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Monte-Carlo Tree Search for Efficient
Visually Guided Rearrangement Planning

Yann Labbé a,b, Sergey Zagoruyko a,b, Igor Kalevatykh a,b, Ivan Laptev a,b,
Justin Carpentier a,b, Mathieu Aubry c and Josef Sivic a,b,d

Abstract— We address the problem of visually guided rear-
rangement planning with many movable objects, i.e., finding
a sequence of actions to move a set of objects from an initial
arrangement to a desired one, while relying on visual inputs
coming from an RGB camera. To do so, we introduce a
complete pipeline relying on two key contributions. First, we
introduce an efficient and scalable rearrangement planning
method, based on a Monte-Carlo Tree Search exploration
strategy. We demonstrate that because of its good trade-off
between exploration and exploitation our method (i) scales well
with the number of objects while (ii) finding solutions which
require a smaller number of moves compared to the other
state-of-the-art approaches. Note that on the contrary to many
approaches, we do not require any buffer space to be available.
Second, to precisely localize movable objects in the scene,
we develop an integrated approach for robust multi-object
workspace state estimation from a single uncalibrated RGB
camera using a deep neural network trained only with synthetic
data. We validate our multi-object visually guided manipulation
pipeline with several experiments on a real UR-5 robotic arm
by solving various rearrangement planning instances, requiring
only 60 ms to compute the plan to rearrange 25 objects. In
addition, we show that our system is insensitive to camera move-
ments and can successfully recover from external perturbations.
Supplementary video, source code and pre-trained models are
available at https://ylabbe.github.io/rearrangement-planning.

I. INTRODUCTION

Using a robot to clean up a room is a dream shared far
beyond the robotics community. This would require a robot
to both localize and re-arrange many objects. Other industrial
scenarios, such as sorting and packing objects on a pro-
duction line or car assembly tasks, share similar objectives
and properties. This paper presents an integrated approach
that makes a step towards the efficiency, scalability and
robustness required for solving such rearrangement planning
tasks. Fig. 1 shows an example of the problem we consider,
where objects have to be moved from an initial position to a

This work was partially supported by the DGA RAPID projects DRAAF
and TABASCO, the MSR-Inria joint lab, the Louis Vuitton - ENS Chair
on Artificial Intelligence, the HPC resources from GENCI-IDRIS (Grant
011011181), the ERC grant LEAP (No. 336845), the CIFAR Learning
in Machines&Brains program, the European Regional Development Fund
under the project IMPACT (reg. no. CZ.02.1.01/0.0/0.0/15 003/0000468)
and the French government under management of Agence Nationale de
la Recherche as part of the ”Investissements d’avenir” program, reference
ANR-19-P3IA-0001 (PRAIRIE 3IA Institute).
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Fig. 1: Visually guided rearrangement planning. Given a source
(a) and target (b) RGB images depicting a robot and multiple
movable objects, our approach estimates the positions of objects
in the scene without the need for explicit camera calibration and
efficiently finds a sequence of robot actions (c) to re-arrange the
scene into the target scene. Final object configuration after re-
arrangement by the robot is shown in (d).

target one. The current and target states are described only
by a single image taken from an uncalibrated RGB camera.

Rearrangement planning has a long history in robotics
[1]–[6] and remains an active research topic [7]–[10] in the
motion planing community. The goal is to find a sequence
of transit and transfer motions [1,5] to move a set of
objects from an initial arrangement to a target arrangement,
while avoiding collisions with the environment. This leads
to a complex sequential decision process, whose complexity
depends on the number of objects to move, on the free-space
available around the objects, and the robot kinematics.

Several solutions have been proposed in the literature
which can be roughly classified into two groups. Methods
in the first group [6,8]–[12] rely on the task and motion
planning hierarchy where a high-level task planner is com-
bined with a local motion planner [3]. Methods in the second
group [2,4,13,14] aim at solving a single unified formulation
of the problem by using classic sample-based algorithms
such as Probabilistic RoadMap (PRM) or Rapidly-Exploring
Random Tree (RRT) [3] or use advanced optimization strate-
gies to solve a unique optimization instance [15].

While methods from both groups have been shown to
work well in practice with few objects, existing methods do
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Fig. 2: Approach overview. Given an image of the scene, the
visual state prediction module outputs a list of objects and their
coordinates in the robot coordinate frame. Together with a target
state, these serve as inputs to the task and motion planning module
which combines Monte-Carlo Tree Search with a standard robot
motion planning algorithm.

not scale to a large set of objects, because the number of
possible action sequences increases exponentially with the
number of objects to move. Some recent methods [8,10,13]
scale better with the number of objects but these methods
either only focus on feasibility, producing solutions with
sub-optimal number of grasps [8], or are limited to specific
constrained scenarios, for example, with explicitly available
buffer space [10] or strict constraints of monotony (i.e. an
object can be moved only once during the plan).

