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A major challenge of plant developmental biology is to understand how cells grow during the formation of an organ. To date, it has proved dicult to develop computational models of entire organs at cellular resolution and, as a result, the testing of hypotheses on the biophysics of self-organisation is currently limited.

Here, we formulate a model for plant tissue growth in an SPH framework. The framework identies the SPH particle with individual cells in a tissue, but the tissue growth is performed at the macroscopic level using SPH approximations. Plant tissue is represented as an anisotropic poro-elastic material where turgor pressure deforms the cell walls and biosynthesis and cell division control the density of the tissue. The performance of the model is evaluated through a series of tests and benchmarks. Results demonstrate good stability and convergence of simulations as well as readiness of the technique for more complex biological problems.

Introduction

Growth in plant tissues results from processes taking place at dierent scales. [START_REF] Allen | Mathematical Modelling of Auxin Transport in Plant Tissues: Flux meets Signalling and Growth[END_REF] At the macroscopic scale, the environment inuences growth through water 2 Figure 1: (A) Root apical meristem of the plant Arabidopsis thaliana expressing uorescent proteins marking the activity of the cell in the nucleus (red / yellow gradient) and the boundaries of the cell walls (blue) [START_REF] Federici | Integrated genetic and computation methods for in planta cytometry[END_REF]. The picture illustrates the importance of the gradient in the cellular activity on growth and the developmental response of the organ. (B) In our framework, each cell is represented by an SPH particle. and nutrient within the soil matrix, the mechanical properties of the soil or the gradient of light through the canopy. However the understanding of plant responses to the environment at macroscopic scale remains a challenge. Tissues and organs are ensembles of microscopic cells which individual actions integrate into an emergent behaviour. The cells carry the genetic information, mediate the ow of nutrients, and inhibit or facilitate the elongation of cell walls, and growth and development results from the coordinated actions of these millions of cellular interactions. Microscopy techniques now allow direct observation of the growth of roots and their anatomy in substrates that reproduce natural conditions [START_REF] Downie | Transparent soil for imaging the rhizosphere[END_REF][START_REF] Dupuy | Coordination of plant cell division and expansion in a simple morphogenetic system[END_REF][START_REF] Furuta | Molecular Control of Cell Specication and Cell Dierentiation During Procambial Development[END_REF], and it is our ability to simulate organ at cellular resolution that remains limited.

The Smoothed Particle Hydrodynamics is a particle-based method, used to solve macroscopic problems with an unstructured distribution of particles as integration points. It has been developped by Gingold and Monaghan [START_REF] Gingold | Smoothed particle hydrodynamics -Theory and application to non-spherical stars[END_REF] and Lucy [START_REF] Lucy | A numerical approach to the testing of the ssion hypothesis[END_REF], and is known for the simplicity and robustness of kernel integration. It has been used to simulate incompressible and viscous uid ows, problems in astrophysics, and large deformations of solid materials [START_REF] Monaghan | Smoothed particle hydrodynamics[END_REF][START_REF] Liu | Smoothed particle hydrodynamics (sph): an overview and recent developments[END_REF][START_REF] Monaghan | Smoothed Particle Hydrodynamics and Its Diverse Applications[END_REF]98]. Several codes have been developed to solve scientic and industrial problems [START_REF] Cao | Plume-sph 1.0: a three-dimensional, dusty-gas volcanic plume model based on smoothed particle hydrodynamics[END_REF][START_REF] Palyanov | Sibernetic: A software complex based on the PCI SPH algorithm aimed at simulation problems in biomechanics[END_REF][START_REF] Price | Phantom: A smoothed particle hydrodynamics and magnetohydrodynamics code for astrophysics[END_REF][START_REF] Springel | The cosmological simulation code gadget-2[END_REF], and among them DualSPHysics has revealed most suitable for our model because of its exibility, its performances, and the strong activity of its developer community [START_REF] Crespo | DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics[END_REF].

SPH provides a natural framework for multi-scale problems, with a strong potential for applications in biology where requirements include integration of Figure 2: Schematic representation of an SHP kernel centred on particle a, computing the relation between particle i and j with the kernel W of smoothing length h. The radius of the smoothing kernel is a multiple s of the smoothing length. multiple processes in complex and dynamic geometries. Its meshless formulation proved suitable to large deformation problems such as those found in ballistics, geo-disasters and tissue behaviour [START_REF] Antoci | Numerical simulation of uid structure interaction by sph[END_REF][START_REF] Das | Evaluation of Accuracy and Stability of the Classical SPH Method Under Uniaxial Compression[END_REF][START_REF] Fuller | The Application Of Smooth Particle Hydrodynamics To The Modelling Of Solid Materials[END_REF][START_REF] Huang | Geo-disaster Modeling and Analysis: An SPH-based Approach[END_REF][START_REF] Heck | Modeling extracellular matrix viscoelasticity using smoothed particle hydrodynamics with improved boundary treatment[END_REF][START_REF] Islam | A Computational Model for Failure of Ductile Material under Impact[END_REF][START_REF] Karunasena | A coupled SPH-DEM model for uid and solid mechanics of apple parenchyma cells during drying[END_REF][START_REF] Rausch | Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach[END_REF][START_REF] Szigeti | OpenWorm: an open-science approach to modeling Caenorhabditis elegans[END_REF].

