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Abstract 

Endosymbiosis has been common all along eukaryotic evolution, providing opportunities for 

genomic and organellar innovation. Plastids are a prominent example. After the primary 

endosymbiosis of the cyanobacterial plastid ancestor, photosynthesis spread in many eukaryotic 

lineages via secondary endosymbioses involving red or green algal endosymbionts and diverse 

heterotrophic hosts. However, the number of secondary endosymbioses and how they occurred 

remain poorly understood. In particular, contrasting patterns of endosymbiotic gene transfer (EGT) 

have been detected and subjected to various interpretations. In this context, accurate detection of 

EGTs is essential to avoid wrong evolutionary conclusions. We have assembled a strictly selected 

set of markers that provides robust phylogenomic evidence suggesting that nuclear genes involved 

in the function and maintenance of green secondary plastids in chlorarachniophytes and euglenids 

have unexpected mixed red and green algal origins. This mixed ancestry contrasts with the clear red 

algal origin of most nuclear genes carrying similar functions in secondary algae with red plastids. 
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Photosynthesis in eukaryotes takes place in a specialized compartment: the plastid. This organelle 

first evolved in a common ancestor of Archaeplastida (i.e., Viridiplantae + Rhodophyta + 

Glaucophyta) through the endosymbiosis of a cyanobacterium inside a eukaryotic host (Moreira and 

Philippe 2001; Archibald 2009; Keeling 2013). This primary endosymbiotic event entailed massive 

endosymbiotic gene transfer (EGT) from the cyanobacterial genome to the host nucleus (Weeden 

1981; Kleine et al. 2009). Consequently, most proteins required for the proper functioning of 

primary plastids are encoded in the nuclear genome and addressed to the plastid lumen via 

specialized signal sequences and a translocation apparatus (Gutensohn et al. 2006). Other 

photosynthetic eukaryotic phyla obtained their plastids through secondary endosymbiosis, i.e. the 

symbiosis of either green or red algae within another eukaryotic cell, or even through tertiary 

endosymbiosis (symbiosis of secondary photosynthetic eukaryotes within eukaryotic hosts) 

(Delwiche 1999; Archibald 2009; Keeling 2013). Euglenida (Excavata) and Chlorarachniophyta 

(Rhizaria) carry green algal secondary plastids ('green plastids') acquired through two independent 

endosymbioses involving Prasinophyceae and Ulvophyceae green algae, respectively (Rogers et al. 

2007; Hrdá et al. 2012; Suzuki et al. 2016). Photosynthetic species in the Cryptophyta, Alveolata, 

Stramenopiles and Haptophyta (CASH) lineages have plastids derived from red algae ('red plastids') 

but so far it has been impossible to retrace a consensual evolutionary history (Lane and Archibald 

2008; Archibald 2009; Keeling 2013). Whereas phylogenomic analyses of plastid-encoded genes 

support the monophyly of all CASH plastids, arguing for a single red algal secondary 

endosymbiosis (Yoon et al. 2002; Muñoz-Gómez et al. 2017), most of the phylogenies based on 

host nuclear genes do not retrieve their monophyly (Baurain et al. 2010; Burki et al. 2016). To 

reconcile these incongruent results, some authors have proposed the hypothesis that a unique 

phylum (which may have gone extinct or evolved into one of the extant CASH phyla) acquired a 

red alga through secondary endosymbiosis and originated the first lineage of red secondary algae. 

Subsequently, this lineage would have transmitted the secondary red plastid to other CASH phyla 
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via serial tertiary endosymbioses involving different hosts (Larkum et al. 2007; Sanchez-Puerta and 

Delwiche 2008; Bodył et al. 2009; Baurain et al. 2010; Petersen et al. 2014). 

As for the primary endosymbiosis, each secondary or tertiary endosymbiosis was accompanied 

by numerous EGTs from the nucleus of the endosymbiotic red or green alga to the host nucleus. 

Consequently, secondary photosynthetic eukaryotes possess two types of genes that can inform 

about the phylogenetic identity of their plastids: plastid-encoded genes and nucleus-encoded genes 

acquired via EGT. Genes encoded in primary plastid genomes and the EGTs found in the genomes 

of Archaeplastida are related to cyanobacteria and have helped to identify the cyanobacterial lineage 

at the origin of the first plastid (Ponce-Toledo et al. 2017). Similarly, plastid-encoded genes and 

EGTs found in nuclear genomes of secondary photosynthetic eukaryotes are expected to be useful 

to determine the red or green algal origin of their plastids. Compared to plastid-encoded genes, 

EGTs have the additional advantage that they can inform about the presence and identity of past 

plastids in lineages where plastids have been lost or replaced (cryptic plastid endosymbioses). 

