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SUMMARY

The paper focuses on the analysis of multi-agent systems interacting over directed and time-varying
networks in presence of parametric uncertainty on the interaction weights. We assume that agents reach
a consensus and the main goal of this work is to characterize the contribution that each agent has to
the consensus value. This information is important for network intervention applications such as targeted
advertising over social networks. Indeed, for an advertising campaign to be efficient, it has to take into
account the influence power of each agent in the graph (i.e., the contribution of each agent to the final
consensus value). In our first results we analytically describe the trajectory of the overall network and we
provide lower and upper bounds on the corresponding consensus value. We show that under appropriate
assumptions, the contribution of each agent to the consensus value is smooth both in time and in the
variation of the uncertainty parameter. This allows approximating the contribution of each agent when small
perturbations affect the influence of each agent on its neighbors. Finally, we provide a numerical example to
illustrate how our theoretical results apply in the context of network intervention. Copyright c© 0000 John
Wiley & Sons, Ltd.

Received . . .

1. INTRODUCTION

Analysis and control of multi-agent systems have attracted a lot of attention during the last decades.
Due to decentralized behavior and control of subsystems (agents), the multi-agent framework has
applications in a wide variety of domains such as robotic teams, energy and telecommunication
networks, opinion dynamics in social networks, analysis of biological networks, etc. The coherent
behavior of the agents in such systems is often described in terms of consensus, i.e., the agents have
to reach agreement in some variables of interest.
While many works focus on the consensus in networks with fixed topologies, a number of
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2 S. MARTIN, I-.C. MORĂRESCU, D. NEŠIĆ

applications lead to networks with time-varying topologies as in [21, 15]. For instance, in robotic
fleets, the weight of agents can vary in time according to different priorities such as connectivity
preservation, collision avoidance and achievement of a global coordination [26]. In social networks
the confidence in individuals varies also in time according to their state evolution. Therefore, the
consensus analysis has been extended to networks with time-varying weights [9, 12] but also in
networks of clusters that sporadically interact [5, 17]. The conditions for consensus express the
need of persistent interactions ensuring the connectivity of the overall network of agents [3]. To the
best of our knowledge, in this framework of time-varying interactions, only conditions to achieve
consensus have been investigated without considering the characterization of the consensus value
in term of influence power of each agent.
An interesting application of consensus algorithms is the analysis and control of opinion dynamics
in social networks [8, 16, 11]. Targeted marketing over digital social networks has recently become
a key tool in advertising. Finding the major influencers in the social network is an essential
ingredient of the process [4]. For opinion dynamics driven by consensus systems, detecting who the
key influencers are, boils down to knowing the contribution of each particular agent in forming the
consensus value [23]. This contribution can be understood as a measure of centrality in the social
network. However, the knowledge that a marketer has on the social network topology usually comes
from estimations rather than direct knowledge. This motivates us to assume that the interaction
weights are not precisely known and some bounded uncertainties affect them.
In many robotic fleet applications the main objective is consensus or synchronization when
interactions take place according to switching topologies [10, 19]. Unlike that, in social networks it
is interesting to know who are the main agents that influence the consensus value and have rough
information on the value that will be achieved by the system although the interaction weights are
continuously evolving and the convergence speed is generally limited. In this context, we will first
address the problem of computation of the asymptotic consensus value in terms of initial condition
and interaction network. It is noteworthy that, the characterization of consensus value has been
provided only in some special cases. Precisely, when the interaction network is balanced (i.e., the
adjacency matrix is doubly stochastic), the consensus is always the average of the initial states [20,
Theorem 4]. For directed but fixed interactions, the consensus is a weighted average of the initial
states and the weights correspond to the components of a given left normalized eigenvector of the
Laplacian matrix (see for instance [20]). The consensus value for some particular linear impulsive
systems was characterized in [5]. In general, for linear time-varying dynamics, it is known that the
asymptotic consensus value is always a convex combination of the states of the agents at any time t.
However, it is not trivial to characterize the weights of these states in the convex combination since
they depend on the interaction network over time. Consequently, it is interesting to also provide an
approximation of the consensus value and of the influence power of each agent when uncertainties
(modelled as perturbations) affect the interaction weights.

Contributions of the paper. First, Section 3.1 provides an analytic characterization of the
asymptotic consensus value. The weights of the agents in the convex combination describing the
consensus value can be seen as the agents contributions to the consensus value, which can also be
seen as the overall influence power that agents have over their peers. So, we call the vector formed by
these weights the agent influence power vector (AIPV) (see also [23]). We show that the AIPV can
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INFLUENCE POWER APPROXIMATION IN TIME-VARYING AND DIRECTED NETWORKS 3

be expressed in terms of the fundamental (state transition) matrix. Moreover, we prove that, when
the interaction network satisfies the cut-balance property [9], each agent influence power (AIP) is
lower bounded by a strictly positive value which we make explicit. In other words, any agent has
a nonzero and non vanishing influence power. Consequently, the overall consensus value can be
controlled by exogenously influencing any of the agents. Nevertheless, the control is more efficient
when the most influent agents are targeted by the exogenous actions.