The theoretical for poro-elasticity has been developped [START_REF] Bui | A study of the matter of sph application to saturated soil problems[END_REF][START_REF] Osorno | Smoothed particle hydrodynamics modelling of poroelastic media[END_REF][START_REF] Osorno | Smoothed particle hydrodynamics model of poroelasticity-uid coupling[END_REF][START_REF] Van Liedekerke | Particle-based model to simulate the micromechanics of biological cells[END_REF] which facilitates development of plant tissue mechanics, and growth modelled as particles of variable mass has already been used in problems of accretion in black holes or for the particle treatment in inux/outux boundaries [START_REF] Bonnell | Accretion and the stellar mass spectrum in small clusters[END_REF][START_REF] Cossins | The Gravitational Instability and its Role in the Evolution of Protoplanetary and Protostellar Discs[END_REF][START_REF] Federrath | Modeling Collapse and Accretion in Turbulent Gas Clouds: Implementation and Comparison of Sink Particles in Amr and Sph[END_REF][START_REF] Winchenbach | Innite continuous adaptivity for incompressible sph[END_REF]. Finally, the cell division is analogous to particle splitting techniques that have been studied extensively [START_REF] Chiron | Analysis and improvements of adaptive particle renement (apr) through cpu time, accuracy and robustness considerations[END_REF][START_REF] Kitsionas | Smoothed particle hydrodynamics with particle splitting, applied to self-gravitating collapse[END_REF][START_REF] Hu | A consistent multi-resolution smoothed particle hydrodynamics method[END_REF][START_REF] Leroy | A new open boundary formulation for incompressible SPH[END_REF][START_REF] Liu | Application of particle splitting method for both hydrostatic and hydrodynamic cases in SPH[END_REF][START_REF] Vacondio | Variable resolution for SPH: A dynamic particle coalescing and splitting scheme[END_REF][START_REF] Vacondio | Variable resolution for sph in three dimensions: Towards optimal splitting and coalescing for dynamic adaptivity[END_REF].

Here, we propose a framework that links experimental data to computational modelling, based on the SPH method. It describes the growth of plant tissue at cellular level by identifying the cells to the numerical particles (Fig. 1). The paper rst presents the equations of the model and their SPH formulation in Section 2 and in Section 3 we describe the implementation of the model in DualSPHysics. The model is evaluated in Section 4 and 5 with several numerical tests, and the results are reviewed in Section 6, along with the future development of the model in a global image processing pipeline.

SPH formulation of the model

Basics of SPH

Smoothed Particles Hydrodynamics is a particle-based method that uses local interpolation to approximate continuous eld quantities. SPH is based on the following identity to express any spatial function f (r)

f (r) = Ω f (r )δ(r -r )dr , ( 1 
)
where δ is the Delta Dirac. As δ is not dierentiable, it is approximated by a smooth function called integration kernel to interpolate the continuous eld variables. The domain of integration Ω is represented by a discrete set of particles, where the elementary volume of a particle i is m i ρ i with m i being the mass and ρ i the density of the particle. Hence, the interpolated value of a function f at particle i, located at r i can be expressed as

f (r i ) = f i = j m j ρ j W (r i -r j , h), ( 2 
)
where j is the index of neighbouring particles, W (r, h) is the integration kernel, with a compact support of radius s • h, s ∈ R + and the regularisation length h is called the smoothing length (Fig, 2). The brackets represent the evaluation of the function at the centre of the particle i.

In a similar way, the gradient of a function f reads

∇f i = j m j ρ j ∇W (r i -r j , h). (3) 

Conservation of mass and momentum

A solid body of root tissue is modelled in a three dimensional space with cartesian coordinates (X, Y, Z), at two dierent scales. At the macroscopic scale (tissue level), the model describes the root in terms of partial dierential equations and at the microscopic scale (cell level) we consider a particle model of interactions that identify the cells to the SPH particles. The density and momentum equations are

Dρ Dt = -ρ∇ • u + γ, (4) 
Du Dt = ∇ • (σ + p) ρ , ( 5 
)
where t is the time variable, ρ the density, u the velocity vector, γ the growth, σ the stress tensor and p the pore pressure.

In the SPH formulation the terms of the equations ( 4)- [START_REF] Banwarth-Kuhn | Cell-based model of the generation and maintenance of the shape and structure of the multilayered shoot apical meristem of arabidopsis thaliana[END_REF] read

ρ∇ • u i = j m j (u j -u i ) • ∇ i W ij , (6) 
∇ • (σ + p) ρ i = j m j σ i + p i ρ 2 i + σ j + p j ρ 2 j + Π ij I • ∇ i W ij (7) 
where ρ i , u i and σ i represent density, velocity and stress at particle i respectively,

∇ i W ij = ∇ i W (r i -r j , h
) and Π ij is the articial viscosity term.

Since the SPH uses a Lagrangian formulation, the location of a particle i is given by

Dr i Dt = u i . (8) 
The kernel function W is a 5-th order polynomial called the Wendland kernel [START_REF] Wendland | Piecewise polynomial, positive denite and compactly supported radial functions of minimal degree[END_REF]. It provides a good compromise between accuracy and computational eciency, and it is well known to prevent the generation of tensile instability [START_REF] Lang | Benets of using a wendland kernel for free-surface ows[END_REF][START_REF] Dehnen | Improving convergence in smoothed particle hydrodynamics simulations without pairing instability[END_REF] W (r, h)

= 21 16πh 3 1 -r 2h 4 2r h + 1 if 0 ≤ r h ≤ 2, 0 elsewhere. ( 9 
)
The articial viscosity Π ab has been introduced in [START_REF] Monaghan | Smoothed particle hydrodynamics[END_REF] to stabilise the velocity oscillations between the particles when they get disordered. It generates numerical dissipation when particles get close to each other

Π ij = -α i c 0 µ ij ρij if (u i -u j ) • (x i -x j ) ≥ 0, 0 otherwise, (10) 
with usually

α i = 1, ρij = ρ i +ρ j 2
and

µ ij = h (u i -u j ) • (x i -x j ) |x i -x j | 2 + (0.1h) 2 . ( 11 
)
The term (0.1h) 2 is chosen to prevent numerical divergence when particles get too close to each other.

