
HAL Id: hal-02108806
https://hal.science/hal-02108806v1

Submitted on 24 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Service Placement in Fog Computing Using Constraint
Programming

Farah Ait Salaht, Frédéric Desprez, Adrien Lebre, Charles Prud’Homme,
Mohamed Abderrahim

To cite this version:
Farah Ait Salaht, Frédéric Desprez, Adrien Lebre, Charles Prud’Homme, Mohamed Abderrahim.
Service Placement in Fog Computing Using Constraint Programming. SCC 2019 : IEEE International
Conference on Services Computing, Jul 2019, Milan, Italy. pp.19-27, �10.1109/SCC.2019.00017�. �hal-
02108806�

https://hal.science/hal-02108806v1
https://hal.archives-ouvertes.fr

Service Placement in Fog Computing Using
Constraint Programming

F. Aït-Salaht
Univ Lyon, EnsL, UCBL,

CNRS, Inria, LIP,
LYON, France.

farah.ait-salaht@inria.fr

F. Desprez
Univ. Grenoble Alpes

Inria, CNRS, Grenoble INP, LIG
Grenoble, France

Frederic.Desprez@inria.fr

A. Lebre, C. Prud’homme, M. Abderrahim
IMT-Atlantique

Inria, LS2N Nantes, France
firstname.lastname@imt-atlantique.fr

Abstract—This paper investigates whether the use of Con-
straint Programming (CP) could enable the development of a
generic and easy-to-upgrade placement service for Fog Comput-
ing. Our contribution is a new formulation of the placement
problem, an implementation of this model leveraging Choco-
solver and an evaluation of its scalability in comparison to recent
placement algorithms. To the best of our knowledge, our study
is the first one to evaluate the relevance of CP approaches in
comparison to heuristic ones in this context. CP interleaves
inference and systematic exploration to search for solutions,
letting users on what matters: the problem description. Thus,
our service placement model not only can be easily enhanced
(deployment constraints/objectives) but also shows a competitive
tradeoff between resolution times and solutions quality.

Index Terms—Fog Computing, Edge Computing, Services
Placement, Constraint Programming, Choco Solver

I. INTRODUCTION

Cloud platforms are part of the distributed computing
landscape. However, given the massive arrival of IoT de-
vices, together with an exponential number of related applica-
tions (smart-metering, smart-transportation, augmented reality,
wearable computing, etc.), the deployment of more decentral-
ized infrastructures such as the Fog ones [1] is now crucial.
Distributing the infrastructure itself and installing processing
resource in different locations, closer to users, is the only
way to cope with the requirements in terms of throughput and
latency of the aforementioned applications. Processing a data
stream as close as possible to where it has been generated,
mitigates, for instance, network congestion [2]. Figure 1 gives
an overview of a Fog Computing infrastructure: a large number
of heterogeneous interconnected devices between clouds and
IoT sensors.

While Fog Computing infrastructures will soon allow the
deployment of processing/storage resources closer to the edge
of the network, there are still open questions related to
the resource management aspects. Among them, the service
placement problem (i.e. "how to assign IoT applications to
computing nodes which are distributed in a Fog environ-
ment?") has generated lots of interests in the scientific commu-
nity [4, 5]. However, all placement service proposals have been
designed to solve one particular use case, which strongly limits
their adoption into a general resource management system
for Fog infrastructures. Although our community has been

Fig. 1: A Fog Computing architecture as presented in [3].

investigating this challenge for a couple of years [6–11], we
claim that proposed approaches are not generic enough to deal
with all applications’ specifics that Fog infrastructures would
have to host. Current algorithms rely mainly or Integer Linear
Programming (ILP) or heuristic approaches that are not easily
expandable (i.e. cannot easily evolve to integrate new applica-
tion or infrastructure characteristics, and allow new placement
constraints to be easily developed and integrated), or upgrade-
able in the sense of exploiting any resolution approach that
is implied by the user, allowing independent sub-problems to
be solved in parallel. In this paper, we investigate whether a
model built on the Constraint Programming (CP) [12] can be
envisioned to develop a generic and easy-to-upgrade placement
service for Fog infrastructures. Besides being faster and more
robust than the known ILP approach, the CP code is signifi-
cantly smaller, which implies it would be easier to implement
and maintain. Plus, many open-source yet efficient CP solvers
are distributed whereas the ILP uses an external (potentially
expensive) commercial ILP solver. In view of that, we propose
in this work a new formulation and relatively simple model
for the placement problem considering a general definition
of service and infrastructure network through graphs using
constraint programming. We underline that the contribution
of this study is not only related to the model provided but
also to its validation in terms of extensibility and scalability.
Although the use of CP approaches have been proven efficient
in several problem solvers, in particular in Cloud Computing

placement problems (i.e. Entropy VEEE, BTRPlace) [13], CP-
solvers are still facing negative preconceived ideas regarding
their capacity to deal with large problems. Here, we propose to
extend those models to take into account Edge specifics, and
show through our evaluation results that the implementation of
our model in Choco-solver [14] is competitive w.r.t the most
recent solutions of the literature.

