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Abstract—We describe a process to dispatch the operation of
a medium voltage distribution feeder and improve its quality-
of-service using a battery energy storage system (BESS). It is
organized according to a day-ahead and intra-day structure to
allow the integration with electricity markets. In the former
stage, the average power transit on a 5-minute resolution is
determined for the next day of operation using adaptive black-
box forecasting. In the latter stage, the feeder operation is
dispatched according to the previously determined trajectory.
The resulting tracking problem is accomplished by using the
BESS to compensate for deviations from the dispatched plan,
which are likely to occur due to forecasting errors. For the
first time in the literature, the control strategy is realized using
model predictive control (MPC) accounting for the battery charge
redistribution effect. This phenomena is described using a state-
of-the-art lithium battery model. A simulated proof-of-concept is
given.

Index Terms—Batteries, Energy management, Optimization

I. INTRODUCTION

The progressive displacement of conventional generation in
favor of renewables requires to reallocate an adequate level of
controllability to assure reliable power system operations. Ad-
ditionally, the intrinsic dispersed nature of renewable sources
poses quality-of-service (QOS) issues, such as increased volt-
age variations along the feeders, that cannot be effectively
handled with the current power system architecture, since it
was designed for unidirectional powers flow and centralized
control. Decentralizing and extending the control infrastructure
to the distribution level is also of interest in the case of
grid congestion management, which is often considered as a
viable alternative to otherwise expensive distribution networks
reinforcements. An emerging mainstream concept to face the
aforementioned challenges is achieving the controllability of
portions of distribution networks to satisfy assigned trajec-
tories of the active and reactive power transits thanks to,
e.g., deploying battery energy storage systems (BESSs) and
demand response (DR) programs. This paradigm can be traced
in a number of frameworks, such as virtual power plants
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(VPPs) and microgrids. The former consists of aggregating
several units, possibly of different kinds, to accomplish a
given common target, such as dispatchable power and ancillary
services to the upper-grid layer. The latter framework is similar
to a technical VPP (where units are aggregated by topology,
instead of being grouped in portfolios, as in commercial VPP)
with the difference that microgrids can operate independently
and disconnected from the main grid. Both setups have ad-
vanced monitoring and ICT requirements (e.g. [1]), which
are not met within the current power system framework. If
the transition to a smarter grid has to happen, it will be
likely characterized by step-by-step progresses rather than a
sudden revolution; it is hence of importance to research on
plug and play methods, i.e. solutions that can operate in
the existing framework without requiring deep changes to
the overall power system infrastructure and development of
new policies. With this requirement in mind, in this paper
we investigate on how to achieve dispatchability of a distri-
bution feeder. The proposed configuration utilizes a BESS,
MPC and adaptive data-driven consumption forecasting and is
characterized by a low overall complexity because the decision
process only requires locally available information, and all the
components can be conveniently placed in one location, such
as in a secondary substation. In the literature, BESSs control
strategies were mainly proposed in connection to smoothing,
storing and scheduling of DERs production, and managing
network congestions [2]–[7]. We extend the existing literature
by proposing to dispatch the operation of a distribution feeder
using, for the first time in literature, a MPC algorithm that
accounts for the battery charge redistribution effect through a
state-of-the-art battery model.

II. PROBLEM STATEMENT

A. Aims and motivations

We consider a generic distribution feeder populated by
an unknown mix of electric loads and possibly distributed
generation (DG). The load and DG power injections are
unknown, while the power transit at the substation transformer
is measured. The idea is to utilize a BESS to accomplish the
following two objectives:



1) dispatching the operation of the distribution feeder, i.e.
the power consumption of the feeder should stick to a
trajectory that is determined the day before the opera-
tion. This is to reduce the stochasticity associated to the
power consumption, hence allowing for decreasing the
amount of regulating power required to operate the grid,
a key issue especially with large shares of production
from renewables;

2) clearing potential congestions of the substation trans-
former in order to respect its rating and keep adequate
voltage level along the feeder, allowing for a reliable
delivery of the electricity.