In this work we describe an efficient and generic approach
for rearrangement planning that overcomes these limitations:
(i) it scales well with the number of objects, by taking
only 60 ms to plan complex rearrangement scenarios for
multiple objects, and (ii) it can be applied to the most
challenging table-top re-arrangement scenarios, not requiring
explicit buffer space. Our approach is based on Monte-Carlo
Tree Search [16], which allows us to lower the combina-
torial complexity of the decision process and to find an
optimistic number of steps to solve the problem, by making
a compromise between exploration (using random sampling)
and exploitation (biasing the search towards the promising
already sampled action sequences to cut off some of the
search directions).

To demonstrate the benefits of our planning approach in
real scenarios we also introduced a multi-object calibration-
free deep neural network architecture for object position
estimation. It is trained entirely from synthetic images and,
compared to other currently available methods [17]–[20],
does not use markers or require known CAD models of
the specific observed object instances. To the best of our
knowledge, the approach we present is the first one able
to locate multiple objects in such difficult and generic
conditions. This is of high practical interest, since it allows
to perform the full task using only a single non-calibrated,
or even hand-held, RGB camera looking at the robot.

Our complete pipeline for visually guided rearrangement
planning, illustrated in Fig. 2, is composed of three main
stages. The goal of the first stage, visual state prediction
(section III), is to estimate the positions of multiple objects
relative to a robot given a single non-calibrated image of the
scene. The second stage (Sec. IV), is our MCTS-based task
planner: at each planning step, this module chooses which
object to move and computes its new desired position in

the workspace. The last stage is a standard RRT-based local
motion planner which plans robot movements given the high-
level plan computed by the MCTS planner.

II. RELATED WORK

We build our framework on results in robotics, search
algorithms and computer vision, which we review below.
Rearrangement planning is NP-hard [21]. As a result, stan-
dard hierarchical [6,8,9,12] and randomized methods [2,4,14]
for solving general manipulation planning problems do not
scale well with the number of objects. The most efficient and
scalable high-level planners only address specific constrained
set-ups leveraging the structure of the rearrangement problem
[8,10,13]. In addition, they often focus on feasibility but do
not attempt to find high-quality solutions with a low number
of object moves [8,13]. For instance, some methods [13] only
consider the monotone problem instances, where each object
can be grasped at most once. In contrast, our method finds
high-quality plans but also addresses the more general cases
of non-monotone re-arrangement problems, which are known
to be significantly harder [4]. Others works have looked at
finding optimal plans [10] but address only constrained set-
ups that have available buffer space (i.e. space that does not
overlap with the union of the initial and target configura-
tions), noting that solving the general case without available
buffer space is significantly harder [10]. In this work, we
address this more general case and describe an approach
that efficiently finds high-quality re-arrangement solutions
without requiring any available buffer space. In addition and
unlike previous works [8,10,13], we also propose a complete
system able to operate from real images in closed loop.

Search algorithms. The problem of rearrangement plan-
ning can be posed as a tree search. Blind tree search
algorithms such as Breadth-First search (BFS) [22] can be
used to iteratively expand nodes of a tree until a goal node
is found, but these methods do not exploit information about
the problem (e.g. a cost or reward) to select which nodes
to expand first, and typically scale exponentially with the
tree depth. Algorithms such as greedy BFS [22] allow to
exploit a reward function to drive the exploration of the
tree directly towards nodes with high reward, but might
get stuck in a local mimima. Other algorithms such as
A? [23] can better estimate the promising branches using
additional hand-crafted heuristic evaluation function. We
choose Monte-Carlo Tree Search over others, because it only
relies on a reward and iteratively learns a heuristic (the
value function) which allows to efficiently balance between
exploration and exploitation. It has been used in related areas
to solve planning and routing for ground transportation [24]
and to guide the tree-search in cooperative manipulation [25].
MCTS is also at the core of AlphaGo, the first system able to
achieve human performance in the game of Go [26], where it
was combined with neural networks to speed-up the search.
These works directly address problems whose action space
is discrete by nature. In contrast, the space of possible object
arrangements is infinite. We propose a novel discrete action