The remaining of the paper is organized as follow. Section II
presents the related work to placement challenges in Fog
Computing platforms and motivates the need for a holistic
placement service. Section III describes our model and the
way we solve the placement problem using Choco-solver.
Section IV discusses experiments we performed to evaluate
the efficiency of our placement service. Finally, Section V
concludes this paper and gives some perspectives.

II. RELATED WORK AND MOTIVATION

The service placement problem in Fog infrastructures has
been highly discussed with several solutions based on differ-
ent application scenarios, network assumptions, and objective
functions. Based on our analysis of the state-of-the-art, most of
the scenarios undertaken so far can be categorized as follows:

• Scenario 1: deploy a set of services each abstracted as
a single component. This scenario considers monolithic
applications (e.g. data) [6, 10]. In [10], the authors
investigate the problem of IoT data placement in a Fog
infrastructure. They propose to formulate the problem
as a generalized assignment problem by considering the
resource capabilities constraints and minimize the overall
latency while storing and retrieving the data set. In order
to accelerate the solving time, the authors provide a
heuristic based on geographical zoning to reduce search
space and find out a placement in a reasonable time.
In [6], Yousefpour et al. study the dynamic Fog service
provisioning problem. The study aims to dynamically
provisioning IoT applications on the fog nodes, to comply
with the QoS terms (delay threshold, penalties, etc.) with
minimal resource cost. The problem is formulated as an
integer non linear programming task, and two heuristics
are proposed to solve it efficiently.

• Scenario 2: deploy a set of services each abstracted
as a set of interdependent components. This scenario
assumes that each service is pre-partitioned into a set
of components (resp. modules), where only components
requirements are taken into account. As an example,
we cite the work of Skarlat et al. in [8], that propose
to study the placement of IoT services on virtualized
Fog resources. This work present a placement strategy
that maximize the number of service placements to fog
resources, while satisfying the QoS constraints. Only re-
source application components and application execution
deadline are specified. The service placement problem is
formulated as an ILP and solved by CPLEX. A genetic
algorithm in a centralized manner is proposed to reduce
and accelerate the execution time of ILP.

• Scenario 3: deploy a set of services each abstracted as a
Directed Acyclic Graph (DAG). The service in this sce-
nario is assumed to be pre-partitioned into interconnected
components (resources and networking requirements are
considered) having a DAG topology [7, 9, 11]. The DAG
graph models a wide range of realistic IoT applications
like healthcare, latency-critical gaming that involve a
hierarchical set of processes (or virtual machines), in-
cluding streaming, multicasting, and data aggregation
applications. Among the works considering this scenario,
we cite the work of Brogi et al. [7] that propose a
model to support the QoS-aware deployment of multi-
component IoT applications in Fog infrastructures. The
proposed model provides eligible deployments (if any) of
an application by performing pre-processing plus back-
tracking approaches.

As we can remark here and in many other works that try
to address the placement problem in Fog environments [4, 5],
each solution targets a specific sets of applications topology,
network assumptions, and objectives. If targeting a specific
use case enables our community to move forward, a more
general framework should be designed in order to handle
requirements/constraints of the different applications. Our
work targets this objective and handle all the aforementioned
scenarios. Indeed, we provide in this paper a new formulation
of the placement problem considering a general definition
of service and infrastructure network through graphs using
constraint programming as discussed in the following section.

III. SERVICE DEPLOYMENT PROBLEM: SYSTEM MODEL
AND PROBLEM FORMULATION

In this section, we propose to describe the accurate and
the comprehensive framework provided to address the Service
Placement Problem (SPP). The framework includes a system
model and a constraint satisfaction model, to represent the
problem using attributes that are critical for SPP in Fog
environments. Before describing the constraints and the op-
timization problem, we propose to model the infrastructure
network, and the Fog applications first.

A. System model

a) Infrastructure model:

Definition 1. The Fog Computing infrastructure is defined as
a directed graph GI =< H, E >, where H is the set of
host nodes (Cloud, Fog, and Things nodes) and E the network
connections between the nodes.