Constitutive equations

Plant roots grow in a specic direction, due to the anisotropic properties of the cell wall matrix [START_REF] Baskin | Anisotropic Expansion of the Plant Cell Wall[END_REF][START_REF] Bidhendi | Relating the mechanics of the primary plant cell wall to morphogenesis[END_REF][START_REF] Geitmann | Mechanics and modeling of plant cell growth[END_REF][START_REF] Gibson | The hierarchical structure and mechanics of plant materials[END_REF][START_REF] Peaucelle | Cell Wall Expansion: Case Study of a Biomechanical Process[END_REF][START_REF] Ptashnyk | The Impact of Microbril Orientations on the Biomechanics of Plant Cell Walls and Tissues[END_REF]. The cell walls are composed of cellulose micro-brils that promote growth in the direction perpendicular to their orientation. Hence, the mechanical behaviour of the plant tissue is assumed to be transversely isotropic, where micro-brils are oriented in the Y Z plane, promoting the growth in the X direction. Then the Hooke law in Voigt notation reads

        σ 1 σ 2 σ 3 σ 4 σ 5 σ 6         =         C 11 C 12 C 12 0 0 0 C 12 C 22 C 22 -2C 44 0 0 0 C 12 C 22 -2C 44 C 22 0 0 0 0 0 0 C 44 0 0 0 0 0 0 C 55 0 0 0 0 0 0 C 55                 ε 1 ε 2 ε 3 ε 4 ε 5 ε 6         (12) 
with

C 11 = Γ 1 -ν yz n , C 12 = Γν xy , C 22 = Γ 1 -nν 2 xy 1 + ν yz , C 44 = E y 2 (1 + ν yz ) , C 33 = Γ 1 -nν 2 xy 1 + ν yz , C 55 = G xy , Γ = E y 1 -ν yz -2nν 2 xy . ( 13 
)
and the compliance tensor S is

S = C -1 =           1 Ex - νxy Ex - νxy Ex 0 0 0 - νxy Ex 1 Ey - νyz Ey 0 0 0 - νxy Ex - νyz Ey 1 Ey 0 0 0 0 0 0 2(1+νyz) Ey 0 0 0 0 0 0 1 Gxy 0 0 0 0 0 0 1 Gxy           . ( 14 
)
In the SPH formulation, the stress tensor σ is decomposed in hydrostatic pressure P and deviatoric stress τ

σ = P I + τ. ( 15 
)
The hydrostatic pressure is assumed to depend on the tissue density and is calculated from the state equation

P (ρ) = K ρ ρ 0 -1 (16) 
with K the eective bulk modulus of an anisotropic material and ρ 0 the equilibrium density. It is computed from the compliance tensor [38]

K = 1 w t Sw (17) 
where w = (1, 1, 1, 0, 0, 0).

The deviatoric stress is dened as

τ = Pσ = PCε (18) 
with

P = I -1 3 ww t .
To take into account large deformations, the rate of deviatoric stress Dτ Dt is computed independently from the material frame of reference using the Jaumann derivative

Dτ Dt = PC ε + ωτ -τ ω (19) 
where ε = 1 2 ∇u + ∇u T is the rate of the strain tensor and ω = 1 2 (∇u-∇u T the spin tensor, see [START_REF] Gray | SPH elastic dynamics[END_REF] for more details. The velocity gradient ∇u is obtained by the following rst order approximation at particle i

∇u i = j m j ρ j (u j -u i ) ∇ i W ij . (20) 
Using [START_REF] Cadart | Exploring the function of cell shape and size during mitosis[END_REF], it leads to the SPH formulations of the rate of deviatoric stress

Dτ Dt i = PC εi + ω i τ i -τ i ω i . (21) 
Therefore, the value of stress at particle i is

σ i = P (ρ i )I + τ i . (22) 

Turgor pressure

Plant cells have plasma membranes that are permeable to uids of dierent concentration. It creates an osmotic pressure inside the cell, called the turgor pressure [START_REF] Beauzamy | Flowers under pressure: Ins and outs of turgor regulation in development[END_REF][START_REF] Zhu | Negative pressures produced in an articial osmotic cell by extracellular freezing[END_REF]. The model is formulated in a poro-elastic framework, where the cell wall matrix is the solid phase and the turgor pressure is associated to the pore pressure [START_REF] Cheng | Fundamentals of poroelasticity[END_REF][START_REF] Renner | Modeling of uid transport in geothermal research[END_REF].

p i = p 0 I. ( 23 
)
Pore pressure is kept positive to prevent any shrinking of the plant tissue.