parameterization of the rearrangement planning problem
which allows us to efficiently apply MCTS.
Vision-based object localization. In robotics, fiducial mark-
ers are commonly used for detecting the objects and pre-
dicting their pose relative to the camera [17] but their use
limits the type of environments the robot can operate in. This
constraint can be removed by using a trainable object detec-
tor architecture [18]–[20,27]–[29]. However, these methods
often require gathering training data for the target objects
at hand, which is often time consuming and requires the
knowledge of the object (e.g. in the form its 3D model)
beforehand. In addition, these methods estimate the pose
of the objects in the frame of the camera and using these
predictions for robotic manipulation requires calibration of
the camera system with respect to the robot. The calibration
procedure [30,31] is time-consuming and must be redone
each time the camera is moved. More recently, [32] proposed
to directly predict the position of a single object in the robot
coordinate frame by training a deep network on hundreds of
thousands of synthetically generated images using domain
randomization [32]–[35]. We build on the work [32] and
extend it for predicting the 2D positions of multiple objects
with unknown dimensions relative to the robot.

III. VISUAL SCENE STATE PREDICTION WITH MULTIPLE
OBJECTS

In this section, we detail the visual state prediction stage.
Our visual system takes as input a single photograph of
a scene taken from an uncalibrated camera and predicts a
workspace state that can then be used for rearrangement-
planning. More precisely it outputs the 2D positions of
a variable number of objects expressed in the coordinate
system of the robot. This problem is difficult because the
scene can contain a variable number of objects, placed on
different backgrounds, in variable illumination conditions,
and observed from different viewpoints, as illustrated in
Fig. 1. In contrast to [33], we do not assume that the different
types of objects are known at training time. In contrast to
state-of-the-art pose estimation techniques in RGB images
[17,18], we do not use markers and do not assume the CAD
models of the objects are known at test time.

To address these challenges, we design a visual recognition
system that does not require explicit camera calibration and
outputs accurate 2D positions. Moreover, even if we deploy
our system on a real robot, we show that it can be trained en-
tirely from synthetic data using domain randomization [33],
avoiding the need for real training images. Also, our system
does not require any tedious camera calibration because
it is trained to predict positions of objects directly in the
coordinate frame of the robot, effectively using the robot
itself, which is visible in the image, as an (known) implicit
calibration object. This feature is important for applications
in unstructured environments such as construction sites con-
taining multiple unknown objects and moving cameras for
instance. Our recognition system is summarized in Fig. 3
and in the rest of this section, we present in more details the
different components.

A. Position prediction network

In this section, we give details of the network for pre-
dicting a dense 2D position field and an object segmentation
mask. The 2D position field maps each input pixel to a 2D
coordinate frame of the robot acting as implicit calibration.
Architecture. Our architecture is based on ResNet-34 [36].
We remove the average pooling and fully connected layers
and replace them by two independent decoders. Both de-
coders use the same architecture: four transposed convolution
layers with batch normalization and leaky ReLU activations
in all but the last layer. The resolution of the input image is
320 × 240 and the spatial resolution of the output of each
head is 85 × 69. We add the 6D joint configuration vector
of the robot as input to the network by copying it into a
tensor of size 320 × 240 × 6, and simply concatenating it
with the three channels of the input image. The two heads
predict an object mask and a 2D position field which are
visualized in Fig. 3. In addition, we found that predicting
depth and semantic segmentation during training increased
the localization accuracy at test time. These modalities are
predicted using two additionnal decoders with the same
architecture.
Synthetic training data. Following [32]–[35], we use do-
main randomization for training our network without requir-
ing any real data. We generate two million images displaying
the robot and a variable number of objects with various
shapes (cubes, cylinders and triangles) in its workspace. In
each scene, we randomly sample from 1 up to 12 objects,
with various dimensions between 2.5 and 8 cm. Examples
of training images are shown in Fig. 4. Randomization
parameters include the textures of the robot and objects, the
position of the gripper, the position, orientation and field of
view of the camera, the positions and intensities of the light
sources and their diffuse/ambient/specular coefficients.
Training procedure. We train our network by minimizing
the following loss: L = Lpos+Lmask+Lsegm+Ldepth, where
the individual terms are explained next. For the position field
loss we use Lpos =

∑
i,j δi,j

[
(x̂i,j − xi,j)2 + (ŷi,j − yi,j)2

]
where (i, j) are the pixel coordinates in the output; δi,j
is the binary object mask; xi,j , yi,j are the ground truth
2D coordinates of the center of the object (that appears at
pixel (i, j)) and x̂i,j , ŷi,j are the components of the predicted
position field. For Lmask, Lsegm and Ldepth we respectively
use the following standard losses: binary cross entropy loss,
cross entropy loss and mean squared error. These losses are
computed pixel-wise. Note that depth is not used to estimate
object positions at test time. Lsegm and Ldepth are auxiliary
losses used only for training, similar to [35]. We use the
Adam optimizer [37] and train the network for 20 epochs,
starting with a learning rate of 10−3 and decreasing it to
10−4 after 10 epochs.