The infrastructure nodes may represent Cloud nodes (data
centers), Fog nodes (resources which provide computational
power and/or storage. e.g., routers, switches, PCs, etc.), or IoT
devices (sensors and actuators), at possibly different hierarchi-
cal layers. Each infrastructure node f is characterized by its
capacities U(f) such that U=(CPU, RAM, . . .). Metrics like:
storage, network, energy resources, etc, can also be specified.

Nodes are interconnected via a set of links E , E =
H × H. Each link ei,j ∈ E , is characterized by the latency

LAT (ei,j) between source node i and sink node j, where
LAT (ei,i) = 0, and the bandwidth of the link as BW (ei,j),
where BW (ei,i) =∞.

b) Service model: The service model considered here
encompasses the different scenarios depicted in Section II.
Unlike the works found in the literature, which fits only in
one of the scenarios mentioned, our work is distinguished by
the genericity of the proposed model. Indeed, we consider
any type of services topology, as long as it can be represented
as a graph. So, let A be the set of services to be deployed
in physical network, the services can be abstracted to ap-
plication graphs. An application is denoted as a connected
graph Ga =< Ca,La >, where Ca defines the set of all
components of application a, and edges La ⊆ Ca×Ca defines
the inter-dependencies and communication demands between
components. Components and links are respectively defined as
in Definition 2, and Definition 3.

Definition 2. A component c ∈ Ca is defined by a set of
resource types denoted u(c), such as u = (Reqcpu, Reqram,
. . .), where Reqcpu (resp. Reqram) is the number of cores
(resp. the amount of memory) required by the component.
Other requirements can be specified. An application compo-
nent can be a fixed component, i.e., has a specific infrastruc-
ture node where it must be deployed. We denote by Φa ⊆ Ca
the set of fixed components and by φa(c) the physical node
where the component must be deployed.

Definition 3. A link (or pair) k ∈ La is a couple k =
(source, sink), where source, sink ∈ Ca are respectively
source and sink component of k. For each k, we define
Reqlat(k) as the maximum acceptable latency between com-
ponents, and Reqbw(k) as the bandwidth requirements for k.

In the rest of the paper, we use interchangeably the term
service and application.

c) Deployment: Deployment of a set of applications
A over a Fog infrastructure GI is a mapping of all the
components C such that C =

⋃
a∈A Ca, over the nodes in

H and of all the pairs in L such that L =
⋃

a∈A La onto
the physical links in E . The deployment of C on H amounts
to finding the infrastructure devices that satisfy the constraints
on resource capacities, i.e., ensure that the resources of all the
deployed components do not exceed the resource capacities
of the infrastructures nodes. The mapping of a pair k ∈ L is
to find a path in the physical graph such that the networking
constraints are respected i.e., satisfy the required networking
resources (in term of bandwidth, latency...).

Remark 1. The mapping of a pair k ∈ L may form an
Hamiltonian path.

In the next section We define the deployment of components
to the infrastructure’s nodes and its related constraints.

B. A constraint-based model for SPP (CP-SPP model)
In this section, we describe how to tackle service placement

problem in Fog infrastructure using constraint programming
approach.

Constraint programming [12] has been widely used in a
variety of domains such as production planning, scheduling,
timetabling, and product configuration. The basic idea of
constraint programming is that user formulates a real-world
problem as a CSP (Constraint Satisfaction Problem) and then
a general purpose constraint solver calculates solution for it.
Formally, a CSP is defined by a triplet 〈V, D, C〉, where V is
the set of variables, D is the set of domains associated with the
variables, and C is the set of constraints. A constraint cstr(j),
associates with a sub-sequence vars(cstr(j)) ∈ V, defines
the allowed combinations of values which satisfy cstr(j).
A constraint is equipped with a monotonically decreasing
function that removes from the domains of vars(cstr(j))
values that cannot satisfy cstr(j). Combining the definition
of service placement problem and the basic idea of constraint
programming, the problem of applications mapping can be
modeled by CSP in the following way:

1) Set of variables and their domains: To translate the
component placement problem into a constraint satisfaction
problem, we introduce a set of decision variables. We propose
to distinguish here the variables related to nodes and those
related to arcs respectively. We note that for the needs of the
modeling, we increase the GI by adding a supersink node
to which all graph nodes can access (including itself). The
supersink denoted by α has an unlimited resources (CPU,
RAM...), and the edges that link the infrastructure node to
α, and α to itself, have an infinite capacity.

a) Variables related to nodes: For each pair k ∈ L , we
define the following:

• s = {sk|k ∈ [1, |L |]}. Variable sk denotes the node
that hosts the source component of pair k. sk takes these
values in H.