Biosynthesis

During the growth of a tissue, the cells increase in mass, mainly because of water inux and thickening of walls through acumulation of pectins and polysacharrides [START_REF] Carpita | Structural models of primary cell walls in owering plants: consistency of molecular structure with the physical properties of the walls during growth[END_REF][START_REF] Geitmann | Mechanics and modeling of plant cell growth[END_REF]. The later process prevents the thinning of cell walls and the weakening of elongating tissue. Biomass deposition is modelled as a densication process, expressed as a function of the density ρ i and the growth rate λ g [START_REF] Ateshian | On the theory of reactive mixtures for modeling biological growth[END_REF][START_REF] Goriely | The mathematics and mechanics of biological growth[END_REF][START_REF] Jones | Modeling Growth in Biological Materials[END_REF][START_REF] Kuhl | Computational modeling of growth. A critical review, a classication of concepts and two new consistent approaches[END_REF].

γ (ρ i ) = λ g ρ 0 ρ i -1 . (24) 
Similar laws have been documented for instance in bone growth [START_REF] Goriely | The mathematics and mechanics of biological growth[END_REF][START_REF] Jones | Modeling Growth in Biological Materials[END_REF].

The densication model accounts for a range of processes. First, the relationship incorporates changes in cell mass due to either biological (turgor, cell softening) and physical (drying of tissue) processes.

It is worth noting that the formulation is reversible and therefore can lead to contraction of the tissue. This form of growth is a physical reality when adaptation to external forces is not fast enough, for example when a root reaches a physical barrier. In this case, elongation zones were shown to exhibit contraction [START_REF] Bizet | 3d deformation eld in growing plant roots reveals both mechanical and biological responses to axial mechanical forces[END_REF]. When deviations from equilibrium density are small, the densication rate is proportional to the dierence in tissue density which makes the relationship symmetric. This assumption cannot be conrmed experimentally because cell mass cannot be measured at this resolution. It is however a reasonable model hypothesis considering that water dominates the mass of the cell.

The densication mechanism has also a second important role in growth.

Because density is related to pressure [START_REF] Bourrier | Discrete modeling of granular soils reinforcement by plant roots[END_REF], it is linked to the permanent extension of the tissue. Therefore the growth rate λ g controls indirectly the relaxation of the tissue's elasticity. Although the model is not directly formalised in the viscoplastic framework, it implements a relaxation mechanism that is stable and requires a single parameter. This is a reasonable approach considering that it is not possible to characterize the visco-plastic parameters of cells live and in situ.

Cell division

Cell division is a fundamental mechanism through which plants maintain an organised cellular architecture and achieve highly specialised functions.

Control of the cell architecture is achieved through cell expansion, but also through the frequency and the location of the new cell walls appearance. To maintain a distribution of SPH particles that matches the cells of natural tissues, it is therefore essential to derive a cell division model that mimics the patterns observed in natural systems. A cell division model can be decomposed into three components.

(1) The cell division checkpoint. During its lifetime, a cell passes through a series of checkpoints that ultimately triggers the division. There is no widely accepted model for cell division in plants because the biological mechanisms involved are complex and the mathematical formulations are still debated. However microscopy observations indicate that the sensing of size and geometry of the cell is essential to divide at the right time and place.

For this reason, mathematical models have often used cell size but also cell type or age as triggers for cell division [START_REF] Dupuy | Coordination of plant cell division and expansion in a simple morphogenetic system[END_REF][START_REF] Jones | Cell-size dependent progression of the cell cycle creates homeostasis and exibility of plant cell size[END_REF][START_REF] Louveaux | Cell division plane orientation based on tensile stress in arabidopsis thaliana[END_REF][START_REF] Yan | Robust cell size checkpoint from spatiotemporal positive feedback loop in ssion yeast[END_REF]. In our model, we chose cell division to be triggered by particle mass. The division of a particle occurs when the particle mass reaches a threshold size m. Since the density of the tissue is maintained at values close to equilibirum due to biosynthesis, the mass criterion is equivalent to a size criterion, and this ultimately controls the particle size distribution at steady state.

(2) The geometry of the division. The geometric rules underlying the placement of new cell walls are also intensely debated. There are no widely accepted rules for the placement of new cell walls during division, but Errera's principle, whereby the division minimises the surface area of daughter cells of identical volume, is commonly used [START_REF] Cadart | Exploring the function of cell shape and size during mitosis[END_REF][START_REF] Kwiatkowska | Structural integration at the shoot apical meristem: Models, measurements, and experiments[END_REF][START_REF] Lloyd | Plant division: remembering where to build the wall[END_REF]. It has inspired many recent models [START_REF] Besson | Universal rule for the symmetric division of plant cells[END_REF][START_REF] Errera | Uber zellformen und seifenblasen[END_REF][START_REF] Sahlin | A modeling study on how cell division aects properties of epithelial tissues under isotropic growth[END_REF]. Here, the orientation of the division is a normalised vector d i ∈ R 3 that depends on the principal axes of deformation of the tissue. The position of the new particles is determined along d i , and ∆x denes the distance from the centre of the mother cell where the new particles are placed. It is obtained through a backward volume formula,

∆x i = 1 2 vol -1 m i ρ i . (25) 
Here the volume calculation can be dened as either a rectangular brick shape for instance in the case of uniaxial expansion or spherical in the case of isotropic expansion. The locations r * of the daughter particles are

r * i = r i + d i ∆x i , r * i = r i -d i ∆x i . (26) 
Assumptions on cell shapes are required because deformation of individual cell shapes are not available during computation. The resulting division model approaches Errera's rule because cutting the length along the main axis of a cell produces the smallest cross section, and the symmetry of the placement of particles ensures daughter cells have equal size and volume.