However, if EGTs are valuable to track contemporary and cryptic endosymbioses, their detection 

within whole nuclear genome sequences remains a complex task (Stiller 2011). In the case of 

primary endosymbiosis, EGT detection is rather straightforward because cyanobacterial-type genes 

are easily distinguishable from typical eukaryotic nuclear genes. The situation is more difficult in 

the case of secondary endosymbioses. Indeed, detection of EGT genes transferred from the nucleus 

of green or red algal endosymbionts can be ambiguous due to the poor resolution often found in 

single gene phylogenies that hampers distinguishing EGTs from vertically inherited nuclear genes, 

especially considering the short phylogenetic distance between Archaeplastida and several groups 

of secondary algae. Two studies on red-plastid-bearing algae, the chromerids (Alveolata) and the 

diatoms (Stramenopiles), illustrate this issue. Both reported an unexpected high number of genes 

phylogenetically related to green algal homologs. Whereas in the case of the chromerids the green 

signal was attributed to probable phylogenetic artifacts and the reduced sampling of red algal 
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genome sequences (Woehle et al. 2011), it was interpreted in diatoms as evidence for a cryptic 

green algal endosymbiont (Moustafa et al. 2009). However, the subsequent reanalyses of the same 

genes using richer taxonomic sampling and more robust phylogenetic methods largely erased the 

evidence for cryptic green endosymbioses in these CASH phyla (Burki et al. 2012; Deschamps and 

Moreira 2012;  Moreira and Deschamps 2014).  

The extent and impact of horizontal gene transfer (HGT) on eukaryotic evolution remain 

controversial topics (Leger et al. 2018). HGTs might be valuable to infer the history of genomes and 

lineages (Abby et al. 2012) but they can also introduce inconvenient noise in phylogenomic 

analyses, in particular for the study of EGTs (Stiller 2011). Through time, secondary photosynthetic 

eukaryotes may have accumulated HGTs in their nuclear genomes from various sources, perhaps 

even including non-endosymbiotic red or green algae. Unfortunately, gene phylogenies of such 

HGTs may display topologies comparable to those of EGTs, making them difficult to set apart. In 

this context, anomalous phylogenetic signal in certain secondary photosynthetic groups has been 

interpreted as HGT rather than EGT from cryptic endosymbionts. This is the case of the nuclear 

genome sequence of the green-plastid-containing chlorarachniophyte alga Bigellowiella natans, in 

which 22% of the genes potentially acquired via HGT appeared to have a red algal origin (Curtis et 

al. 2012). Because of the phagotrophic ability of chlorarachniophytes, the presence of these genes 

was considered to be the result of progressive accumulation of HGTs from red algae or from red-

plastid-containing CASH lineages, some eventually substituting original 'green' EGTs (Archibald et 

al. 2003; Yang et al. 2011; Yang et al. 2014). Analogous studies on euglenid species suggested a 

similar trend for several genes involved in central metabolic pathways (Maruyama et al. 2011; Yang 

et al. 2011; Markunas and Triemer 2016). The unexpected presence of those 'red' genes in 

chlorarachniophytes and euglenids was first considered as the result of multiple HGTs (e.g., 

Archibald et al. 2003; Maruyama et al. 2011) but the increasing number of reported cases has 

prompted some authors to speculate on putative cryptic red algal endosymbioses in both lineages 
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(Maruyama et al. 2011; Markunas and Triemer 2016). A systematic investigation of HGT/EGT is 

still missing in euglenids and chlorarachniophytes but, as mentioned above, in the context of 

secondary endosymbioses it can be difficult to distinguish among HGT, EGT, and just unresolved 

trees on the basis of single-gene phylogenies (Deschamps and Moreira 2012).  