B. Identifying individual objects

The model described above predicts a dense 2D position
field and an object mask but does not distinguish individual
objects in the scene. Hence, we use the following procedure
to group pixels belonging to each individual object. Applying
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Fig. 3: The visual recognition system. The input is an image of the scene captured by an uncalibrated camera together with the joint
configuration vector of the depicted robot. Given this input a convolutional neural network (CNN) predicts the foreground-background
object segmentation mask and a dense position field that maps each pixel of the (downsampled) input image to a 2D coordinate in a
frame centered on the robot. The estimated masks and position fields are then combined by the object identification module to identify
individual object instances. The output is a set of image patches associated with the 2D position of the object in the workspace.

Fig. 4: Examples of synthetic training images. We generate im-
ages displaying the robot and a variable number of objects in
its workspace. The images are taken by cameras with different
viewpoints and depicting large scene appearance variations.

a threshold to the predicted mask yields a binary object
segmentation. The corresponding pixels of the 2D position
field provide a point set in the robot coordinate frame.
We use the mean-shift algorithm [38] to cluster the 2D
points corresponding to the different objects and obtain
an estimate of the position of each object. The resulting
clusters then identify pixels belonging to each individual
object providing instance segmentation of the input image.
We use the resulting instance segmentation to extract patches
that describe the appearance of each object in the scene.

C. Source-Target matching

To perform rearrangement, we need to associate each
object in the current image to an object in the target
configuration. To do so, we use the extracted image patches.
We designed a simple procedure to obtain matches robust
to the exact position of the object within the patches, their
background and some amount of viewpoint variations. We
rescale patches to 64×64 pixels and extract conv3 features
of an AlexNet network trained for ImageNet classification.
We finally run the Hungarian algorithm to find the one-to-one
matching between source and target patches maximizing the
sum of cosine similarities between the extracted features. We
have tried using features from different layers, or from the
more recent network ResNet. We found the conv3 features
of AlexNet to be the most suited for the task, based on a
qualitative evaluation of matches in images coming from the
dataset presented in Sec. V-B . Note that our patch matching
strategy assumes all objects are visible in the source and
target images.

IV. REARRANGEMENT PLANNING WITH MONTE-CARLO
TREE SEARCH (MCTS)

Given the current and target arrangements, the MCTS task
planner has to compute a sequence of pick-and-place actions
that transform the current arrangement into the target one.
In this section, we first review Monte-Carlo Tree Search and
then explain how we adapt it for rearrangement planning.

A. Review of Monte-Carlo Tree Search

The MCTS decision process is represented by a tree,
where each node is associated to a state s, and each edge
represents a discrete action a = {1, ..., N}. For each node in
the tree, a reward function r(s) gives a scalar representing
the level of accomplishment of the task to solve. Each node
stores the number of times it has been visited n(s) and
a cumulative reward w(s). The goal of MCTS is to find
the most optimistic path, i.e. the path that maximizes the
expected reward, starting from the root node and leading to
a leaf node solving the task. MCTS is an iterative algorithm
where each iteration is composed of three stages.

During the selection stage, an action is selected using the
Upper Confidence Bound (UCB) formula:

U(s, a) = Q(s, a) + c

√
2 log n(s)

n(f(s, a))
, (1)

where f(s, a) is the child node of s corresponding to the
edge (s, a) and Q(s, a) = w(f(s,a))

n(f(s,a)) is the expected value at
state s when choosing action a. The parameter c controls the
trade-off between exploiting states with high expected value
(first term in (1)) and exploring states with low visit count
(second term in (1)). We found this trade-off is crucial for
finding good solutions in a limited number of iterations as
we show in Sec. V-A. The optimistic action selected aselected
is the action that maximizes U(s, a) given by (1). Starting
from the root node, this stage is repeated until an expandable
node (a node that has unvisited children) is visited. Then,
a random unvisited child node s′ is added to the tree in
the expansion stage. The reward signal r(s′) is then back-
propagated towards the root node in the back-propagation
stage, where the cumulative rewards w and visit counts n of
all the parent nodes are updated. The search process is run
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Fig. 5: Examples of source and target object configurations. The
planner has to find a sequence of actions (which object to move
and where to displace it inside the workspace), while avoiding
collisions with other objects. Workspace limits are shown as dashed
lines. Grey circles depict the collision radius for each object.
We demonstrate our method solving this complex rearrangement
problem in the supplementary video. Here source and target states
are known (state estimation network is not used).

iteratively until the problem is solved or a maximal number
of iterations is reached.