(3) The kinematics of the division. Since a cell division is the formation of a rigid wall inside a cell, the daughter cells inherit naturally the velocity of their mother (Fig. 3). The daughter cells are labelled i and i

= N + 1,
where N is the total number of particles before the division.

Implementation

The model is implemented using the numerical code DualSPHysics, based on C++, OpenMP and CUDA. Initially designed to simulate uid dynamics, Figure 3: Schematic representation of the cell division procedure of a particle i. The particle divides along the direction di (A) and the daughter particles are set apart from each other at a distance equal to ∆xi (B).

it is highly customisable, well maintained and proposes good performances in parallel computations [START_REF] Crespo | DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics[END_REF].

The numerical integration of the dynamics is performed as follow. First the node computes the poro-elastic deformation in response to the pore pressure.

In a second step, the variation of mass due to the growth is calculated. Finally the cell division procedure checks for particles that reach the threshold mass and performs their division.

Time integration

The integration of the quantities at particle i is based on a Verlet scheme [START_REF] Verlet | Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules[END_REF].

It proposes good stability for a low computational overhead. The numerical integration is based on two time steps. The time step for the computation of the poro-elastic deformation reads from ( 6), ( 7) and ( 21)

r n+1 i = r n-1 i + ∆tu n i + (∆t) 2 2 ∇ • (σ + p) ρ n i , u n+1 i = u n-1 i + 2∆t ∇ • (σ + p) ρ n i , τ n+1 i = τ n-1 i + 2∆t Dτ Dt n i , ρn i = ρ n-1 i -2∆t ρ∇ • u n i , (27) 
where the superscript n denotes the time step, the brackets • i the SPH approximation of the quantity at particle i and ρ is the intermediate density related to only deformation.

The stability condition is given by ∆t = λ CFL min {∆t f , ∆t cv } where

∆t f = min i h f i and ∆t cv = min i h c 0 + max j {µ ij } , (28) 
with λ CFL is a constant between 0 and 1 and

f i = ∇•(σ+p) ρ i
. The version implemented in DualSPHysics includes a correction for the decoupling of the computed quantities that replaces the integration step by an explicit Euler step every certain number of time steps, noted here N Verlet .

Growth

The growth process is separated in two distinct steps with the mass increase occurring separately from the deformation. It is assumed to happen at constant volume, so the particle mass and density are updated according to [START_REF] Cossins | The Gravitational Instability and its Role in the Evolution of Protoplanetary and Protostellar Discs[END_REF],

with γ n i = γ (ρ n i ) m n+1 i = m n-1 i 1 -2∆t γ n i ρn i , (29) 
ρ n+1 i = ρn i + 2∆γ n . (30) 

Cell division

The cell division is implemented as a source of particles. The daughter particles are composed of the original particle and a duplicated one, with a shifted position and a mass divided by two. First, the cell division procedure checks and marks the particles that satisfy the division rule

m i > m = λ m m 0 , (31) 
where m 0 is the initial mass of the particles and λ m a scaling parameter.

Then the memory arrays are extended and lled with a copy of the duplicated particles data, except for the mass, which is divided by two, and the position, which is updated according to the backward volume formula (25).

Smoothing length

The smoothing length h is a constant dened as follows

h = 2 3 m ρ 0 . ( 32 
)
It assumes that the smoothing length is proportional to the side of a cube centred on the particle, at the maximal volume it can reach before cell division. Usually, when the mass of a particle varies, the smoothing length follows to prevent any disparity in the density evaluation. Here however, the density is assumed to be constant and the solid structure stable, it is sucient to ensure the capture of the inuence of the biggest particles.

Boundary conditions

The surface of a root can be highly deformed, as the result of a tradeo between the inner pressure and the resistance of the soil. The surface particles are left free and the formulation (4) prevents the apparition of boundary errors in the density. This setting describes the free growth of a part of plant root in a nutritive liquid that has negligible momentum eects.

Numerical tests

The features and performances of the model are tested in several congurations. The domains are lled with particles distributed on a uniform Cartesian lattice with an initial spacing ∆x i,0 . The initial mass of a particle i is

m i,0 = ∆x 3 i,0 ρ 0 , (33) 
and ρ 0 is the initial density.

First the poro-elastic model is evaluated in the isotropic and anisotropic cases and compared to analytical predictions for several particle discretisations. Then we test the growth process and compare the results to analytical predictions. The tests are performed in three dimensions with parameters typically used in porous materials using the L1-norm of the density and deformation eld along with the L2-norm of the error. They are computed as where f is a eld quantity, f i is the evaluation of this function at particle i, f its exact evaluation, v i = m i ρ i is the local volume, V = i v i is the total volume, and r i is the position of particle i.

f L1 = i v i V |f i | , (34) 
f -f L2 = i v i V f i -f (r i ) 2 , (35) 

Poro-elastic deformation

A cube of side length 0 = 1 m with the centre localised at (0, 0, 0) and at equilibrium density ρ 0 is deformed under a pore pressure p = 100 MPa (Fig. 4,A). The material properties are

K = 12500 MPa, ρ 0 = 1000 kg m -3 , E = 15000 MPa, ν = 0.3. ( 36 
)
The expected values of the equilibrium density and deformation are

ρ = ρ 0 1 - p K = 992 kg.m -3 , ( 37 
) εx = εy = εz = 1 -2ν E p = 2.667 × 10 -3 . ( 38 
)
The numerical simulations are performed for space steps from ∆x i,0 = 0.05 to 0.0125 m with the following numerical parameters

T = 10 s, CFL = 0.1, h = 2∆x i,0 , N Verlet = 5. ( 39 
)
The deformation ε x,i is computed for each particle i with the current position

x i compared to the initial position x i,0 Table 1: Estimation of density with parameters dened in [START_REF] Federici | Integrated genetic and computation methods for in planta cytometry[END_REF].