In this work, we have focused on a particular group of genes to reduce this uncertainty: genes 

transferred from the original cyanobacterial plastid endosymbiont into the nuclear genome of 

Archaeplastida and subsequently transferred from Archaeplastida into the genomes of complex 

secondary algae. In Archaeplastida, these genes are known to be involved in essential plastid 

functions and tend to be highly conserved (Reyes-Prieto et al. 2006; Deschamps and Moreira 2009), 

so we expected that they can provide strong phylogenetic signal. To identify them, we queried by 

BLAST the whole predicted proteomes of Guillardia theta and Bigelowiella natans against a local 

genome database containing representatives of the three domains of life, in particular a 

comprehensive collection of genomes and transcriptomes of photosynthetic protists (supplementary 

table S1, Supplementary Material online). Guillardia and Bigelowiella proteins with hits in other 

photosynthetic eukaryotes and in cyanobacteria were selected for phylogenetic analysis. Maximum 

likelihood (ML) phylogenetic trees for these proteins were constructed and manually filtered to 

retain those fulfilling two criteria: i) trees have to support a clear separation of Viridiplantae and 

Rhodophyta (with secondary lineages branching within them), and ii) proteins have to be shared by 

at least three secondary photosynthetic lineages. We identified in this way 82 genes most likely 

acquired by secondary photosynthetic eukaryotes from Archaeplastida. 70 were cyanobacterial 

genes likely transferred sequentially through primary and secondary endosymbioses, and 12 were 

derived from diverse bacterial groups likely transferred to a common ancestor of Archaeplastida and 

subsequently transferred to secondary photosynthetic groups (supplementary table S3 and figs. S1-

S82, Supplementary Material online). Interestingly, most of these genes were absent in non-

photosynthetic eukaryotes, supporting that they were not misinterpreted vertically-inherited ones.  
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Most of the 82 ML phylogenies were well resolved and enabled us to unambiguously determine, 

for each secondary lineage, whether the source of the gene was a green or a red alga. As expected, 

in the great majority of our trees (between 84 and 90%, fig. 1A) the genes of red-plastid-endowed 

CASH lineages derived from red algae (e.g., fig. 2A and 2B). Because of their secondary green 

plastids, we expected the opposite situation in chlorarachniophytes and euglenids, namely a 

majority of 'green' genes. However, 42 of the 78 trees where chlorarachniophytes were present 

(54%, fig. 1A) supported a 'red' origin of the corresponding genes (e.g., fig. 2A). Similarly, 22 of the 

61 trees containing euglenids (36%, fig. 1A) also supported a 'red' ancestry (e.g., fig. 2B). These 

surprisingly high values were in sharp contrast with the small number of trees (<10%, fig. 1A) 

showing CASH phyla embedded within green algae. Interestingly, the CASH phyla were 

monophyletic in 7 of these trees, arguing for a common evolutionary origin of the corresponding 

'green' genes. Almost all of the 82 genes identified here encode plastid-targeted proteins involved in 

essential plastid functions (fig. 1B and supplementary table S4, Supplementary Material online). For 

instance, in both chlorarachniophytes and euglenids, these nuclear-encoded 'red' genes participate in 

plastid genome expression (e.g., elongation factors and aminoacyl-tRNA synthetases), light 

harvesting, chlorophyll biosynthesis, and photosystem II assembly. Keeping these important genes 

implies a plastid-related selective pressure, which excludes that they could have accumulated in the 

heterotrophic ancestors of green secondary photosynthetic eukaryotes prior to plastid acquisition.  

The marked disproportion of unexpected gene sources in green versus red secondary 

photosynthetic lineages is intriguing and may be interpreted in different ways. First, the green algal 

ancestors of chlorarachniophyte and euglenid plastids may have had a high proportion of red algal 

HGT genes in their genomes. However, such a high HGT proportion involving essential genes has 

not been reported so far in any green alga. Second, these 'red' genes may have accumulated in 

chlorarachniophyte and euglenid nuclear genomes by numerous HGTs, for example from food 

sources. This would imply that, for unknown reasons, HGT is much more frequent in secondary 
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green lineages than in red ones, as well as a long-lasting feeding preference towards red prey in 

both secondary green lineages. Moreover, the 'red' genes are shared by all the species of the 

relatively rich taxon sampling available for chlorarachniophytes (fig. 2A), indicating that their 

acquisition predated the diversification of this group and stopped afterwards (we did not retrieve 

any tree supporting a recent HGT involving only a subgroup of chlorarachniophytes). Our data 

therefore argue for an ancient timing of 'red' gene acquisition. These observations may support a 

third interpretation: the 'red' genes are shared by all SAR lineages (Stramenopiles, Alveolata, and 

