_b: uint} type pot_sell = {address_s : address; sms_id : smartMeterID; price_s: uint; amount_s: uint} (*buy_array and sell_array are data tables retrieved from the meters *) val buy_array : array pot_buy val sell_array : array pot_sell module Trading end Uint.to_int(a[k2].price_order) ≤ Uint.to_int(a[k1].price_order) (**) type order_trading = {seller_index: uint; buyer_index: uint; amount_t : uint} predicate matching_order (0 < k.amount_t predicate matching (order: list order_trading) (b_order : Seq.seq order) (s_order : Seq.seq order) = match order with | Nil → true | Cons k l → matching l b_order s_order ∧ matching_order k b_order s_order match order with | Nil → () | Cons _ l → matching_same_price l b_order s_order b_order' s_order' end predicate smallest_buyer_seller (order: list order_trading) (buyer : int) (seller : int) = match order with | Nil → true | Cons k l → smallest_buyer_seller l buyer seller ∧ k.buyer_index ≥ buyer ∧ k.seller_index ≥ seller end function sum_seller (l : list order_trading) (sellerIndexe : int) : int = match l with invariant {0 ≤ !i ≤ Arr.length (buy_order) ∧ 0 ≤ !j ≤ Arr. length (sell_order)} invariant {sorted_order (buy_order at Before)} invariant {sorted_order (sell_order at Before)} invariant {forall j: int. 0 ≤ j < Arr.length buy_order → buy_order[j].orderAddress == (buy_order[j].orderAddress at Before)} invariant {forall j: int. 0 ≤ j < Arr.length sell_order → sell_order[j].orderAddress == (sell_order[j].orderAddress at Before)} invariant {forall j:int. 0 ≤ j < Arr.length (buy_order at Before) → (buy_order at Before)[j].price_order = buy_order[j]. price_order } invariant {forall j:int. 0 ≤ j < Arr.length (sell_order at Before) → (sell_order at Before)[j].price_order = sell_order[j]. price_order } invariant {forall j:int. 0 ≤ j < Arr.length (buy_order at Before) → Uint.to_int(buy_order[j].tokens) ≤ Uint.to_int((buy_order at Before)[j].tokens) } invariant {forall j:int. 0 ≤ j < Arr.length (sell_order at !j ≤ (nth k (!others l)).seller_index }; *) (* if the seller has sold all of his energy, then I go to the next seller *) if sell_order[!j].tokens = 0 then begin assert { forall l. correct l (old buy_order) (old sell_order) → sum_seller (!others l) !j = 0 }; j := !j+1; end (*if the seller does ¬ have enough energy that the buyer wants *) end else begin (*the amount of energy sent is worth the totality of energy of the seller*) let amount_transfered = sell_order[!j].tokens in let ghost others' = !others in let ghost buyer = !i in let ghost seller = !j in end end else begin assert { forall l. correct l (old buy_order) (old sell_order) → forall k :int. 0 ≤ k < Len.length (!others l) → !j = (nth k (!others l)).seller_index → sell_order[!j].price_order ≤ buy_order[(nth k (! others l)).buyer_index].price_order }; assert { sorted_order buy_order }; j := !j + 1; (*in case there is no matching I go to the next seller*) end done; (*I return my order list created*) !order_list end val marketOpen : ref bool constant sell_gas_consumed : gas constant buy_gas_consumed : gas axiom sell_consumed: sell_gas_consumed ≥ 0 axiom buy_consumed: buy_gas_consumed ≥ 0 clone my_library.Hashtbl as Ord with type key = Peano.t type ord = { _sellerAddress (_price)} requires {uniqueAddress _sellerAddress _callerFunction } requires {(_price) > 0} ensures {etherTransactionCompletedSuccessfully (old balance) balance _sellerAddress _callerFunction} = address_send (UInt256.v_of_uint (_price)) _callerFunction _sellerAddress; add_gas (acomplete_gas_consumed) end module ETPRegistryBis use my_library.UInt256 use my_library.SmartMeterID use my_library.Address use my_library.Uint use Gas use ETPMarketBisBis use ETPAccount use ETPMarket use int.EuclideanDivision amount_transaction (exportBalanceOf) (marketBalanceOf) (_from) (! market) (_value); add_gas (transferTo_gas_consumed) (* private function *) let transferFromMarket (_to : address) (_value : uint) : unit (* _value = green token*) requires {!onlymarket} requires {_value > 0 } requires {(Bal.([]) marketBalanceOf !market) > 0} requires {acceptableAmountTransaction marketBalanceOf importBalanceOf !market _to _value} ensures {amountTransactionCompletedSuccessfully (old marketBalanceOf) marketBalanceOf (old importBalanceOf) importBalanceOf !market _to} = amount_transaction (marketBalanceOf) (importBalanceOf) (!market) (_to) (_value); add_gas (transferFrom_gas_consumed) requires { (ord sellId).orderAddress}