B. Monte-Carlo Tree Search task planner

We limit the scope to tabletop rearrangement planning
problems with overhand grasps but our solution may be
applied to other contexts. We assume that the complete state
of any object is given by its 2D position in the workspace,
and this information is sufficient to grasp it. The movements
are constrained by the limited workspace, and actions should
not result in collisions between objects. The planner has to
compute a sequence of actions which transform the source
arrangement into the target arrangement while satisfying
these constraints. Each object can be moved multiple times
and we do not assume that explicit buffer space is available.
An example of source and target configurations is depicted
in Fig. 5. We now detail the action parametrization and the
reward.

Let {Ci}i=1,..,N denote the list of 2D positions that define
the current arrangement with N objects, {Ii}i and {Ti}i the
initial and target arrangements respectively, which are fixed
for a given rearrangement problem. MCTS state corresponds
to an arrangement s = {Ci}i.

As a reward r(s) we use the number of objects located
within a small distance of their target position:

r(s) =

N∑
i=1

Ri with Ri =

{
1 if ||Ci − Ti||2 ≤ ε
0 otherwise.

, (2)

where N is the number of objects, Ci is the current location
of object i, Ti is the target location of object i and ε is a
small constant.

We define a discrete action space with N actions where
each action corresponds to one pick-and-place motion mov-
ing one of the N objects. The action is hence pararametrized
by 2D picking and placing positions defined by the function
GET MOTION outlined in detail in Algo. 1. The input to
that function is the current state {Ci}i, target state {Ti}i
and the chosen object k that should be moved. The function
proceeds as follows (please see also Algo. 1). First, if
possible, the object k is moved directly to it’s target Tk
(lines 3-4 in Algo. 1), otherwise the obstructing object j
which is the closest to Tk (line 7 in Algo. 1) is moved to

a position inside the workspace that does not overlap with
Tk (lines 8-10 in Algo. 1). The position P where to place
j is found using random sampling (line 8). For collision
checks, we consider simple object collision models with
fixed radiuses as depicted in Figure 5. If no suitable position
is found, no objects are moved (line 11). Note that additional
heuristics could be added to the action parametrization to
further improve the quality of the resulting solutions and to
reduce the number of iterations required. Examples include
(i) avoiding to place j at target positions of other objects and
(ii) restricting the search for position P in a neighborhood of
Cj . The parameters of the pick-and-place motion for a given
state and MCTS action are computed only once during the
expansion stage and then cached in the tree and recovered
once a solution is found.

Algorithm 1: Action Parametrization
1 function GET MOTION({Ci}i, {Ti}i, k):
2 /* Check if object k can be moved to Tk */
3 if IS MOVE VALID ({Ci}i6=k , Ck , Tk) then
4 return (Ck , Tk)
5 else
6 /* Move obstructing object j to position P*/
7 j = FIND CLOSEST OBJECT ({Ci}i, Tk)
8 found, P = FIND POSITION ({Ci}i 6=j ∪ {Tk})
9 if found then

10 return (Cj , P)

11 return (Ck , Ck)

As opposed to games where a complete game must be
played before having access to the outcome (win or lose), the
reward in our problem is defined in every state. Therefore, we
found that using a MCTS simulation stage is not necessary.

The number of MCTS iterations to build the tree is typi-
cally a hyper-parameter. In order to have a generic method
that works regardless of the number of objects, we adopt the
following strategy: we run MCTS until a maximum (large)
number of iterations is reached or until a solution is found.
We indeed noticed that the first solution provided by MCTS
is already sufficiently good compared to the next ones when
letting the algorithm run for longer.

The presented approach only considers tabletop rearrange-
ment planning with overhand grasps. The main limitation
is that we assume the motion planning algorithm can suc-
cessfully plan all the pick-and-place motions computed in
Algo. 1. This assumption does not hold for more complex en-
vironment where some objects are not reachable at any time
(e.g. moving objects in a constrained space such as inside a
refrigerator). In this case, the function IS MOVE VALID
can be adapted to check whether the movement can be
executed on the robot. Note that we consider simple collision
models in FIND POSITION but meshes of the objects and
environment could be used if available.

V. EXPERIMENTS

We start by evaluating planning (section V-A) and visual
scene state estimation (section V-B) separately, demonstrat-
ing that: (i) our MCTS task planner scales well with the
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Fig. 6: Comparison of the proposed MCTS planning approach
against the strong baseline heuristic. MCTS is able to solve more
complex scenarios (with more objects) in a significantly lower
number of steps. MCTS does not require free space to be available
or that the problems are monotone.

number of objects and is efficient enough so that it can
be used online (i.e. able to recompute a plan after each
movement); (ii) the visual system detects and localizes the
objects with an accuracy sufficient for grasping. Finally, in
section V-C we evaluate our full pipeline in challenging
setups and demonstrate that it can efficiently perform the
task and can recover from errors and perturbations as also
shown in the supplementary video.

