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Abstract—Traditionally, the safe operation of a battery energy

storage system (BESS) is achieved by imposing conservative

constraints on its DC bus current and voltage. By using a

computationally efficient single particle model (SPM), we propose

to replace these constraints with the battery internal ion concen-

trations and electrical potentials in order to avoid these quantities

to exceed hazardous limits. Indeed, the in-depth knowledge of

the BESS internal states provided by the SPM, enhances the

awareness of a control action and allows for a better exploitation

of the BESS energy and power capabilities, while maintaining

safe operational conditions. The target application is composed

by a model predictive control (MPC) applied to a MW-class

grid-connected BESS responsible to dispatch the operation of a

medium voltage (20 kV) feeder interfacing heterogeneous loads

and distributed generation. The performance of the proposed

MPC are assessed and compared with respect to a traditional

approach constraining the BESS DC bus current and voltage.

I. INTRODUCTION

The decreasing cost of Lithium-based electrochemical storage
is fostering the deployment of grid-connected battery energy
storage systems, which are expected to play a key role in
the process of displacing electrical energy production from
conventional to renewable sources. A key challenge related to
the reliable operation of BESS is the development of control
strategies capable to account for both their physical operational
constraints and aging factors with the main objectives of re-
ducing fault occurrences, thermal runways and the magnitude
of degradation phenomena in the cells. The originating cause
of Li-ion battery ageing and cell degradation is the occurrence
of electrochemical parasitic reactions, such as the formation
of solid electrolyte interphase (SEI) and Lithium plating. The
magnitude of these phenomena depends on the evolution of
the cells internal states and, in particular, overpotentials and
ion concentrations in the various parts of the cell. There-
fore, the knowledge of these quantities allows to implement
efficient battery control policies that avoid electrochemical
degradation while exploiting the full battery potential [1]–
[5]. However, these quantities are not directly measurable. As
a consequence, operational constraints are normally defined
on those variables which are directly measurable, namely the
battery terminal voltage and the current [6]–[8]. Voltage and
current of individual cells are related to the internal states
of the cell in a rather complex way. In order to operate the
BESS in a safe domain by imposing operational limits on these

Figure 1. Qualitative comparison of the traditional operational constraints
for a Li-ion cell, based on measurable quantities (left) and allowed by the
knowledge of actual cell physical states (right) [4].

externally-available quantities, one should choose conservative
constraints, thus preventing to operate the BESS in conditions
which are not harmful. In other words, these limits reduce the
power and energy capability of a BESS (see Fig. 1). A further
advantage of dealing with electrochemical constraints is when
considering the progressive battery aging. In fact, as the battery
ages, its behavior evolves so the current/voltage constraints set
for the new battery may not ensure safe operation for an aged
one.

Within the above-mentioned context, we propose a model
predictive control where reliable battery operation is enforced
thanks to implementing electrochemical predictive constraints
by relying on a physics-based (PB) model of a Li-ion cell. In
this paper we make use of the single particle model (SPM)
[9], [10], which, in spite of its simplicity, retains the ability
to describe cells internal states and the main mechanisms of
Li-ion battery aging [11].

In this paper, we assess the performances of such physics-
based MPC applied to the energy management of a grid-
connected BESS and compare it to a traditional approach,
based on constraints on the BESS DC bus current and voltage.
We show the prediction performance of the SPM and its
capability to provide extensive information about the BESS
state, that can be exploited by the BESS control. Finally, we
show that, with respect to the classical MPC formulations [6],
[7], the proposed one achieves augmented awareness and less
conservative control actions, and it opens to the perspective
of implementing detailed anti-ageing control policies. We
quantify the advantages of such approach in terms of range



Figure 2. a) Structure of a Li-ion cell: I) negative current collector; II) anode;
III) separator; IV) cathode; V) positive current collector. b) Single particle
model schematic.

extension and we discuss few possible approaches to extend
such framework in order to accomodate explicit anti-ageing
control policies.

The paper is organized as follows: section II introduces the
SPM, section III briefly describes the MPC framework and
the model reformulation performed to cast the SPM in such
a framework. Section IV describes the simulation setup and
analyses the main results of the work. Finally, section V
summarises the main results and contribution of this paper.