	use my_library.Uint end | Nil → 0 Before) → Uint.to_int(sell_order[j].tokens) ≤ Uint.to_int((let ghost buy_order' : Seq.seq order = buy_order.elts in module Gas mutable nextID: Peano.t; use int.Power ensures {amountTransactionCompletedSuccessfully (old
	use int.Int | Cons h t → (if h.seller_index = sellerIndexe then Uint.to_int(h. sell_order at Before)[j].tokens) } let ghost sell_order' : Seq.seq order = sell_order.elts in use int.Int ord: Ord.t order; use int.Int end importBalanceOf) importBalanceOf (old marketBalanceOf)
	use int.MinMax let rec lemma matching_nth (order: list order_trading) (b_order : Seq. amount_t) else 0) + sum_seller t sellerIndexe others := (fun l → if pure { correct l buy_order0 use ref.Ref } use ref.Ref marketBalanceOf (Ord.([]) buyOrd.ord buyId).orderAddress !market}
	use seq.Seq seq order) (s_order : Seq.seq order) end invariant {forall k:int. !i ≤ k < Arr.length (buy_order at sell_order0 } use bool.Bool invariant { 0 ≤ nextID } use bool.Bool module ETPMarketBis =
	use import my_library.ArrayUint as Arr requires { matching order b_order s_order } Before) → 0 < Uint.to_int(buy_order[k].tokens) } then remove_seller_buyer' (others' l) invariant { forall x:Peano.t. 0 ≤ x < nextID → Ord.mem_ ord x } use Trading use int.Int let sellOrder = Ord.([]) sellOrd.ord sellId in
	use ref.Refint ensures { forall k :int. 0 ≤ k < Len.length order → let rec lemma sum_seller_positive (l : list order_trading) (invariant {forall k:int. !j ≤ k < Arr.length (sell_order at buy_order' sell_order' buyer seller amount_transfered exception Out_of_gas invariant { forall x:Peano.t. nextID ≤ x → ¬ (Ord.mem_ ord x) } use DCC use my_library.SmartMeterID let buyOrder = Ord.([]) buyOrd.ord buyId in
	use list.List buyerIndexe : int) matching_order (nth k order) b_order s_order } Before) → 0 < Uint.to_int(sell_order[k].tokens) } else l); (*note that the add_gas function is different from that of the paper by { use my_library.Address eTPAccount_complete (sellOrder.orderAddress) (buyOrder.
	use import list.Length as Len variant { order } ensures { 0 ≤ sum_seller l buyerIndexe } *) nextID = Peano.zero; val market : ref address use my_library.UInt256 orderAddress) (_purchase.price_p);
	use list.NthNoOpt = = invariant {matching !order_list (buy_order at Before) ((*I subtract from the buyer the amount of energy of the (*Indeed, in this version we do ¬ take into account the allocation ord = Ord.create (); val oracle : address use my_library.Uint transferFromMarket (buyOrder.orderAddress) (_purchase.amount_p);
	use my_library.SmartMeterID match order with match l with sell_order at Before)} seller, and what remains he can buy from another seller*) parameter*) } val defAddress : address use Gas add_gas (mcomplete_gas_consumed)
	use my_library.Address | Nil → () | Nil → () buy_order[!i] ← { buy_order[!i] with tokens = Uint.(-) (*the compilation and calculation of the number of gas consumed does val onlyOracle : ref bool use ETPMarket end
	use list.HdTlNoOpt | Cons _ l → matching_nth l b_order s_order | Cons _ l → sum_seller_positive (l : list order_trading) (invariant {forall i:uint. 0 ≤ i < Arr.length (sell_order at buy_order[!i].tokens sell_order[!j].tokens}; ¬ yet work*) val sellOrd : ord use ETPAccount
	use list.NthHdTl end buyerIndexe : int) Before) → sell_order[!j] ← { sell_order[!j] with tokens = 0 }; (*on our case study, but it is in progress. So we have simplify the val buyOrd : ord let constant floatingPointCorrection : uint = 0x10000000 use ETPRegistry
	use list.Nth as Elem end assert { forall k: int. 0 ≤ k < Arr.length sell_order → k sum_seller !order_list i + sell_order[i]. add_gas function.*) constant setMarket_gas_consumed : gas use ETPRegistryBis
	tokens = (sell_order at Before)[i].tokens } = !j → sell_order[k].orderAddress == (sell_order[k].orderAddress at type gas = int exception WhenMarketOpen (*modifier WhenMarketOpen*) constant register_gas_consumed : gas use ref.Ref
	function sum_buyer (l : list order_trading) (buyerIndexe : int) : int Before) }; val ghost tot_gas : ref gas constant record_gas_consumed : gas use Trading