A. MCTS planning

Experimental setup. To evaluate planning capabilities and
efficiency we randomly sample 3700 initial and target config-
urations for 1 up to 37 objects in the workspace. It is difficult
to go beyond 37 objects as it becomes hard to find valid
configurations for more due to the workspace constraints.
Planning performance. We first want to demonstrate the
interest of MCTS-based exploration compared to a simpler
solution in term of efficiency and performances. As a base-
line, we propose a fast heuristic search method, which simply
iterates over all actions once in a random order, trying to
complete the rearrangement using the same action space as
our MCTS approach, until completion or a time limit is
reached. Instead of moving only the closest object that is
obstructing a target position Tk, we move all the objects that
overlap with Tk to their target positions or to a free position
inside the workspace that do not overlap with Tk. Our MCTS
approach is compared with this strong baseline heuristic in
Fig. 6. Unless specified otherwise, we use c = 1 for MCTS
and set the maximum number of MCTS iterations to 100000.

As shown in Fig. 6(a), the baseline is able to solve
complex instances but its success rate starts dropping after
33 objects whereas MCTS is able to find plans for 37 objects
with 80% success. More importantly, as shown in Fig. 6(b),
the number of object movements in the plans found by
MCTS is significantly lower. For example, rearranging 30
objects takes only 40 object moves with MCTS compared
to 60 with the baseline. This difference corresponds to more
than 4 minutes of real operation in our robotics setup. The
baseline and MCTS have the same action parametrization
but MCTS produces higher quality plans because it is able
to take into consideration the future effects of picking-up an
object and placing it at a specific location. On a laptop with a
single CPU core, MCTS finds plans for 25 objects in 60 ms.
This high efficiency allows to replan after each pick-and-
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Fig. 7: Exploration-exploitation tradeoff in MCTS. MCTS per-
forms better than a random baseline heuristic search. Balancing the
exploration term of UCB with the parameter c is crucial for finding
good solutions while limiting the number of collision checks.

place action and perform rearrangement in a closed loop.
Exploration-exploitation trade-off. We now want to
demonstrate that the benefits of our planning method are
due to the quality of the exploration/exploitation trade-off in
MCTS. An important metric is the total number of collision
checks that the method requires for finding a plan. The
collision check (checking whether an object can be placed
to a certain location) is indeed one of the most costly
operation when planning. Fig. 6(c) shows that MCTS uses
more collision checks compared to the baseline because
MCTS explores many possible optimistic action sequences
while the baseline is only able to find a solution and does not
optimize any objective. We propose another method that we
refer to as baseline+randperm which solves the problem with
the baseline augmented with a random search over action
sequences: the baseline is run with different random object
orders until a number of collision checks similar to MCTS
with c = 1 is reached and we keep the solution which
has the smallest number of object moves. As can be see
in Fig. 7, baseline+randperm has a higher success rate and
produces higher quality plans with lower number of object
moves compared to the baseline (Fig. 7(b)). However, MCTS
with c = 1, still produces higher quality plans given the
same amount of collision checks. The reason is that base-
line+randperm only relies on a random exploration of action
sequences while MCTS allows to balance the exploration
of new actions with the exploitation of promising already
sampled partial sequences through the exploration term of
UCB (equation 1). In Fig. 7, we also study the impact of the
exploration parameter c. MCTS with no exploration (c = 0)
finds plans using fewer collision checks compared to c > 0
but the plans have high number of object moves. Increasing c
leads to higher quality plans while also increasing the number
of collision checks. Setting c too high also decreases the
success rate (c=3, c=10 in Fig 7(a)) because too many nodes
are added to the tree and the limit on the number of MCTS
iterations is reached before finding a solution.
Generality of our set-up. Previous work for finding high-
quality solutions to rearrangement problems has been limited
to either monotone instances [13] or instances where buffer
space is available [10]. The red curve in Fig. 6(a) clearly
shows that in our set-up the number of problems where
some buffer space is available for at least one object quickly
decreases with the number of objects in the workspace. In
other words, the red curve is an upper bound on the success
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Fig. 8: Comparison of our MCTS planning approach with several
other state-of-the-art methods. MCTS performs better than other
methods applied to the rearrangement planning problem. MCTS
finds high quality plans (b) using few collisions checks (c) with
100% success rate for up to 10 objects.