Rhizaria) because they were acquired from a single common secondary red algal endosymbiosis 

ancestral to the whole SAR supergroup. This original red plastid would have been lost in many 

phyla and replaced by a green alga in chlorarachniophytes. However, this scenario poses several 

problems. On the one hand, traces of past presence of red algal plastids, in the form of EGTs, in 

non-photosynthetic SAR lineages are very often controversial (Elias and Archibald 2009; Stiller et 

al. 2009; Stiller 2011). On the other hand, plastid-bearing chlorarachniophytes constitute a relatively 

late-emerging branch within SAR (Sierra et al. 2016), implying that if their present-day green 

plastid replaced a former red one, this red plastid would have had to be present until recently and 

been lost in all other rhizarian lineages, which may seem unparsimonious. The case of euglenids is 

even more difficult to interpret as this group of excavates has no close phylogenetic relationship 

with any other photosynthetic lineage. In addition, massive sequence data remain much more 

limited for euglenids than for chlorarachniophytes (only a few transcriptomes available, see 

supplementary table S1, Supplementary Material online), making it difficult to infer the relative age 

of possible gene transfers. Nonetheless, 'red' genes were often shared by several euglenids in our 

trees, suggesting a similar pattern of ancient acquisition as in chlorarachniophytes (supplementary 

figs. S1-S82, Supplementary Material online).  

Our results show the presence of an unexpectedly high number of genes of red algal affinity in 

the two groups of eukaryotic algae with secondary green plastids, the euglenids and 
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chlorarachniophytes, which is significantly higher than the frequency of 'green' genes in algae with 

secondary red plastids, the CASH lineages. To address this question, we have focused on a subset of 

genes selected because of their strong phylogenetic signal and their implication in plastid-related 

activities. It is therefore uncertain whether this conclusion can be applied to the rest of HGTs/EGTs 

potentially present in the genomes of all these algae. In fact, in addition to the problems inherent to 

the accurate detection of EGTs, our focus on these specific genes may explain, at least partly, the 

different results obtained in recent analyses of all potential EGTs in some CASH lineages, not only 

those of ultimate cyanobacterial origin (e.g., Dorrell et al. 2017). 

However, we could not identify any particular bias in our gene selection process that could have 

artificially enriched the observed 'red' gene frequency in euglenids and chlorarachniophytes. 

Despite the methodological problems inherent to global genome analyses cited above, including a 

highly unbalanced representation of red and green algal genomes in sequence databases 

(Deschamps and Moreira 2012), the study of the chlorarachniophyte B. natans genome already 

pointed in that direction, with 22% of EGT genes of apparent red algal ancestry (Curtis et al. 2012). 

The origin of the 'red' genes in euglenids and chlorarachniophytes, either by cumulative HGT or by 

EGT from cryptic red algal endosymbionts, remains mysterious but our work indicates that they 

were acquired early in both groups and that they fulfill essential functions for plastid activity and 

maintenance. Interestingly, indisputable evidence supports that in a third group of complex algae 

with green plastids, the dinoflagellate genus Lepidodinium, a former red plastid was replaced by the 

current green one, leading to a mosaic plastid proteome encoded by a mix of red and green algal 

genes (Minge et al. 2010), reminiscent of those found in euglenids and chlorarachniophytes. It has 

been proposed that, since they retain more gene-rich genomes than green ones, red plastids have 

increased capacity for autonomous metabolism that could explain why they are more widespread 

across the diversity of eukaryotes as secondary plastids (the "portable plastid" hypothesis (Grzebyk 

et al. 2003)). It is thus tempting to speculate for euglenids and chlorarachniophytes a similar case as 
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for Lepidodinium, with initial red plastids subsequently replaced by green ones. Even if this 

hypothesis turns out to be wrong and these cryptic red endosymbioses did not exist, the ancient 

acquisition by another mechanism of a significant number of red algal genes in both groups before 

their diversification and, especially, their maintenance in the contemporary species through millions 

of years of evolution, suggest that the 'red' genes were instrumental in the establishment and 

maintenance of the secondary green plastids. Sequencing and analysis of additional genomes of 

euglenids, chlorarachniophytes, and their non-photosynthetic relatives will help to refine the 

inventory of 'red' genes in these lineages and their timing and, eventually, mechanism of acquisition. 
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Materials and Methods 

Sequence Analysis 

A local database was constructed to host the predicted proteomes from various nuclear genomes and 

transcriptomes as well as plastid genomes (for the complete list, see supplementary table S1, 

Supplementary Material online). All proteins of the Bigelowiella natans (Chlorarachniophyta) and 

Guillardia theta (Cryptophyta) predicted proteomes were used as queries for BLASTp sequence 

similarity searches (Camacho et al. 2009) against the local database. We retained up to 350 top hits 

with an e-value threshold of 1e-05. BLASTp outputs were parsed with a custom Python script to 

identify the proteins having hits in diverse photosynthetic eukaryotes and that were more similar to 

cyanobacteria or other bacteria than to non-photosynthetic eukaryotes. 