B. Network setup and requirements

The configuration of the network is sketched in Fig. 1. The
BESS, in the bottom right corner and composed by the battery
and the respective management system (BMS), is located at
the root of the feeder and is operated by the DSO. The
monitoring and control requirements (top left corner) consist
uniquely in measuring the power consumption transit at the
secondary substation, controlling the BESS power injection
and bidirectional communication with the DSO control room.
The feeder on the right part of Fig. 1 does not require
any infrastructure deployment or development (compare with
demand response programs which requires extended control
and monitoring infrastructures).
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Fig. 1. The configuration of the dispatchable SOCdistribution feeder. The
control and monitoring infrastructure is shown in red, and, in blue, the power
transit measurements.

III. METHODS

To facilitate the possible future integration with liberalized
electricity markets, the proposed framework is similarly orga-
nized according to a day-ahead of and intra-day operation
structure. Briefly, in the former stage, the 5-minute power
consumption trajectory of the feeder for the next day of
operation, said advertised power consumption, is determined.
A 5-minute period is chosen since it is a common choice for
real time electricity markets [8]. In the latter stage, the BESS is
utilized to compensate for mismatches between the advertised
power consumption and realizations, which are likely to occur
because forecast errors. Equivalently, we can say that during
operation the BESS is utilized to track the advertised power

consumption. A sketch of the communication happenings are
shown in Fig. 2.
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Fig. 2. Message exchange between a balance responsible (e.g. TSO), DSO
and the BESS for the operation of the dispatchable feeder.

A. Day-ahead of operation

This phase takes place several hours ahead the day of
operation. In a real operation context, it should be completed
in time to be integrated within day-ahead market operation.
In fact, scheduling the operation of distribution feeders could
impact market decisions as the stochasticity of the consump-
tion forecast, as well as the risk of incurring in unbalances,
is reduced. In this paper, we arbitrarily chose to perform
the operation described hereafter by 11PM of the day before
operation. The objective of this phase is to obtain the adver-
tised power consumption trajectory [P ∗0 , . . . , P

∗
N−1], namely

the sequence of 5-minute active power average values to which
the substation power transit should stick to during the next day.
For each 5-minute interval t = 0, . . . , N − 1 of the next day
(where N = 120 is the number of 5-minute interval in 24
hours), the advertised power consumption is as:

P ∗t = L̂t + B̂ot , (1)

where L̂t and B̂ot respectively denote the power consumption
forecast and battery charging demand. In words, we say that
the substation power transit prediction is given by the next
day load forecasting and the demand necessary to bring the
battery state of charge (SOC) to 50% during the first hours of
the day of operation (further details are in Section III-A2).

1) Day-ahead power consumption forecasting: The feeder
day-ahead power consumption forecast are obtained using an
adaptive data-driven black-box forecasting method based on
vector autoregression (VAR). This choice is because black-box
modelling does not rely on any assumptions on the nature of
the electric loads to model (cfr. grey-box modelling). Thus, it
is generic enough to be applied for the considered case, where
the composition of the feeder in terms of number and kinds
of electric loads is unknown. The power consumption forecast
for the day d + 1 is denoted by the column vector L̂d+1|d =

[L̂0, . . . , L̂N−1] and determined as a linear combination of the
historic power consumption sequences with the same day of
week (Monday, Sunday . . . ) as d + 1. Alternatively, we say
that the power consumption of, for example, a Thursday is a
weighted average of the given power consumption sequences



of past Thursdays. Hence, it can be expressed as:

L̂d+1|d = a1Ld+1−7 + · · ·+ apLd+1−7(p+1), (2)

where p and a1, . . . , ap are respectively the autore-
gressive term degree and coefficients. The sequences
L(d+1)−7, . . . ,L(d+1)−(p+1)·7 are obtained by splitting the
historical feeder power consumption measurements into 1-
day long sequences. At this stage, both the degree and the
coefficients of the VAR model in (2) are empirically chosen
as:

p = 5 (3)

ai =
1

p
, i = 1, · · · , p. (4)

The uncertainty associated to each point prediction in L̂d+1|d
is estimated by the variance V̂d+1|d = [V̂0, . . . , V̂N−1] of the
respective regressors. Hence, the following relationship holds:

V̂d+1|d =

=
1

p

p−1∑
i=0

diag
(
L̄d − Ld+1−7(i+1)