• t = {tk|k ∈ [1, |L |]}. tk denotes the node that hosts the
sink component of pair k. The variables tk takes these
values in H.

• n = {nk,j |k ∈ [1, |L |], j ∈ [1, |H|]}. nk,j denotes the
host node at position j in the path of pair k. The variables
nk,j takes these values in H.

• h = {hi|i ∈ [1, |C |]}. hi denotes the node that hosts
component i, ∀i ∈ C . hi takes these values in H.

• p = {pk|k ∈ [1, |L |]}. Variable pk denotes the position
of tk in nk (position of sk = 0). pk takes these values in
{1, . . . |H|}.

Remark 2. Since the only outgoing arc of α is a loop, n
always ends with at least one occurrence of α.

b) Variables related to arcs: For each pair k ∈ L , we
define the following variables:

• a = {ak,j |k ∈ [1, |L |], j ∈ [1, |H|]}. ak,j denotes the arc
between nk,j and nk,j+1 in path of pair k. The variables
ak,j takes these values in E .

• b = {bk,j |k ∈ [1, |L |], j ∈ [1, |H|]}. bk,j is the
bandwidth on arc ak,j .

• l = {lk,j |k ∈ [1, |L |], j ∈ [1, |H|]}. lk,j is the latency on
arc ak,j .

Remark 3. From Remark 2, the only outgoing arc from tk is
the one to α.

2) Set of constraints: Next we look at the relevant con-
straints of the problem. We introduce two types of constraints:
constraints related to nodes, and constraints related to arcs.

a) Constraints on nodes:
• C1. BINPACKING constraints [15] on resource capacities

of infrastructure nodes. These constraints are considered
for physical network nodes and are related to computa-
tional and memory limitations respectively. In a simpli-
fied way, we can say that a binpacking constraint ensures
that for all physical nodes, the sum of all mapped appli-
cations components demand not exceed their maximum
available capacities, with adding transversal filtering.

BINPACKING(〈h,Reqcpu〉, CPU),

BINPACKING(〈h,Reqram〉, RAM).

• Links between variables hk, nk,j and pk
– C2. The node at position 0 in the path nk is the

node that hosts the source component of pair k:

nk,0 = sk, ∀k ∈ L

– C3. The item at position pk in path nk is equal to
tk: tk = nk,pk

, ∀k ∈ L .
– C4. Position of tk if source and sink component of

a pair are the same: sk = tk ⇐⇒ pk = 1.
– C5. Avoid cycles in nk (all items of nk are differ-

ent [16] except if sk = tk):

ALLDIFFERENT(nk,j , ∀ j = {1, . . . , |H|}), ∀k ∈ L

– C6. Make sure that a path nk ends with at least
one occurrence of α (see Remark 2). REGULAR [17]
constraint ensures that values assigned to sequence
of variables belong to a given regular language, here
expressed by a regular expression :

REGULAR(nk, “[ˆα] + [α] + ”), ∀k ∈ L

– C7. Contiguous pairs: tk = sk′ , for all two pairs k
and k′ sharing a same application component

• C8. Locality constraint: hi = φa(i), ∀i ∈ Φa,∀a ∈ A.
Restrict the fixed component to the specified locality (i.e.,
to a given infrastructure node).
b) Constraints on arcs:

• C9. Respect bandwidth limit of each arcs:

BINPACKING(〈b, Reqbw〉, BW)

This constraint ensures that for each physical link, the
bandwidth demands of all applications must not exceed
maximum available bandwidth. This constraint is en-
coded as a BINPACKING constraint.

• C10. Satisfy latencies, per pair:

lk,j = LAT (ak,j), ∀k ∈ C , ∀j ∈ {0, . . . , |nk|}

|nk|∑
j=0

lk,j ≤ Reqlat(k), ∀k ∈ C

This constraint ensures that the end-to-end latency along
a path of pair k does not exceed the maximum acceptable
latency between the component of the pair.

C. Problem Optimization

An optimal solution to the CSP problem can be defined as:
given an objective function F , where the optimal solution is
achieved when F is minimized (resp. maximized), corresponds
to find a mapping M? ∈ M, such that ∀M, F (M?) ≤
F (M) (resp. F (M?) ≥ F (M)).

We notice that the expressive modeling power provided
by CP enables the development of compact and "natural"
models whereas the domain reduction by constraint prop-
agation ensures the determination of the globally optimal
solution. Additional features like the efficient determination
of the multiple solutions and near best solutions makes CP an
attractive optimization technique [18].