ε x,i = x i x i,0 -1. ( 40 
)
The evolution of density displays a uctuation at the beginning for each simulatio (Fig. 5). The application of the pore pressure to a solid at rest generates a shock-wave before the density reaches steady state. The magnitude of the wave reduces as the space step ∆x i,0 decreases. The density reaches a steady state comparable to the expected values of ρ and ε x . These 

∆x i,0

ε x L1 ε y L1 ε z L1 0.05
2.9789 × 10 -3 2.9789 × 10 -3 2.9789 × 10 -3 0.025 2.9258 × 10 -3 2.9260 × 10 -3 2.9258 × 10 -3 0.0125 2.7173 × 10 -3 2.7173 × 10 -3 2.7173 × 10 -3

∆x i,0 ε x -εx L2 ε y -εy L2 ε z -εz L2 0.05
8.2853 × 10 -6 8.2853 × 10 -6 8.2853 × 10 -6 0.025 2.3755 × 10 -6 2.3783 × 10 -6 2.3755 × 10 -6 0.0125 1.1298 × 10 -7 1.1302 × 10 -7 1.1302 × 10 -7

Table 2: Estimation of components of the strain tensor in the isotropic case [START_REF] Federici | Integrated genetic and computation methods for in planta cytometry[END_REF].

∆x i,0 ρ L1 ρ -ρ L2 0.05
991.5750 5.9130 × 10 -5 0.025 991.5837 2.3162 × 10 -5 0.0125 991.6056 9.4279 × 10 -6

Table 3: Estimation of density in the anisotropic case [START_REF] Geitmann | Mechanics and modeling of plant cell growth[END_REF]. 

Those values describe a growth facilitated in the X direction, with the deformation in the Y and Z direction being an order of magnitude smaller than the elongation in the X direction.

Results are similar to the the previous test (Tab. 3 and 4) and show there is good agreement between numerical and predicted density and deformation.

The change of material behaviour results in the uniaxial elongation of the initial domain.

Anisotropic growth

Growth is then considered in an anisotropic conguration (Fig. 6,A). The pore pressure is imposed to a bounded domain corresponding to an initial cube of side length 0 = 1 m. The material properties are dened as in [START_REF] Geitmann | Mechanics and modeling of plant cell growth[END_REF] with

λ g = 200 kg (43) 
∆x i,0

ε x L1 ε y L1 ε z L1 0.05
1.0703 × 10 -2 -1.3910 × 10 -4 -1.3970 × 10 -4 0.025 9.5661 × 10 -3 -1.3394 × 10 -4 -1.3394 × 10 -4 0.0125 9.2731 × 10 -3 -1.3102 × 10 -4 -1.3102 × 10 -4

∆x i,0 ε x -εx L2 ε y -εy L2 ε z -εz L2 0.05
5.4356 × 10 -5 3.7688 × 10 -6 3.7617 × 10 -6 0.025 6.7148 × 10 -6 5.7906 × 10 -7

5.7808 × 10 -7 0.0125 9.3215 × 10 -7 1.1831 × 10 -7

1.1853 × 10 -7

Table 4: Estimation of the component of the strain tensor in the anisotropic case [START_REF] Geitmann | Mechanics and modeling of plant cell growth[END_REF]. The deformation is maintained by the imbalance between the turgor pressure and the assimilation of biomass.

∆x i,0 M 0 V 0 0.05 1157.625 1.1576 0.025 1076.896 1.0769 Table 5: Values of M0 and V0 for each discretisation in the anisotropic case [START_REF] Gibson | The hierarchical structure and mechanics of plant materials[END_REF].

We evaluate the growth rate and the total mass against their predicted values

γ = λ g ρ 0 ρ -1 = 1.6910 kg m -3 s -1 , (44) 
M (t) = M 0 + γV 0 t. (45) 
with

M 0 = i m i,0 and V 0 = i m i,0 ρ i,0 .
The mesh generation algorithm in DualSPHysics causes the total mass and volume at initialisation to depend on ∆x i,0 . Therefore the prediction is corrected with V 0 → 1, with values for M 0 and V 0 for each discretisation shown in Tab. 5.

In this simulation, the total mass evolution follows the theoretical values, after the dissipation of the initial oscillation (Fig. 6, B) and the average density and growth rate evolve in line to the theoretical prediction during the simulation (Fig. 6, C-D). Growth results from the imbalance between the turgor pressure and the deposition of new cell wall material.

Cell division tests

Cell division can aect the results of the computations because density and spatial arrangement of SPH particles are changing with time. The nature of rearrangements are linked directly to how tissues develop. Therefore, to test the eect of cell division on SPH particles, we chose test cases for their similarity to natural growth processes. Because the morphologies and kinematics of growth involved in these cases are more complex, theoretical predictions cannot be made easily. Instead we chose to either compare the results of the simulation to cases where the cell division is absent or to analyse qualitatively the consistency of the computations.