II. THE SINGLE PARTICLE MODEL

The model we use is extensively described in [9]. The SPM
describes the intercalation dynamics of a Lithium ion cell
(i.e. the diffusion within the electrode active materials) and
its charge transfer phenomena. The SPM is generally accurate
as long as the current rates are below 2C. Such a condition
is satisfied by the majority of BESS applications in power
systems.

The two electrodes of a Li-ion cell are modeled by two
spherical particles. The model structure and the relevant phe-
nomena occurring within the cell and modeled by a SPM are
represented in Fig. 2. The modeled physical phenomena (and
in parentheses the respective contribution to external voltage)
are: i) the mass transfer (i.e. the diffusion of Lithium ions)
within anode active material (anode equilibrium potential);
ii) the charge transfer at the electrode electrolyte interface
(anode charge transfer polarization); iii) ionic conduction in
the electrolyte (ohmic voltage drop); iv) charge transfer at
the electrode electrolyte interface (cathode charge transfer
polarization); v) mass transfer within cathode active material
(cathode equilibrium potential). This model can incorporate
detailed and physics-based description of ageing processes
[11], and physical description of thermal behavior of the cell
[9]. We report here the governing equations for the diffusion
processes in the two electrodes and the equation describing the

cell voltage. Let the subscript i = p, n denote the electrode
(p and n respectively refers to the positive and negative), c

i

ion concentration within the single particle as a function of
time t and radial coordinate r, D

i

diffusion coefficient of
the electrode, S

i

electrode total active surface and R

i

radius
of the particles composing the active material. Finally, I

app

is the current applied to the cell, and F Faraday constant.
The diffusion within the electrode active material is modeled
through two radial partial differential equations:

@c(r, t)

@t

=
D

i

r

2

@

@r

✓
r

2 @c(r, t)

@r

◆
(1)

with boundary conditions:

D

i

@c

@r

|
r=0 = 0, D

i

@c

@r

|
r=R

=
I

app

FS

i

, (2)

These equations define the concentration of Lithium ions
within the two electrodes. The external voltage of the cell
V

cell

is then computed as a sum of several terms, as in
(3). U

p

and U

n

are the open circuit potential (OCP) of the
cathode and anode, respectively, and are functions of the ion
concentrations. ⌘

p

and ⌘

n

are the overpotentials due to the
charge transfer in the cathode and anode respectively and are
given by algebraic functions of the applied current and of the
ion concentrations. I

app

R

cell

describes the ohmic losses in
the electrolyte. The equations and their terms are described in
detail in [9].
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III. INTEGRATION OF THE SPM IN A MPC FOR THE
ENERGY MANAGEMENT OF A BESS

We consider the problem of controlling a BESS with the
objective of achieving an assigned energy throughput in a
given time horizon. This is a common application in the
context of BESS energy management, see for example [6],
[12], [13]. Remarkably, by taking advantage of the fact that
the objective is achieving an integral quantity, one could think
of implementing a MPC algorithm to determine an optimal
current trajectory that, within the available time horizon, sat-
isfy the control objective while obeying to BESS limits. BESS
operational limits are enforced by the SPM model described
above, which is linearized as described in the following.

A. Reformulation of the SPM

For the integration in such context, the SPM is linearized and
expressed as the the following state-space form:

x
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The state vector x

k

is composed by the ion concentration
profiles in the two electrodes, provided by the diffusion
equations and by the electrode overpotential values ⌘

n

and
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. The input u
k

is the current applied to the cell I
app

, and
the output y

k

is the cell voltage. With regard to the SPM
equations, diffusion PDEs in (1) are discretized through a
forward Euler scheme. The resulting linear equations provides
the ion concentrations in the electrodes at each time step and
at equally spaced positions along the particle radial coordinate
r. The equations for the electrode overpotentials ⌘

n

and ⌘

p

and
for the external voltage in (3) are nonlinear algebraic functions
of the applied current I

app

and ion concentration values in the
two electrodes at r = R. They are therefore linearized with a
first-order Taylor approximation around the working point at
each time step, i.e. at each time step the system matrices of
(4) are recomputed on the basis of the last known values of
the SPM states.