k: order_trading) (b_order : Seq.seq order) (s_order : Seq.seq order) = s_order[k.seller_index].price_order ≤ b_order[k.buyer_index].price_order ∧ 0 ≤ k.buyer_index < Seq.length b_order ∧ 0 ≤ k.seller_index < Seq.length s_order ∧

http://why3.lri.fr/

Ethereum foundation: Solidity, the contract-oriented programming language. https://github.com/ethereum/solidity

https://media.consensys.net/technical-introduction-to-events-and-logs-inethereum-a074d65dd61e

https://ethervm.io

The implementation can be found at http://francois.bobot.eu/fm2019/

= match l with | Nil → 0 | Cons h t → (if h.buyer_index = buyerIndexe then Uint.to_int(h. amount_t) else 0) + sum_buyer t buyerIndexe end let rec lemma sum_buyer_positive (l : list order_trading) (buyerIndexe : int) ensures { 0 ≤ sum_buyer l buyerIndexe } = match l with | Nil → () | Cons _ l → sum_buyer_positive (l : list order_trading) (buyerIndexe : int) end let rec lemma smallest_buyer_seller_sum_seller (order: list order_trading) (buyer : int) (seller : int) (b_order : Seq.seq order) (s_order : Seq.seq order) requires { matching order b_order s_order } requires { smallest_buyer_seller order buyer seller } requires { sum_seller order seller = 0 } ensures { smallest_buyer_seller order buyer (seller + 1) } = match order with | Nil → () | Cons _ l → smallest_buyer_seller_sum_seller (l: list order_trading) (buyer : int) (seller : int) b_order s_order end let rec lemma smallest_buyer_seller_sum_buyer (order: list order_trading) (buyer : int) (seller : int) (b_order : Seq.seq order) (s_order : Seq.seq order) requires { matching order b_order s_order } requires { smallest_buyer_seller order buyer seller } requires { sum_buyer order buyer = 0 } ensures { smallest_buyer_seller order (buyer + 1) seller } = match order with | Nil → () | Cons _ l → smallest_buyer_seller_sum_buyer (l: list order_trading) (buyer : int) (seller : int) b_order s_order end let rec lemma smallest_buyer_seller_expensive_seller (order: list order_trading) (buyer : int) (seller : int) (b_order : Seq.seq order) (s_order : Seq.seq order) requires { matching order b_order s_order } requires { sorted_order b_order } requires { 0 ≤ buyer < Seq.length b_order } requires { smallest_buyer_seller order buyer seller } requires { b_order [