Cell division -apical growth

First we tested the eect of cell division in the case of apical growth, which is commonly observed in root meristems. Apical growth is characterised by enhanced cell elongation with cells at the tip. Elongation is uniaxial to the orientation of cellulose chains and growth results in the formation of cylindrical morphology observed for example in roots and stems. In these simulations, the direction of elongation is set to X, which implies that the direction of division must take place along the same axis. The material properties are as in [START_REF] Geitmann | Mechanics and modeling of plant cell growth[END_REF] with

λ g = 200 kg.m -3 .s -1 ∆x i,0 = 0.05 m. (46) 
To recover the deformation of the cell from equation ( 25), the cell is assumed to have the shape of a brick, and the deformation in Y and Z is considered negligible. ∆x i is recovered through a backward formula for the side of a brick. The parameters of the division at particle i are

d i = (1, 0, 0), ( 47 
)
∆x i = 1 ∆x 2 i,0 m i ρ i , (48) 
λ m = 1.5. (49) 
Two criteria were used to assess the results of the study case. First it is important the cell division does not aect negatively the predictions of the simulation. Secondly, it is also essential that because of the large deformations, only cell division induces changes in the topology of adjacent particles.

Hence, the contact between adjacent cells must be conserved during the simulation in the Y Z plane.

The results of the cell division tests were compared to a growth with identical parameters but without division. The analysis of the particle distribution at T = 350 (Fig. 7) shows that the tissue extends consistently to a nal domain several times larger than its original size. Disorganisation in the X axis is observed because of boundary eects, but the rectangular organisation in the transversal plane is conserved. Results also show that cell division does not aect negatively the stability of growth (Fig. 7,C) and conservation of tissue density ρ is obtained from the simulations (Fig. 7,D). As expected a linear increase in mass is obtained. These results indicate that growth is not disrupted during division and throughout the drastic increase in particle number induced by the cell division (Fig. 7,E).

Eect of dierential growth

The second test illustrates the formation of an isotropic outgrowth. Outgrowth are common during the development of plant organs, for example during the formation of primordia in meristem, or during the formation of gals and tumours in response to diseases. The outgrowth here is generated from a cylindrical domain sample with non-zero pore pressure on one half of the rod (Fig. 8,A), and zero elsewhere. The increase in turgor pressure results in isotropic growth that progressively forms a bulge taking progressively a spherical shape. In this case, the orientation of cell division is given by the displacement of the mother particle. The material properties are as in [START_REF] Federici | Integrated genetic and computation methods for in planta cytometry[END_REF] with

p = 0.1 MPa T = 60 s λ g = 1000 kg.m -3 .s -1 ∆x = 0.1 m ρ = 999.916 kg.m -3 (50) 
Since growth does not expand preferentially in any direction, the shape of the cells will be approximated as a sphere. The parameters of the division model are

d i = u i u i , (51) 
∆x i = 0.3 3 6m i πρ i , (52) 
λ m = 1.5. (53) 
Results show the SPH model can be used to simulate the formation of an outgrowth (Fig. 8,B). The increase of mass and particle number tends towards a steady linear increase which is consistent with expansion (Fig. 8,C).

Results also show the stability of the average density at values close to the equilibrium density ρ 0 (Fig. 8,D). The growth of mass follows a linear curve because it results from the addition of mass produced from a xed volume of space at a constant rate, which stops when the particles enter in a region where the pore pressure is zero.

Discussion

In this paper, we presented a model of root growth based on Smoothed Particle Hydrodynamics. The model features the principal drivers of growth, i.e. turgor pressure, cell wall anisotropy, cell wall biosynthesis and the cell division, with SPH providing a exible theoretical framwork for integration of microscopic and macroscopic processes. investigation is almost impossible [START_REF] Barton | Active vertex model for cell-resolution description of epithelial tissue mechanics[END_REF][START_REF] Bessonov | Deformable cell model and its application to growth of plant meristem[END_REF][START_REF] Delile | A cell-based computational model of early embryogenesis coupling mechanical behaviour and gene regulation[END_REF][START_REF] Marin-Riera | Dierential tissue growth and cell adhesion alone drive early tooth morphogenesis: An ex vivo and in silico study[END_REF][START_REF] Matoz-Fernandez | Cell division and death inhibit glassy behaviour of conuent tissues[END_REF][START_REF] Van Liedekerke | Simulating tissue mechanics with agent-based models: concepts, perspectives and some novel results[END_REF]. A way to bring together these two aspects is to formulate a multi-scale approach, combining several levels of description and allowing them to interact. Several propositions exist and among them, gene-regulated network combined to growth [START_REF] Band | Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism[END_REF][START_REF] Dumais | An anisotropic-viscoplastic model of plant cell morphogenesis by tip growth[END_REF][START_REF] Kroeger | Model for calcium dependent oscillatory growth in pollen tubes[END_REF][START_REF] Mironova | The Systems Biology of Auxin in Developing Embryos[END_REF][START_REF] Vos | Virtual Plant Tissue : Building Blocks for Next-Generation Plant Growth Simulation[END_REF], averaging approaches through analytical homogenisation [START_REF] Allen | Mathematical Modelling of Auxin Transport in Plant Tissues: Flux meets Signalling and Growth[END_REF][START_REF] Faisal | Computational study of the elastic properties of Rheum rhabarbarum tissues via surrogate models of tissue geometry[END_REF][START_REF] Lloyd | Homogenization via formal multiscale asymptotics and volume averaging : How do the two techniques compare ?[END_REF][START_REF] Piatnitski | Homogenization of biomechanical models for plant tissues[END_REF][START_REF] Ptashnyk | The Impact of Microbril Orientations on the Biomechanics of Plant Cell Walls and Tissues[END_REF], and the incorporation of a representation of individual cells in a continuous formulation of tissue deformation [START_REF] Banwarth-Kuhn | Cell-based model of the generation and maintenance of the shape and structure of the multilayered shoot apical meristem of arabidopsis thaliana[END_REF][START_REF] Bidhendi | Finite Element Modeling of Shape Changes in Plant Cells[END_REF][START_REF] Ghysels | Multi-scale simulation of plant tissue deformation using a model for individual cell mechanics[END_REF][START_REF] Hamant | Developmental Patterning by Mechanical Signals in Arabidopsis[END_REF][START_REF] Jensen | Multiscale Models in the Biomechanics of Plant Growth[END_REF][START_REF] Yoshida | Genetic control of plant development by overriding a geometric division rule[END_REF].