B. MPC Formulation

As mentioned in the preamble of this section, we consider a
MPC to achieve an assigned energy throughput in a avail-
able time horizon. Let (1, 2, . . . , k) be the time horizon
(of length k and discretized at T

s

seconds) for which the
control trajectory is to determine, k = 1, . . . , k rolling index
denoting the current time interval, e

k

the reference BESS
energy throughput to achieve by the end of the time window,
and i

k|k = (i
k|k, ik+1|k, . . . , i

k|k) sequence of BESS current
values considered at time k. Assumed being at time k, the
optimization problem underlying the adopted MPC is given by
seeking the current profile to minimize the distance between
the battery energy throughput and its reference tracking error
at the end of the control, while subject to constraints on the
current magnitude and concentration. Formally, it is:
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where (6) states that the BESS power output P

j|k is the
product between voltage v

j|k and current i
j|k, (7) corresponds

to the BESS voltage linearized model and, together with
(8) composes the linearized state-space SPM. Equations (9)
and (10) simply denote that the ion concentrations and the
overpotentials in the electrodes are extracted as subsets of the
state vector. Finally, (11) and (12) constrains concentrations
and the overpotentials in the allowed ranges, denoted by
(c

i,min

, c

i,max

) and (⌘
i,min

, ⌘

i,max

). The former is imposed
to avoid oversaturation or depletion of Lithium in the active

material of the two electrodes, while the latter bounds the
overpotentials in each electrode, since excessive values would
lead to the occurrence of deleterious conditions.

At each step k, the optimization problem is solved on a
shrinking horizon k to k and only the first portion of the
optimal control io

k|k law is actuated. The computation of the
evolution of the state vector requires the knowledge on the
full state, which is reconstructed by applying a Kalman filter
by using the measurements of the BESS DC voltage.

IV. SIMULATION SETUP AND RESULTS

A. Simulation setup

We consider a setup where a BESS is required to compensate
for the mismatch between a dispatch plan at 5 minute reso-
lution and the realization of a group of stochastic prosumers.
The tracking problem is performed with the MPC described
in Section III, which is augmented with the electrochemical
predictive constraints (11)-(12). The mismatch enters in the
problem as the input variable e

k

, k = 5 min and T

s

= 10 s.
The considered BESS is a 560 kWh unit, modelled as com-
posed of N

p

= 18 parallel branches, each with N

s

= 300
Li-ion cells in series. These are 30 Ah MCMB-LiCoO2 cells,
with operating voltage between 3.6 and 4.1 V. At this stage,
we assume that all the cells are balanced and have same
physical properties1. For such setup, and for each scenario
detailed in the following sections, we perform two simulations.
The first is obtained by solving a running an MPC in which
the constrained quantities are the cell output voltage and
current. In the second, we constrain the ion concentrations and
electrode overpotentials instead. In both cases the prediction
of the constrained quantities is based on the SPM described
in section II2. In both cases, at each simulation time step,
the following actions are performed: i) a SPM-based Kalman
filter reconstructs the state starting from measured current and
voltage values, ii) based on the full knowledge of the state,
the MPC optimization problem is solved and the first portion
of the computed control action is chosen for being actuated,
iii) BESS behavior as a function of the actuated current set-
point is simulated through a detailed electrochemical model
(described in [4]) at 500 ms resolution. The cell parameters of
both the SPM used in the control and the detailed cell model
used to simulated the battery behavior are from the literature
[4].

In order to achieve a fair comparison between concentration
and voltage limits, these have been selected in the following
way. Concentration limits c

a,min

, c
a,max

, c
c,min

and c

c,max

are given as parameters of the model, i.e. they are the
maximum and minimum Lithium stochiometry achievable in

1This allows to define VBESS = Vcell ⇤Ns and iBESS = icell ⇤Np.
2For the conventinal MPC, simpler models, such as equivalent circuits,

can fulfill the task of predicting the constrained quantities (i.e. currents and
voltages). However, in the present work, both the conventional approach and
the physics-based control rely on the same model (i.e. the SPM). In this way
a fair comparison of their performances is possible.



Figure 3. Battery charge with a fixed power set-point. Top: cell current,
middle: cell voltage, bottom: anode surface ion concentration. Red lines
refer to an MPC based on I-V limits, blue lines refer to a physics-based MPC.
Yellow dashed lines in the middle and bottom plots represent the tresholds
for the voltage and anode concentration respectively.

the electrodes. Voltage limits V

max

and V

min

are chosen
to be equal to the open circuit voltages in correspondance
of the extreme concentration conditions. Formally, V

min

=
V

oc
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) and V
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= V

oc
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). This
is because the relation between voltage and concentrations
is not time-invariant. The selected voltage limits are chosen
so that concentration limits (where the concentration is the
quantity that we really want to constrain) are not violated in
any condition, i.e. for any shape of input current profile. For
a fast charge, for example, the istantaneous voltage will be
higher than the open circuit voltage of the cell corresponding
to a given set of concentrations. Thus, a voltage limit will be
conservative compared to the concentration limits. For a very
slow charge, the instantaneous voltage will be almost equal to
the open circuit voltage and the voltage limit will represent
well the cell concentration limitations.