rate of [10], which requires available buffer space. In order
to evaluate the performance of our approach on monotone
problems, we generated the same number of problems but
the target configuration was designed by moving object
from the initial configuration one by one, in a random
order into free space. This ensures that the instances are
monotone and can be solved by moving each object once.
Our MCTS-based approach was able to solve 100% of these
instances optimally in N steps. Our method can therefore
solve the problems considered in [13] while also being
able to handle significantly more challenging non-monotonic
instances, where objects need to be moved multiple times.
Comparisons with other methods. To demonstrate that
other planning methods do not scale well when used in
a challenging scenario similar to ours, we compared our
planner with three other methods of the state of the art:
STRIPStream [12], the Humanoid Path-Planner [14], mRS
and plRS [8]. Results are presented in Fig. 8 for 900
random rearrangement instances, we limit the experiments to
problems with up to 10 objects as evaluating these methods
for more complex problems is difficult given a reasonable
amount of time (few hours). HPP [14] is the slowest method
and could not handle more than 4 objects, taking more
than 45 minutes of computation for solving the task with
4 objects. HPP fails to scale because it attempts to solve the
combined task and motion planning problem at once using
RRT without explicit task/motion planning hierarchy thus
computing many unnecessary robot/environment collision
checks. The other methods adopt a task/motion planning
hierarchy and we compare results for the task planners only.
The state-of-the-art task and motion planner for general
problems, STRIPSStream [12], is able to solve problems with
up to 8 objects in few seconds but do not scale (Fig. 8(a))
when target locations are specified for all objects in the
scene as it is the case for rearrangement planning problems.
The success rate of specialized rearrangement methods, mRS
and plRS, drops when increasing number of objects because
these methods cannot handle situations where objects are
permuted, i.e. placing an object at its target position requires
moving another objects first thus requiring longer term
planning capability. When used in combination with a PRM,
more problems can be addressed but the main drawback is
that these methods are slow as they perform a high number

Error below threshold (%)
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Object identification success (%)

number of objects number of objects
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Fig. 9: (a) Example images from the dataset that we use to evaluate
the accuracy of object position estimation as a function of number of
objects. (b) Evaluation of our visual system for a variable number of
objects. We report the localization accuracy (left) and the percentage
of images where all objects are correctly identified (right). Please
see the supplementary video for examples where our system is used
in more challenging visual conditions.

of collision checks (Fig. 8(c)). Overall, the main limitation
of STRIPSTream, PRM(mRS) and PRM(plRS) comes from
the fact that the graph of possible states is sampled randomly
whereas MCTS will prioritize the most optimistic branches
(exploitation). MCTS and it’s tree structure also allows to
build the action sequence progressively (moving one object
at once) compared to PRM-based approaches that sample
entire arrangements and then try to solve them.

B. Visual scene state estimation

Experimental setup. To evaluate our approach, we created a
dataset of real images with known object configurations. We
used 1 to 12 small 3.5 cm cubes, 50 configurations for each
number of cubes, and captured images using two cameras
for each configuration, leading to a total of 1200 images
depicting 600 different configurations. Example images from
this evaluation set are shown in Fig. 9(a).
Single object accuracy. When a single object is present in
the image, the mean-shift algorithm always succeeds and the
precision of our object position prediction is 1.1 ± 0.6 cm.
This is comparable to the results reported in [33] for posi-
tioning of a known object with respect to a known table
without occlusions and distractors, 1.3 ± 0.6 cm, and to
results reported in [32] for the coarse alignment of a single
object with respect to a robot, 1.7 ± 3.4 cm. The strength of
our method, however, is that this accuracy remains constant
for up to 10 previously unknown objects, a situation that
neither [33] nor [32] can deal with.
Accuracy for multiple objects. In Fig. 9(b), we report
the performance of the object localization and object iden-
tification modules as a function of the number of objects.
For localization, we report the percentage of objects local-
ized with errors below 2 cm and 3 cm respectively. For 10
objects, the accuracy is 1.1 ± 0.6 cm. The 3 cm accuracy
approximately corresponds to the success of grasping, that
we evaluate using a simple geometric model of the gripper.
Note that grasping success rates are close to 100% for up
to 10 objects. As the number of objects increases, the object
identification accuracy decreases slightly because the objects
start to occlude one each other in the image. This situation
is very challenging when the objects are unknown because
two objects that are too close can be perceived as a single
larger object. Note that we are not aware of another method



that would be able to directly predict the workspace position
of multiple unseen objects with unknown dimensions using
only (uncalibrated) RGB images as input.
Discussion. Our experiments demonstrate that our visual
predictor is able to scale well up to 10 objects with a
constant precision that is sufficient for grasping. We have
also observed that our method is able to generalize to objects
with shapes not seen during training, such as cups or plastic
toys. While we apply our visual predictor to visually guided
rearrangement planning, it could be easily extended to other
contexts using additional task-specific synthetic training data.
Accuracy could be further improved using a refinement
similar to [32]. Our approach is limited to 2D predictions
for table-top rearrangement planning. Predicting 6DoF pose
of unseen objects precise enough for robotic manipulation
remains an open problem.