For these proteins, reciprocal BLASTp searches were done against the database to collect up to 

600 similar sequences. We then aligned each set using Mafft v7.123b (Katoh and Standley 2013) 

with default parameters. Non-conserved alignment regions were trimmed with BMGE v1.0 

(Criscuolo and Gribaldo 2010) with the BLOSUM62 matrix and allowing less than 50% gaps per 

position. Preliminary phylogenetic trees were inferred from trimmed alignments using FastTree 

v2.1.7 (Price et al. 2010) with default parameters. These trees were then manually inspected to 
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identify those compatible with an EGT/HGT scenario. For all positive cases, only the sequences 

corresponding to the portion of interest of each phylogenetic tree (the part showing the 

photosynthetic eukaryotes and the closest outgroup) were retained for the remaining steps. We then 

removed very short partial sequences and, to speed up subsequent calculations, several outgroup 

sequences from all alignments (see supplementary table S2, Supplementary Material online). The 

final sequence datasets were realigned and trimmed using TrimAL v1.4.rev15 with “gappy-out” 

parameter (
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Capella-Gutierrez et al. 2009). ML phylogenetic trees were inferred using IQtree v1.5.1 

with the PMSF model of sequence evolution (Wang et al. 2018) parameterized using guided trees 

constructed with the LG+G+I model. Statistical support was calculated with 1000 ultrafast 

bootstrap replicates (Minh et al. 2013; Nguyen et al. 2015; Hoang et al. 2018). 

 Final selection of trees was done by manual inspection to keep those fulfilling the following 

two requirements: i) the protein had to be shared by Cyanobacteria (or other bacteria), 

Archaeplastida and at least three secondary photosynthetic lineages, and ii) the corresponding 

phylogenetic trees had to support the clear separation of Viridiplantae and Rhodophyta (plus the 

lineages with secondary green and red plastids nested within them). Finally, the 82 trees passing this 

final filter (supplementary figs. S1-S82, Supplementary Material online) were inspected to infer the 

phylogenetic origin of the corresponding genes in the secondary photosynthetic lineages 

(supplementary table S3, Supplementary Material online). 

 

Gene Functional Annotation 

We annotated the functions of the 82 proteins from the final selection (see above) through the 

EggNOG 4.5 (Huerta-Cepas et al. 2016) web portal (http://eggnogdb.embl.de). For each protein we 

used as queries the ortholog sequences of Guillardia theta and Bigelowiella natans. Functional 

annotations are shown in supplementary table S4, Supplementary Material online. 
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Data Availability 

Protein sequence datasets used in this work are available for download at http://www.ese.u-

psud.fr/article950.html?lang=en. They include nonaligned sequences and trimmed alignments. 

 

Supplementary Material 

Supplementary figures S1–S82 and tables S1-S4 are available at Molecular Biology and Evolution 

online (http://www.mbe.oxfordjournals.org/). 
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Figure captions 

FIG  1. Genes of red and green algal ancestry in secondary photosynthetic eukaryotes. (A) Number 

of red or green algal-like genes in each lineage among the 82 genes analyzed classified according to 

their origin and statistical support in phylogenetic trees (supplementary figs. S1-S82, 

Supplementary Material online). (B) Gene functions of the 'red' and 'green' genes detected in 

transcriptomes and nuclear genomes of chlorarachniophytes and euglenids. 

 

FIG  2. Examples of maximum likelihood phylogenetic trees of nucleus-encoded genes of red and 

green algal origin in secondary photosynthetic eukaryotes. (A) Protein involved in photosystem II 

assembly (inherited from green algae in euglenids and from a red lineage in chlorarachniophytes). 

(B) Protein required for thylakoid membrane formation (inherited from green algae in 

chlorarachniophytes and from a red lineage in euglenids). Bootstrap support values are indicated by 

black (100%), dark grey (95-99%), and light grey (85-95%) circles. Scale bars indicate the number 

of substitutions per site. Complete trees can be seen, respectively, in supplementary figs. S74 and 

S62, Supplementary Material online. 
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