D. Search strategy

A key feature of constraint programming is the ability to
design specific search strategies to solve problems. In this
work a very basic enumeration strategy is applied on decision
variables s, t and n. The next variable to branch on is selected
in a sequential way (input order) and assigns to its current
lower bound.

E. Implementation of Constraint Programming-Based Service
Placement Algorithm (CP-SPP)

After formulating the service placement problem as CSP,
we now choose a constraint solver to solve the problem.
Constraint programming is often realized in imperative pro-
gramming by software library, such as CPLEX CP Opti-
mizer [19], JaCoP [20] and Choco [14]. We choose Choco
as our constraint solver (many times awarded at interna-
tional solver competitions MiniZinc1). Choco is a free Open-
Source Java library dedicated to Constraint Programming. It
aims at describing real combinatorial problems in the form
of constraint satisfaction problems and solving them with
constraint programming techniques by alternating constraint
filtering algorithms with a search mechanism. The CP-SPP
algorithm takes as inputs the infrastructure network and the
set of applications graphs to deploy, and output the set of
all feasible mapping. We can set an optimization function
and timeout for this algorithm to respectively compute an
optimal solution and reduce the search time of constraint
solver. In this case, constraint solver will return local or global
optimal solution until timeout expired. The performance of the
elaborated algorithm is described in the next section.

1https://www.minizinc.org/challenge.html

Fig. 2: Motivating example based on the experiments depicted in [9]. (a) Fog infrastructures, and (b) Smart Bell application.

Fig. 3: Greek Forthnet topology.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the provided
CP-SPP model built and solved using Choco solver [14]. The
experiments presented here focus essentially on the computing
times of our approach (how long it takes to solve the placement
algorithm) and its scalability. We first provide an overview
of our experimental setup before evaluating the benefits in
solving time of our framework.

A. Experimental Settings

a) Experimental Setting 1: For the first experiment, the
motivating example is based on the Fog infrastructure and
Smart Bell application introduced in [9] and illustrated in Fig-
ure 2. The infrastructure contains a Cloud server, three network
Points of Presence (PoP) in the edge layer and a number of
end devices in forty-three homes in the extreme edge layer.
End devices in each home has a box and a PC / mobile. The
global infrastructure is composed by 91 fog nodes and 86
sensors (camera and screen). The considered application in
this example is the Smart Bell application. It notifies home
inhabitants when they get a visitor. It serves three homes in a
same neighborhood. The main components of the application
are: i) Extractor that extracts human faces in captured images,
ii) DB that stores inhabitants’ and friends’ information, iii)
Recognizer that try to recognize visitors, iv) Decider that
makes reaction decisions for each visitor, v) Executor that
generate and send commands to inform inhabitants through

screens, and vi) Recorder that stores strangers’ information
and counting how many times a stranger appears.

The considered capacities of each fog node and links as well
as the requirements of each component and each application
binding are similar to those given in [9].

b) Experimental Setting 2: For the second part of our
evaluations, we consider an infrastructure network selected
from the Internet Topology Zoo2 as shown in Figure 3. This
practical topology allow us to evaluate in an accurate manner
the performance of our proposal for a realistic infrastructure.
The considered topology is based on the Greek Forthnet
topology composed by 60 PoPs and 59 links. Because Fog
Computing is a new paradigm which has not been practically
deployed in a reasonably large scale, we propose in these
experiments to derive larger graph by replicating the network
as follows: Gk denotes the graph generated by replicating k−1
time the Forthnet topology. To ensure the connectivity of the
generated graph, we randomly connect two nodes of the graph
(n) and graph (n − 1), ∀n = {1, . . . , k}. Here, we consider
respectively the following graphs: G2 (with 120 nodes), G5

(300 nodes), G10 (600 nodes) and G20 (1200 nodes).
The processing and the memory capacities for each infras-

tructure node are chosen randomly from respectively 10 to 100
GHz for CPU and 20 to 200 GB for RAM. For each edge in
the network, the bandwidth is chosen randomly to be between
100 and 10000 Mbps, and the latency to be between 1 and 10
ms.

We consider three types of application graphs as shown
in Figure 4 to deploy on infrastructure graph. Each of the
graphs feature a different number of components. For the
first service, we propose to consider an application composed
respectively by four components and four edges [11]. This
application is characterized by three types of components: i)
trigger service which sends tokens. These tokens transport
the collected measurements related to the end devices’, ii)
processing service that emulates the performed application
treatment, and iii) storage service that stores the received
tokens in memory for further processing (if necessary).