) (
L̄d − Ld+1−7(i+1)

) (5)

where the column vector L̄d denotes the average of the vector
regressors, i.e. :

L̄d =
1

p

p−1∑
i=0

Ld+1−7(i+1). (6)

2) Day-ahead battery charging demand: As it will be
shown in the following section, during intra-day operation,
the battery is utilized to compensate for the deviations from
the advertised power consumption profile in order to achieve
an energy balance control. Hence, its SOC might deviate
substantially from 0.5, i.e. the ideal value to compensate for
an unbiased (i.e. with zero mean errors) advertised power
consumption profile. The following optimization problem de-
termines the optimal current trajectory io = [io0, . . . , i

o
N−1] to

achieve the 0.5 SOC starting from the SOC at time t = 0
(0AM of the day of operation) while obeying to system
constraints:

io = arg min
i∈θ

N−1∑
t=0

(SOCt − 0.5)2 (7)

subject to

vt = f(i) t = 0, . . . , N − 1 (8)
SOCt = g(i) t = 0, . . . , N − 1 (9)
Bt = vt · it t = 0, . . . , N − 1 (10)
0 ≤ SOCt ≤ 1 t = 0, . . . , N − 1 (11)∣∣∣∣ BtBnom

∣∣∣∣ ≤ 1 t = 0, . . . , N − 1 (12)

Bt + L̂t
Pnom

≤ 1 t = 0, . . . , N − 1, (13)

where vt is the estimated battery voltage, f and g are the
battery prediction models (described in Section III-A3), Bt is

the battery active power consumption as seen by the BESS
converter (equal to the battery voltage times the respective
current as a first approximation), Pnom is the active power
rating of the BESS converter and Lnom is the substation
transformer nominal power. The inequality constraints in (11)-
(13) are respectively to keep battery SOC, power and power
transit at the substation transformer within their prescribed
limits. At this stage, we are not considering reactive power. In
a real operation context, the constraints in (12) and (13) should
be formulated using apparent power ratings instead. In such
a case, the reactive power set-point of a four quadrant BESS
converter could be determined by the MPC to compensate, for
example, for all the reactive power of the feeder.

Once the battery current profile has been determined using
the optimization problem presented above, the battery power
demand is finally determined as (neglecting the power loss
introduced by the converter):

B̂ot = iot · f(io, t), t = 0, . . . , N − 1. (14)

It is to be noted that, since this optimization is performed at
11 PM, the battery SOC at 0 AM is unknown, and its value
might vary in the last hour of the current intra-day operation.
In this case, we simply approximate the SOC at midnight with
the one at 11 PM.

3) Battery models:
a) Battery voltage: The voltage and current of a battery

composed of b parallel branches of s cells in series can be
expressed as:

vt = sVt (15)
it = bIt, (16)

where Vt and It are respectively the cell voltage and current at
the discrete time interval t. In the following, we assume that all
the cells composing the battery have identical characteristics.
In addition, we neglect slow time dynamics introduced by
electrolyte aging processes. The battery model used in this
paper is the one proposed by Bahramipanah et al. in [9] which
model the rate capacity and charge redistribution effect1, and
it is hereafter reformulated to be included into the proposed
optimizations. The model is for a Lithium Titanate cell with
nominal capacity and voltage of 30 Ah and 2.3 V, respectively.
The cell voltage circuit model is shown in Fig. 3 and consists
of a TTC (two time constants) model with a parallel controlled
current generator. The former element describes the charge
redistribution effect happening at the nominal cell current,
while the latter captures the voltage dynamics introduced by
a generic charging/discharging current. The circuit in Fig. 3 is
described by the following dynamic equations (discretized at

1Respectively, the effect for which the battery capacity decreases when
discharged with large values of current and the fact that during a phase of
rest after, for example, a charge cycle, the battery voltage increases due to
the redistribution of the charge in the battery electrolyte



sample time Ts = 20 seconds).