Figure 3 is useful to understand this link: it shows the current,
voltage and anode surface ion concentration in a trivial sce-
nario in which the controller requires to the cell to be charged
as much as possible at a constant current rate. Red lines refer
to the case in which in the controller voltage and current
are constrained. A constant-current charge is interrupted at
t

0 and a constant-voltage charge takes place. The blue lines
refer to the case in which concentrations and overpotentials
are constrained. The constant-current charge can therefore
continue even for voltages that are higher than the threshold
of the previous case, as concentration limits are not violated.
When these are reached at t00, a constant-concentration charge
takes place. It can be seen, the constant voltage and constant
concentration charges lead to the same cell state for long
charging times. The current decreases and the charge continues
closer and closer to an equilibrium condition, at which the two
limits coincide. Nevertheless, it is also evident that in the case
where the constrained quantities are the concentrations rather
than the voltage, the constant-current charge can continue
longer. This is an actual improvement in the cell performances,
since the range in which the cell can provide the desired

current is enlarged.

B. Results

1) Analysis at different power rates: We first run a set of
simulations such the one in Fig. 3 for a set of power values, in
order to assess the performances of the new control paradigm
at various power rates. For any power setpoint we run both
a simulation using an MPC based on I-V limits and one on
the electrochemical constraints defined above. For each couple
of simulations the metrics chosen to perform the comparison
are the following: i) �T : the delay, in minutes, between
the constraint activation in the case of PB control and of
MPC based on I-V limits; ii) �E: the increase in the energy
delivered at the desired power (i.e. in uncostrained operation),
with regard to the cell nominal capacity; iii) oV : the cell
overvoltage in mV reached in the case of PB control, over
traditional control; iv) C ratio: anode surface ion concentration
reached at constraint activation with traditional I-V limits
(relative to the case of PB control). Table I shows the results
of such simulations for a set of charge values.

Table I
COMPARISON METRICS FOR BESS CHARGE

Power (p.u.) �T (min) �E (%) oV (mV) C ratio
0.01 10.2 0.12 1.07 1
0.02 14.8 0.41 2.67 1
0.04 15.5 1.03 5.91 0.99
0.06 15 1.3 8.67 0.99
0.08 15.5 2 12.29 0.99
0.1 15.3 2.43 14.84 0.98
0.15 14.8 3.59 18.44 0.98
0.2 14.2 3.63 22.68 0.97
0.3 15 7.24 35.37 0.95
0.4 17.7 11.03 47.54 0.92
1 10 20.64 81.54 0.9

2) Comparison for a realistic scenario: Finally, we simulated
a realistic daily scenario of BESS operation, considering the
application described in [6]. The MPC control framework with
I-V limits has been used to control a grid-connected BESS
in order to dispatch the operation of a distribution feeder
according to a trajectory with 5 minutes resolution, established
the day before the operation. The data used for this simulation
are from the operation of the 15th of January 2016. In such
day, the tracking of the objective dispatch plan failed due to
the BESS hitting its upper voltage limits.

We show in this section the results obtained simulating the op-
eration of the BESS, controlled via an MPC in which classical
I-V limits are implemented and one based on a PB control.
Notably, Fig. 4 shows the tracking performances of the two
MPCs. Both achieve perfect tracking for most of the analysed
day. Nevertheless, due to considerable charing demand in the
first part of the day, around midday both control approaches
fail in their objective. Table II shows the performances relative
to the two constrained control implementations. We observe
that, while the BESS fails to track the dispatch plan along



Table II
COMPARISON OF THE TWO CONTROL APPROACHES FOR A DAY OF

OPERATION

I-V limits
Tracking fails during: 21 min

Cumulated tracking error: 17.88 kWh
Physics-based control

Tracking fails during: 18 min
Cumulated tracking error: 11.59 kWh

Figure 4. Top: 5-minutes resolution profiles of reference power profile, power
realization and corrected power profile (both conventional and physics-based
MPC). Bottom: Tracking error.