For the second application, we consider the "Smart Bell
application" [21] composed by six components and five edges.

2http://www.topology-zoo.org/

Fig. 4: Considered applications. (a) Storage Application [11], (b) Smart Bell application [21], and (c) A face recognition
application [22].

Application is based on the following set of software entities:
i) a Message Oriented Middleware (MQTT) that permits asyn-
chronous communications and eventing among the software
entities, ii) A Complex Event Processor (CEP) that operates
as an IoT event hub to aggregate, filter, and trigger IoT events
according to business rules, iii) A Mashup Engine called
Cocktail, that permits the execution of a graph of actions on
actuators and services. iv) An IoT Capillary Router called
Sensonet, which enlists heterogeneous connected things and
collects data, and v) a Face Recognition enabler.

The third application (face recognition application [22]) is
composed by eight components and seven edges. The face
detection process starts from the Pre-Processing part that
includes the necessary color conversion. Then, the Skin-tone
extraction is performed in order to differentiate areas that
are face candidates among other objects in the video frame.
From that stage, the potential face region is detected and
the equivalent facial features are extracted. This intermediate
result is fed into the database that finally replies if the face
that was detected exists in the database or not.

The applications presented here and considered for our eval-
uations allow us to capture a variety of application scenarios
where Fog Computing is relevant. Regarding the application
component requirements, the CPU and RAM, as well as band-
width and latency are chosen randomly respectively: within the
range of 1 to 2 for CPU (GHz), RAM (GB) and bandwidth
(Mbps), and from 100 to 1000 ms for latency.

In these experiments, we assume that applications arrive by
batch according to a Poisson law, and the placement service
policy is called either periodically or each time a new job
should be provisioned.

B. Performance Analysis

The goal of our analysis is to investigate the resolution
trends of our model based on the following three factors:
number of applications, number of components per applica-
tion, and infrastructure size. First, we propose to compare the
performance of our model with the algorithms provided in [9].
Next, we push the experiments further by analyzing the model
and observing the solving time of CP-SPP under the second
experimental setting.

Algorithm Resolution Time (s) Quality of
the solution

ILP 343 100%
First Fit 265 186.8%

GA 28 143.9%
DAFNO-InitCO-DCO(0.3) 0.003 100.3%

CP-SPP 0.559 100%

TABLE I: Evaluation Results of Different Placement Algo-
rithms for the Smart Bell application [9].

1) Comparison of the CP-SPP Model with Algorithms pro-
vided in [9]: This evaluation compares the CP-SPP model
with (i) an Integer Linear Programming (ILP) algorithm imple-
mented using IBM CPLEX [19]), (ii) First Fit heuristic (based
on backtrack algorithm, that returns the first solution found (if
any)), (iii) a metaheuristic Genetic Algorithm (GA) (based on
refining a population (a set of placements) and continuously
generates new placements and adds them into the population),
and (iv) the heuristic "DAFNO-InitCO-DCO(0.3)" provided
by Xia et al. [9] that relies on a backtrack search algorithm
accompanied by two heuristics: (1) naive search that order the
fog nodes and applications components, and (2) search based
on anchors to minimize average latency. Here, we propose
(as considered in [9]) to deploy a single Smart Bell instance
on the infrastructure graph depicted in Figure 2.(a) while
minimizing a weighted average latency. In Table I, we give the
results (in term of quality of the solution and execution times)
provided in [9] by these four algorithms. We present also the
results obtained by the elaborated CP-SPP model. The column
"Quality of the solution" in Table I describes the difference of
the solution found compared to the optimal ones. The solution
provided by the approaches is normalized according to the
optimum. The optimal solution is considered as 100%.

By integrating the objective function considered in [9], the
provided CP-SPP allows obtaining the optimal solution almost
instantaneously compared to the traditional ILP approach that
takes more than 5 minutes. For the first fit algorithm, we
remark that the heuristic provides quite bad results whether
in terms of computing time or in terms of the quality of the
solution obtained. Indeed, the solution found is 87% higher
than the optimal solution, this is due to the risk of doing a
search based on backtracking that returns the first solution
found. GA meta-heuristic provides better results than the First

fit however, in terms of the quality of the solution, it remains
far from optimum with difference of 43%. The heuristic
proposed by Xia et al. [9] provides a better resolution time but
with a slight deviation from the optimum solution. Given these
first results, we can say that the CP-SPP model elaborated
in this work provide an interesting trade-off between quality
of the solution provided and the computing time which is
significantly better compared to conventional approaches.