C. Real robot experiments using full pipeline

We evaluated our full pipeline, performing both online
visual scene estimation and rearrangement planning by per-
forming 20 rearrangement tasks, each of them composed
with 10 objects. In each case, the target configuration was
described by an image of a configuration captured from
a different viewpoint, with a different table texture and
a different type of camera. Despite the very challenging
nature of the task, our system succeeded in correctly solving
17/20 of the experiments. In case of success, our system
used on average 12.2 steps. The three failures were due to
errors in the visual recognition system (incorrectly estimated
number of objects, mismatch of source and target objects).
Interestingly, the successful cases were not always perfect
runs, in the sense that the re-arrangement strategy was not
optimal or that the visual estimation confused two objects
at one step of the matching process. However, our system
was able to recover robustly from these failures because
it is applied in a closed-loop fashion, where then plan is
recomputed at each object move.

The supplementary video shows additional experi-
ments including objects other than cubes, different back-
grounds, a moving hand-held camera and external perturba-
tions, where an object is moved during the rearrangement.
These results demonstrate the robustness of our system. To
the best of our knowledge, rearranging a priory unknown
number of unseen objects with a robotic arm while relying
only on images captured by a moving hand-held camera and
dealing with object perturbations has not been demonstrated
in prior work.

VI. CONCLUSION

We have introduced a robust and efficient system for
online rearrangement planning, that scales to many objects
and recovers from perturbations, without requiring calibrated
camera or fiducial markers on objects. To our best knowl-
edge, such a system has not been shown in previous work.
At the core of our approach is the idea of applying MCTS
to rearrangement planning, which leads to better plans,
significant speed-ups and ability to address more general set-
ups compared to prior work. While in this work we focus

on table-top re-arrangement, the proposed MCTS approach
is general and opens-up the possibility for efficient re-
arrangement planning in 3D or non-prehensile set-ups.
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N. Mansard, and F. Lamiraux, “HPP: A new software for constrained
motion planning,” in IROS, 2016.

[15] M. Toussaint, “Logic-geometric programming: An optimization-based
approach to combined task and motion planning,” in Twenty-Fourth
International Joint Conference on Artificial Intelligence, 2015.

[16] R. Munos et al., “From bandits to monte-carlo tree search: The op-
timistic principle applied to optimization and planning,” Foundations
and Trends R© in Machine Learning, vol. 7, no. 1, pp. 1–129, 2014.

[17] S. Garrido-Jurado et al., “Automatic generation and detection of highly
reliable fiducial markers under occlusion,” Pattern Recognit., 2014.

[18] Y. Li, G. Wang, X. Ji, Y. Xiang, and D. Fox, “Deepim: Deep iterative
matching for 6d pose estimation,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 683–698.

[19] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A
convolutional neural network for 6d object pose estimation in cluttered
scenes,” in RSS, 2018.

[20] J. Tremblay et al., “Deep object pose estimation for semantic robotic
grasping of household objects,” in CoRL, 2018.

[21] G. Wilfong, “Motion planning in the presence of movable obstacles,”
Annals of Mathematics and Artificial Intelligence, 1991.

[22] S. Russel and P. Norvig, “Artificial intelligence: A modern approach,”
2003.

[23] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, 1968.

[24] C. Paxton, V. Raman, G. D. Hager, and M. Kobilarov, “Combining
neural networks and tree search for task and motion planning in
challenging environments,” in IROS, 2017.

[25] M. Toussaint and M. Lopes, “Multi-bound tree search for logic-
geometric programming in cooperative manipulation domains,” in
ICRA, 2017.

[26] D. Silver and A. H. et al., “Mastering the game of go with deep neural
networks and tree search,” Nature, 2016.



[27] J. Wu, B. Zhou, R. Russell, V. Kee, S. Wagner, M. Hebert, A. Torralba,
and D. M. S. Johnson, “Real-time object pose estimation with pose
interpreter networks,” in IROS, 2018.

[28] A. Zeng, K.-T. Yu, S. Song, D. Suo, E. Walker Jr, A. Rodriguez,
and J. Xiao, “Multi-view self-supervised deep learning for 6D pose
estimation in the amazon picking challenge,” in ICRA, 2016.
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