the whole day in both cases, in the case of PB control
the time interval during which the tracking objective is not
respected decreases. Most importantly, the cumulated tracking
error along the day decreases considerably (of about the 35%),
i.e. even when the tracking fails, the tracking error achieved
by the physics based control is reduced. Fig. 5 shows in the
first two panels the simulated current and voltage profiles
during 24 hours of operation (for the case of PB-MPC). In the
third panel of Fig. 5 it is shown the voltage prediction error.
It can be seen that the SPM achieves a good performance
in voltage prediction, with a relative maximum error well
below 0.5%. Finally, Fig. 6 shows, in the top panel, the
ion concentration profile relative on the surface of the anode
particle together with its respective constraints, and, in the
bottom panel, the current density of the side reaction leading
to SEI formation. The latter has been calculated from the
quantities made available by the SPM and by implementing
the model in [14] and is of definite importance because it
opens to the inclusion in the MPC of anti-ageing policies.

C. Discussion

Table II shows how, for a real-world BESS application and
a realistic scenario, physics based control can achieve better

Figure 5. Top: BESS current profile simulated through the detailed electro-
chemical model. Middle: BESS simulated voltage profile. Bottom: One-step-
ahead prediction error of the voltage predicted through the SPM.

Figure 6. Top: Profile of the ion concentration at the anode particle surface
(blue line) and its boundaries (red dashed lines). Bottom: Profile of the current
density of the parasitic reaction leading to SEI formation.

performances compared to standard approaches. The advan-
tage of the proposed approach is particularly conspicuous for
higher power rates (as shown in Table I) which may provide
a considerable advantage in high-power BESS applications.

Knowledge of ion concentrations and potentials within the
cells, besides allowing for their direct limitation, allows to
limit explicitly the magnitude of side reactions that induce
capacity fade and increase in the equivalent series resistance.
The magnitude of these side reactions is in fact dependent on
the values of the internal states provided by the PB model.
Therefore leaning on a PB model, one can integrate explicit
models of these side reaction as well, rather than relying on
heuristic approaches to limit degradation.

As an example, we discuss hereafter SEI formation, which is
one of the more common of such degradation mechanisms.
SEI formation consists in the irreversible consumption of
cyclable Lithium via a side reaction between Lithium and
solvent species present in the electrolyte that takes place at



the surface of the anode-material particles. This causes a fade
in the cell capacity and an increase in the cell resistance (i.e.
a degradation in the cell capability to provide high power
values). This mechanism is common to most Li-ion cell
chemistries and has been widely studied [15], [16]. In [14]
a reduced order model for SEI formation is formulated. The
current density of the side reaction j

SEI

is provided by a non-
linear function of the anode intercalation current and of the
negative electrode equilibrium potential. Since in the SPM the
intercalation current is proportional to the cell current and the
negative equilibrium potential is a function of anode surface
concentration, it is possible, via the SPM and the proposed
control framework, to explicitly limit the operating range so
that j

SEI

remains below a desired treshold.

V. CONCLUSION

We propose a model predictive control for a battery energy
storage system (BESS) where BESS operation constraints
are enforced through electrochemical constraints implemented
through a predictor based on the single particle model. With
respect to conventional control policies based on feedback
control loops and MPC based on equivalent circuit models,
the proposed solution achieves an augmented awareness of
the control process thanks to a detailed representation of elec-
trochemical dynamics. Conventional current and voltage con-
straints are replaced in favor of overpotential and concentration
constraints, which allows for a more efficient exploitation of
the BESS true capacity while accounting for aging.

We compare the performance of a control scheme based on
traditional current/voltage limitations and one exploiting SPM
electrochemical predictions. We show how, for an energy
management application the proposed control scheme achieves
better performances when compared to one based on classical
current-voltage limitations. Notably, tracking error decreases,
in the first case of about the 35% with respect to the latter. Via
the simulation of a set of constant current charges, we show
as well how PB control achieves better perfomances, allowing
for a charge/discharge at the desired rate for a longer time,
while respecting the battery real limitations. This corresponds
to an extension of the operating range of the battery, which
is particularly remarkable for high current values. The latter
result indicate that the proposed approach may be particularly
convenient for BESS high-power applications.
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