2) Execution Times vs. Number of Deployed Services and
Infrastructure Size: These evaluations are based on the second
experimental settings presented in Section IV-A. In most works
found in the literature, to evaluate the performance of their
approaches and placement strategies, authors propose to de-
ploy only one application at each time interval on a relatively
small or medium infrastructure 3, our work aims to push the
evaluations further by deploying a batch of applications at once
and displays the advantage of our model in the context of Fog
Computing regarding the scalability issue. Hence, to show the
practicality of our framework, we propose to vary the number
of deployed service from 1 to 100 applications and observe
respectively the building and the resolution time of our model
for the first feasible solution that minimizes the number of
hosts in Fog infrastructure. We emphasize that the solutions
provided by the CP-SPP model present a proven upper bound
for the considered minimization problem. Figures 5 depict the
results of this analysis for the different network sizes.

For Figure 5, we notice that the deployment of a single
service and therefore the definition of a solution that satisfies
all the constraints is done almost instantaneously with a very
low impact of the infrastructure size, and this for all types
of considered applications, i.e, application with 1, 4, 6, or 8
components. The same trend is observed for the deployment
of monolithic services. Indeed, for this type of application the
size of the infrastructure has a slight influence on the search
time of an admissible solution.

For an infrastructure of 120 nodes, we observe that the
deployment of 100 applications with number of components
less than six are almost instant, and remain low when in-
creasing the services size (less than 1 minute for application
with six and eight components). For infrastructure of size 300,
we remark that the computing time remains relatively low.
For larger infrastructures (e.g., for G10 and G20), we remark
that our model is not intractable and it provides solutions to
such a problem size, which represents a significant advantage.
Regarding the execution time trend, it is straightforward to see
that this time increase when increasing the number of deployed
services and components. This aspect can be favored by using
another search strategy than the one used in this paper (see
Section III-D). This flexibility is provided by the CP modeling,
because we are not dependent on how the problem is solved.
So, the improvement and the modification of the model is very
simplified in this case.

3e.g., in [7], the authors considers an application of three components and
proposes to deploy it on infrastructure of size 9. In [11], one application is
deployed composed by four components every 2 minutes on infrastructure
with 70 nodes. Ditto in many other papers.

V. CONCLUSION

This paper presents the use of constraint programming to
address in a more generic manner the service placement prob-
lem in Fog Computing infrastructures. Our model considers
the applications and the Fog infrastructure following different
scenarios. We provide a set of constraints that formulates the
problem and solve it using Choco-solver.

The evaluations we performed show that our implementation
on top of Choco-solver provides a good tradeoff between
resolution times and solutions quality. We thus argue that CP-
based approaches can be effectively used to address this kind
of problems. The expressive and flexible modeling language
CP natively comes with minimizes placement description
effort and eases its enhancement. In addition, the systematic
resolution algorithm is almost configuration-less and provides
competitive performance.

As future works, we identify three important directions.
First, we plan to extend our model to include the notion
of the service sharing. Our idea is to add new rules that
will enable the merge of identical software components (i.e.
processing units that provide the same service) and thus reduce
the processing footprint overall. The use-cases we envision are
related to the (i) network function chaining and (ii) data-stream
problems. In both cases similar functions (load-balancing,
firewall, data-filtering, etc.) might be deployed several times
across the Fog infrastructure. Second, we will investigate the
relevance of our model in the context of the reconfiguration
(in the current study, only the initial placement has been
considered). The challenges is related to the modeling of
the dynamic aspect of both IoT applications and the Fog
Computing infrastructure. Finally, it would be interesting to
study how our CP-based approach can be extended to answer
questions such as “How many replicas of a service we should
deploy to ensure a certain quality of services to all users ?”

ACKNOWLEDGMENTS

This work was performed and funded by the Inria
Project Lab Discovery. This is Open-Science Initiative aiming
at implementing a fully decentralized IaaS manager. See
http://beyondtheclouds.github.io for more information.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog
Computing and Its Role in the Internet of Things,” in
MCC. ACM, 2012, pp. 13–16.

[2] B. Zhang, N. Mor, J. Kolb, D. S. Chan, K. Lutz,
E. Allman, J. Wawrzynek, E. A. Lee, and J. Kubiatowicz,
“The Cloud is Not Enough: Saving IoT from the Cloud.”
in HotStorage, 2015.

[3] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and
M. Rovatsos, “Fog Orchestration for Internet of Things
Services,” IEEE Internet Comp., vol. 21, no. 2, pp. 16–
24, Mar 2017.