Vt = E +R0(It − Ig,t) + U1,t + U2,t (17)

U1,t+1 = U1,t + 1
C1

(
−U1,t

R1
+ It − Ig,t

)
Ts (18)

U2,t+1 = U2,t + 1
C2

(
−U2,t

R2
+ It − Ig,t

)
Ts, (19)

where It is the current extracted from the cell, and
R0, R1, R2, C1, C2 are fitted parameters dependent on the cell
SOC according to the piecewise linear relationship summa-
rized in the look-up table in Table I. The controlled current
generator E in (17) is modelled with the following polynomial
model:

E(SOCt) = 0.61 · SOC4
t + 0.84 · SOC3

t+

− 2.1 · SOC2
t + 1.55 · SOCt + 1.80

(20)

The controlled current source Ig,t in (18) and (19) is as:

Ig,t = Qr

(
q1

R1C1
e
t·Ts−t0
R1C1 +

q2
R2C2

e
t·Ts−t0
R2C2 +

q3
τ3
e
t·Ts−t0
τ3

)
(21)

where q1, q2, q3, τ3 are fitted parameters (shown in Table II)
and Qr is the difference in achieved charge between the case
when the cell is charged at its nominal current (said INom) and
when with the actual cell current profile. It is determined as:

Qr =


INom · Ts − Ts

t−t0
∑t−1
j=t0

It, i > 0

−INom · Ts − Ts
t−t0

∑t−1
j=t0

It, i < 0

INom −Qr,prev, i = 0.

, (22)

where Qr,prev corresponds to the charge achieved in the last
charge/discharge phase. The discrete time index t0 in (21)-(22)
corresponds to the time step when the cell current turns from
charging to discharging and vice-versa, i.e.

t0 = t, if sign(t− 1) 6= sign(t). (23)
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Fig. 3. The equivalent circuit of the battery charge redistribution effect model.
The capacitance and resistance values are functions of the battery SOC.

TABLE I
LOOK-UP TABLE FOR THE CIRCUIT PARAMETERS VALUES.

SOC 0 0.2 0.4 0.6 0.8 1

Pa
ra

m
et

er
s R0 0.0030 0.0027 0.0018 0.0016 0.0022 0.0022

R1 0.0025 0.0019 0.0014 0.0014 0.0012 0.0019
R2 0.0025 0.0019 0.0014 0.0014 0.0013 0.0019
C1 10000 10730 10007 11488 10266 21289
C2 10000 10730 10007 11492 10266 21278

Summarizing, the discrete dynamic equations in (17)-(19)
together with (17)-(22) describe the cell voltage as a function

TABLE II
VALUES OF THE PARAMETERS OF THE MODEL IN (21).

Parameter Charging
(It < 0)

Discharging
(It > 0)

Resting phase
(It = 0)

q1 0.01 0.001 0.001
q2 -0.03 0.03 -0.03
q3 1.5 0.15 0.15
τ3 900 900 900

of the charging/discharging current It accounting for the
charge redistribution effect. Finally, the relationships in (15)-
(16) are used to model the complete battery bank.

b) Battery SOC: The battery SOC is often described as
the integral over time of the charging/discharging current on
the nominal capacity of the battery. However, this represen-
tation might be inaccurate as it does not account for the rate
capacity effect. In this work, we utilize the following model,
that is a discretized version of the model proposed in [10]:

SOCt+1 =
Ct − η(it)it∆T

Q(it)
, (24)

where Ct0 is the charge at time t0 (in Coulomb), η is the
efficiency of the discharching process associated to the current
it (assumed equal to 1 as a first approximation), ∆T is the
sampling time and Q(I) is the battery capacity at the constant
current discharge rate I (information normally provided by the
battery manufacturer). The coefficients η and Q are normally
dependent also on the battery cells temperature. However, in
this paper we have assumed the battery operating at a constant
battery temperature.

B. Intra-day operation

1) Receding horizon MPC: At the beginning of the day
of operation, the distribution feeder is dispatched using the 5-
minute advertised power consumption profile. The objective of
the intra-day operation is to control the BESS to compensate
for deviations from the advertised power consumption profile,
that are likely to occur due to forecasting errors (see Sec-
tion III-A1). The BESS control strategy is realized by using
MPC and accomplishes the following targets:
• tracking of the advertised power consumption profile;
• plan the operation of the battery (in terms of current) such

as its available capacity is the largest when the power
consumption forecast are likely to be wrong in order to
have an increased amount of energy to compensate for
energy mismatches. This is done by accounting for the
battery charge redistribution effect, which is modelled as
described above.