The denition of the microscopic element is crucial to elucidate fundamental processes of biological tissues development.

Kernel integration provides a robust multi-scale formulation where cells can be identied as SPH particles. Autonomous behaviour of cells is maintained at particle levels and conservation and constitutive laws describe tissue dynamics at the macroscopic level. The suitability of SPH kernels integration was conrmed by numerical tests which demonstrate the model handles ad-equately integration of processes at microscale. Hence, this framework will be capable to handling more complex and intricate biological problems and will have application in developmental biology [START_REF] Rausch | Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach[END_REF][START_REF] Szigeti | OpenWorm: an open-science approach to modeling Caenorhabditis elegans[END_REF].

This work aligns particularly well with ongoing eorts to develop microscopy techniques and image processing pipeline, where direct observation of roots allows to reconstruct three-dimensional visualisation [START_REF] Burr-Hersey | Developmental morphology of cover crop species exhibit contrasting behaviour to changes in soil bulk density , revealed by X-ray computed tomography[END_REF][START_REF] Downie | Transparent soil for imaging the rhizosphere[END_REF]. Data provided by such approaches can be easily incorporated into SPH simulation tools.

These tools can then be used to study how cellular mechanisms contribute to the regulation of the growth of entire roots when they develop in a complex environment [START_REF] Dupuy | Micromechanics of root development in soil[END_REF] (Fig. 9). Future work will also include the simulation of organs in contact with soil, covering tissues dierentiation, and gene expression, with the coupling to other numerical methods such as the Discrete Elements Method [START_REF] Bourrier | Discrete modeling of granular soils reinforcement by plant roots[END_REF][START_REF] Guo | Discrete Element Method Simulations for Complex Granular Flows[END_REF].

  For elastic deformations of a plant tissue, we consider the Hooke law σ = Cε. The elasticity tensor C depends on ve parameters, namely E x the Young modulus in the X direction; n = Ey Ex the ratio between E y the Young modulus in the Y Z plane and E x ; G xy the shear modulus for planes parallel to the X direction; ν xy the plane reduction in the Y Z plane for stress in the X direction; and ν yz the plane reduction in the Y Z plane for stress lying in the same plane.

Figure 4 :

 4 Figure 4: Schematic representation of the isotropic (A) and anisotropic (B) deformation of a cube of length 0 under pore pressure p. To reach a new density equilibrium, the tissue body has to deform.

Figure 5 :

 5 Figure 5: Evolution of the density as a function of SPH resolution. Computer density is compared to theoretical values ρ. ∆x i,0 ρ L1 ρ -ρ L2 0.05 992.0944 6.2682 × 10 -3 0.025 992.0076 1.1571 × 10 -5 0.0125 992.0037 4.8360 × 10 -6

results (Tab. 1

 1 and Tab. 2) show a close match between numerical and theoretical values, and the L2 error decreases monotonically. Next we perform numerical simulations using anisotropic properties of cell walls materials. Growth is facilitated in the X direction with a minimal deformation in the Y Z plane. The material properties are K = 1192.7030 MPa, ρ 0 = 1000 kg m -3 , E x = 1020 MPa, T = 10 s, E y = 15000 MPa, p = 10 MPa, ν xy = 0.06, ν yz = 0.3.

  Theoretical values for the strain tensor and tissue density of the deformed solid are: ρ = 991.6157 kg m -3 , εx = 8.6274 × 10 -3 , εy = -1.12573 × 10 -4 .

Figure 6 :

 6 Figure 6: Schematic representation of the growth of a cube of initial length 0 under a pore pressure p. Associated evolution of mass (B), density (C) and growth rate (D).The deformation is maintained by the imbalance between the turgor pressure and the assimilation of biomass.

Figure 7 :

 7 Figure 7: (A) Schematic representation of apical growth simulations. (B) Particle distribution at T = 350, with original particles in white shade and additional particles resulting from cell division in red. Results of the simulation show cell division does not aect the evolution of density (C), of total mass (D) with drastic increase of particle number(E).

Figure 8 :

 8 Figure 8: (A) Schematic representation of the simulation of outgrowths. (B) Particle distribution at T = 60. (C) Particle number and total mass evolution. (D) Density evolution.

Figure 9 :

 9 Figure 9: Pipeline for SPH computation of plant cellular development. (A) Image data obtained with 3D microscopy, courtesy Ilonka Engelhardt. (B) Segmented root apical meristem using MorphographX [6]. (C) Extraction of size and location of cells as input for SPH computation. (D) Simulation of the elongation of the root tissue
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