[4] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala,
F. Jalali, A. Niakanlahiji, J. Kong, and J. P. Jue, “All One
Needs to Know about Fog Computing and Related Edge

(a) For G2 (with 120 nodes). (b) For G5 (with 300 nodes).

(c) For G10 (with 600 nodes). (d) For G20 (with 1200 nodes).

Fig. 5: Execution times vs. number of deployed services.

Computing Paradigms: A Complete Survey,” CoRR, vol.
abs/1808.05283, 2018.

[5] S. B. Nath, H. Gupta, S. Chakraborty, and S. K. Ghosh,
“A Survey of Fog Computing and Communication:
Current Researches and Future Directions,” CoRR, vol.
abs/1804.04365, 2018.

[6] A. Yousefpour, A. Patil, G. Ishigaki, J. P. Jue, I. Kim,
X. Wang, H. C. Cankaya, Q. Zhang, and W. Xie, “QoS-
aware Dynamic Fog Service Provisioning,” 2017.

[7] A. Brogi and S. Forti, “QoS-Aware Deployment of IoT
Applications Through the Fog,” IEEE Internet of Things
Journal, vol. 4, no. 5, pp. 1185–1192, Oct 2017.

[8] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and
P. Leitner, “Optimized IoT Service Placement in the
Fog,” SOC, vol. 11, no. 4, pp. 427–443, Dec 2017.

[9] Y. Xia, X. Etchevers, L. Letondeur, T. Coupaye, and
F. Desprez, “Combining Hardware Nodes and Software
Components Ordering-based Heuristics for Optimizing
the Placement of Distributed IoT Applications in the
Fog,” in Proc. of the ACM SAC, 2018, pp. 751–760.

[10] M. I. Naas, P. R. Parvedy, J. Boukhobza, and L. Lemarc-
hand, “iFogStor: An IoT Data Placement Strategy for Fog
Infrastructure,” in ICFEC’17, 2017, pp. 97–104.

[11] B. Donassolo, I. Fajjari, A. Legrand, and P. Mertikopou-
los, “Fog Based Framework for IoT Service Provision-
ing,” in IEEE CCNC, Jan. 2019.

[12] F. Rossi, P. van Beek, and T. Walsh, Eds., Handbook of

Constraint Programming, ser. Foundations of Artificial
Intelligence. Elsevier, 2006, vol. 2.

[13] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and
J. Lawall, “Entropy: A Consolidation Manager for Clus-
ters,” in ACM SIGPLAN/SIGOPS Int. Conf. on Virtual
execution env., 2009, pp. 41–50.

[14] C. Prud’homme, J.-G. Fages, and X. Lorca,
Choco Documentation, TASC - LS2N CNRS UMR
6241, COSLING S.A.S., 2017. [Online]. Available:
http://www.choco-solver.org

[15] P. Shaw, “A Constraint for Bin Packing,” in Principles
and Practice of Constraint Programming – CP 2004,
M. Wallace, Ed. Springer Berlin Heidelberg, 2004.

[16] J. Régin, “A Filtering Algorithm for Constraints of
Difference in CSPs,” in Proceedings of the 12th National
Conference on Artificial Intelligence, Seattle, WA, USA,
July 31 - August 4, 1994, Volume 1., 1994, pp. 362–367.

[17] G. Pesant, “A Regular Language Membership Constraint
for Finite Sequences of Variables,” in Principles and
Practice of Constraint Programming – CP 2004, M. Wal-
lace, Ed., 2004, pp. 482–495.

[18] P. R. Kotecha, M. Bhushan, and R. D. Gudi, “Efficient
optimization strategies with constraint programming,”
AIChE Journal, vol. 56, no. 2, pp. 387–404, 2010.

[19] P. Laborie, J. Rogerie, P. Shaw, and P. Vilím, “IBM ILOG
CP Optimizer for Scheduling,” Constraints, vol. 23,
no. 2, pp. 210–250, Apr. 2018.

[20] K. Kuchcinski and R. Szymanek, “JaCoP - Java Con-
straint Programming Solver,” 2013.

[21] L. Letondeur, F. Ottogalli, and T. Coupaye, “A Demo of
Application Lifecycle Management for IoT Collaborative
Neighborhood in the Fog: Practical Experiments and
Lessons Learned around Docker,” in 2017 IEEE Fog
World Congress (FWC), Oct 2017, pp. 1–6.

[22] S. S. N. Perala, I. Galanis, and I. Anagnostopoulos, “Fog
omputing and Efficient Resource Management in the era
of Internet-of-Video Things (IoVT),” in IEEE Int. Symp.
on Circuits and Systems (ISCAS), May 2018, pp. 1–5.