The BESS MPC is applied in a receding horizon fashion once
per minute. More specifically, the 5-minute interval is splitted
into five 1-minute subperiods, at the beginning of those the
MPC is recomputed with updated information, and only the
first portion of the optimal control trajectory is applied.

a) Tracking error: We denote with P̃ ∗t,j , j = 0, . . . , 4 the
1-minute advertised power consumption profile obtained by



up-sampling the 5-minute advertised power consumption set-
point P ∗t (using linear interpolation) and define the tracking
error (updated at the beginning of each 1-minute subperiod)
as:

et,0 = P̃ ∗t,0 − Lt,0 (25)

et,j = et,0 +

j∑
i=1

P̃ ∗t,i − (Lt,i +Bt,i), j = 1, . . . , 4, (26)

where Lj and Bj are the actual measured average power
absorptions of the feeder and battery. In words, the tracking
error is the cumulative difference between the advertised
power consumption and the total substation power transit. The
situation and the input data of (25)-(26) is sketched in Fig. 4.

Lt,1

Bt,1

P̃ ∗
t,1

Lt,0

Bt,0

P̃ ∗
t,0

et,1
Bt,2

Time0 1 2 3 4

t t+ 1

Fig. 4. The 5-minute period t is split into 5 subperiods (0, . . . , 4). In the
example, we are at the beginning of subperiod 1: the tracking error et,1 is
computed as in (26) using the set-points P̃ ∗

t,0, P̃
∗
t,1, battery power injections

Bt,0, Bt,1 and feeder demand Lt,0, Lt,1. The first terms are obtained by
up-sampling the advertised power consumption profile, while the last two are
obtained averaging the respective measurements on the time intervals denoted
by the curly braces. In the lower part, Bt,2 is the actuated MPC action.

b) MPC formulation: At the beginning of each 1-minute
interval (denoted by t, j, according to the notation introduced
above), the MPC determines the 1-minute current trajectory for
the next L 5-minute periods and is formulated as the following
optimization problem:

iot,j = arg min
it,j∈θ

{αJ0 + J1} (27)

where α is a weight coefficient, and the two terms J0 and
J1, whose dependency from the battery current is omitted for
simplifying the notation, are respectively as:

J0 = (et,j −Bt,j+1)2 (28)

J1 =

t+L∑
h=t

4∑
i=j

(SOCh,i − 0.5)
2 − wh,ivh,i. (29)

The weights wh,i in the expression above are obtained by
mapping to the [0, 1] interval the sequence in (5) up-sampled
to 1-minute resolution by linear interpolation. Formally, the
weights for t = 0, · · · , N − 1, j = 0, · · · , 4 are as:

wt,j =

˜̂
V 5t+j −min (Vd+1|d)

max (Vd+1|d)−min (Vd+1|d)
; (30)

where ˜̂
Vt is an element of the 1-minute up-sampled version

of the sequence Vd+1|d, and the operators max and min
respectively denote the maximum and mininum value of the
respective sequence. For example, wh,i equals 1 when the

estimated variance of the power consumption prediction is the
largest, and 0 when vice-versa. The optimization problem in
(27) is subject to the following constraints:

vh,i = f(it,j) h = t, . . . , t+ L, i = j, . . . , 4 (31)
SOCh,i = g(it,j) h = t, . . . , t+ L, i = j, . . . , 4 (32)
Bh,i = vh,i · ih,i h = t, . . . , t+ L, i = j, . . . , 4 (33)
0 ≤ SOCh,i ≤ 1 h = t, . . . , t+ L, i = j, . . . , 4 (34)∣∣∣Bh,iBnom

∣∣∣ ≤ 1 h = t, . . . , t+ L, i = j, . . . , 4 (35)
Bh,i+Lh,i

Pnom
≤ 1 h = t, . . . , t+ L, i = j, . . . , 4. (36)

The constraints (31)-(36) have the same meaning as for the
previous optimization problem in Section III-A2. In words,
the optimization problem seeks for the battery current pro-
file that respects the operative constraints while tracking the
advertised power consumption profile trough minimizing (28)
and achieving large battery capacity (accounting for the charge
redistribution) when the estimated forecast uncertainty is high,
as in (29). Clearly, the operation of the MPC depends on the
choice of the weight coefficient α in (27). Indeed, it determines
the importance between terms J0 and J1 in the cost function. It
is noteworthy that the optimization problem is nonconvex since
the model f in (31) necessary to determine (33) is nonlinear
in the battery current.

IV. RESULTS AND DISCUSSION

The framework is tested in simulation to verify its ability
to dispatch the operation of a monitored distribution feeder
of the EPFL campus [11]. The available power consumption
measurements are split into daily sequences and used to
determine the day-ahead power consumption forecast and the
advertised power consumption profile. In the intra-day, the
battery receding horizon MPC is applied to implement the
dispatched consumption trajectory. The simulation conditions
and the MPC parameters are in Table III.

TABLE III
SIMULATION SCENARIO SUMMARY.

Description Symbol Value
BESS capacity – 500 kWh
Transformer power rating – 500 kVA
Typical working day energy consumption – 4.80 MWh
MPC look-ahead horizon L 20 minutes
MPC cost function weight (Eq. (27)) α 1000

Fig. 5 shows the advertised power consumption profile and
the actual feeder power consumption. As expected, these two
quantities differ due to inaccurate load forecast. The thicker
line shows the implemented substation power transit (feeder
power consumption plus the battery charging demand): the
tracking action achieved by the MPC is well visible. Fig. 6
shows the simulated current and voltage profile of the battery
cell model.

Table IV summarizes the simulation results for additional
5 daily scenarios. To prove the correct operation of the
MPC, we introduce two metrics: the mean and scaled L1-
norm error, which are calculated for each simulation scenario
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to characterize the mismatches between i) the feeder power
consumption realization and the advertised power consumption
profile and ii) substation power transit after the MPC action
and advertised power consumption profile. In the former case,
the indicators measure the similarity between the advertised
power consumption profile and the realization. In the latter,
they measure the MPC ability to track the advertised power
consumption profile. As visible from the numerical results, the
MPC action is able to compensate for mismatches between the
feeder power consumption and the advertised power consump-
tion profile. The energy residual error is explained by the fact
that the MPC does not currently track the advertised power
consumption profile in the final 30 seconds of each 5-minutes
period. This effect can be reduced by increasing the frequency
of the MPC operation and also by implementing shorter term
consumption forecast.

TABLE IV
SIMULATION RESULTS SUMMARY.

Day
Advertised profile vs Load Power transit after MPC action

Mean error
(kW)

Daily energy
mismatch (kWh)

Mean error
(kW)

Daily energy
mismatch (kWh)

1 4.39 211.76 0.89 42.94
2 12.68 392.79 3.08 91.65
3 -5.37 246.98 -1.09 49.82
4 -4.77 181.33 -0.95 37.02
5 -13.13 471.73 -1.95 90.68

V. CONCLUSIONS AND FUTURE WORK

Motivated by the target of reducing the amount of regulating
power required to operate the grid (an enabling factor to
achieve a larger proportion of production from renewables),
we presented a framework to dispatch the operation of a
distribution feeder using a battery energy storage system

(BESS). The framework is designed according to a day-ahead
and intra-day structure to allow for its future integration with
liberalized electricity market. In the day-ahead stage, the 5-
minute power consumption trajectory (said advertised power
consumption profile) that the feeder should implement during
the day of operation is determined using data-driven black-
box power consumption forecasting. In the intra-day stage,
the feeder is dispatched according to the advertised power
consumption profile. The problem of tracking the advertised
power consumption profile is accomplished controlling the
BESS power injection using receding horizon model predictive
(MPC), which implements a state-of-the-art battery model to
account for the battery charge redistribution and rate capacity
effects. In comparison to conventional feedback control loop,
the proposed strategy is characterized by larger flexibility as
it allows for implementing the system operational constraints
directly into the optimization problem while accounting for
the battery behavior: it would be possible, for example, imple-
menting battery aging models within the proposed framework.
Future works will concern optimal battery sizing, integration
of short term power consumption forecast in the MPC and
experimental validation using a 0.5 MWh Lithium Titanate
BESS available at the EPFL-DESL facility.
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