As mentioned above, in the context of network intervention, it is often more reasonable to assume
that only a perturbed version of the interaction network weights is known. The second original
contribution concerns the problem of approximation of consensus value and agent influence power
for perturbed interaction weights. On one hand, we show that when the interaction weights vary
smoothly both in time and in the perturbation parameter ε, the consensus value and the AIPV are
also smooth both in time and in ε (Sections 3.2 and 3.3). This result holds only for specific dynamics
including the linear time-varying ones considered in this paper. For general linear dynamics, it is
only known that the trajectory is smooth point-wise at any fixed given time, however, in some cases,
the asymptotic convergence value may fail to be smooth with respect to (w.r.t. ) ε. For instance,
consider the simple linear equation ẏ = −εy, when ε > 0, the solutions converge to 0 for all initial
conditions while when ε = 0 the solution is the initial condition. The failure in this example is due
to the non-uniformity of the stability property w.r.t. parameter ε which is prevented in the sequel
thanks to an appropriate assumption.
In Section 4, we apply the results from the previous section to the particular case of additive
perturbations which is a standard way to model identification errors in the network intervention
application. In such a context, the knowledge a marketer has on the interaction network weights
comes from a learning algorithm employed by a marketer to identify the network topology [25].
The perturbation on the interaction weights depicts the error produced by the algorithm. The more
information the algorithm collects over time, the smaller the perturbation becomes. We show in
Section 4.1 that, when the perturbations vanish sufficiently fast in time, the AIPV reach a limit
when time goes to infinity. This is a non trivial result since we also provide an example where this
limit does not exist when the perturbation does not respect the fast vanishing assumption although
the system itself converges to a consensus (Section 4.2). The practical meaning of this result is the
following. If the AIPV converge in time, it is then possible to use its current approximation for a
future marketing campaign. The final section (Section 5) shows how our theoretical results apply in
the context of network intervention.

The present work is an extension of preliminary version [14]. Here, we add complementary results
showing that the AIPV is smooth both w.r.t. time and to the perturbation parameter ε, for any kind
of smooth interaction weights. Finally, we provide a concrete example of application in the context
of intervention in digital social networks.

Notation. The following notation will be used throughout the paper. The sets of non-negative
integers, real and non-negative real numbers are denoted by N, R and R+, respectively. For a vector
v and a matrix A we denote by ‖v‖∞ = maxi |vi| and ‖A‖∞ = maxi

∑
j |Aij | their infinity norms.

We denote by L1 the space of integrable functions on R+. For a matrix-valued function of timeM in
L1, we denote |||M ||| =

∫ +∞
t0
‖M(s)‖∞ds where t0 is a fixed initial time. The transpose of a matrix

A is denoted by A>. By Ik we denote the k × k identity matrix. 1k and 0k are the column vectors
of size k having all the components equal 1 and 0, respectively. Vector ei denotes the i-th canonical
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4 S. MARTIN, I-.C. MORĂRESCU, D. NEŠIĆ

vector in Rn, i.e., the vector of all zeros but one 1 for its i-th coefficient, for some given i ∈ N .
A non trivial subset S of a set C, denoted as S @ C, is a non-empty set with S ( C. A directed path
of length p in a given directed graph G = (N , E) is a union of directed edges

⋃p
k=1(ik, jk) such that

ik+1 = jk, ∀k ∈ {1, . . . , p− 1}. The node j is connected to node i in a directed graph G = (N , E)

if there exists at least one directed path in G from i to j.

2. PRELIMINARIES

2.1. Model statement

Let N , {1, . . . , n} be a set of n ≥ 2 agents. By abuse of notation we denote both an agent
and its index by the same symbol i ∈ N . Each agent is characterized at time t by a scalar state
xi(t) ∈ R,∀i ∈ N that evolves according to the following consensus system

ẋi =
∑n

j=1 aij(t, ε)(xj − xi),
xi(t0) = xt0,i(ε),

(1)

where t0 ≥ 0 is a fixed given initial time, xt0,i(ε) ∈ R a given initial state value (that depends on
ε) for agent i, ε ∈ I is a perturbation parameter with I ⊂ R+ a fixed bounded interval. We assume
that interval I has a finite supremum ε∗. The functions aij : R+ × I → R+ represent the interaction
weights and are assumed to be measurable.

It is noteworthy that system (1) is an extension of the well-known DeGroot opinion dynamics
model [6] . It simply says that agent’s opinion tends to the neighbors ones while interacting. Unlike
[6] we consider that the confidence of agents in their neigbors is not constant but time-varying.

We call the solution of system (1) the trajectory of the overall system and we denote it by x(·, t0, ε)
to point out its dependence on the parameters ε and t0. We say the trajectory asymptotically reaches
a consensus when there exists a common agreement value α(t0, ε) ∈ R such that

lim
t→+∞

xi(t, t0, ε) = α(t0, ε), ∀i ∈ N . (2)

When convergence to consensus occurs, we denote

x∗(t0, ε) = lim
t→+∞

x(t, t0, ε) = α(t0, ε)1n.

For any ε ∈ I we denote A(t, ε) = [aij(t, ε)]ij the adjacency matrix of communication weights at
time t, D(t, ε) = diag(dii(t, ε)) with dii(t, ε) =

∑
j∈N aij(t, ε), and L(t, ε) = D(t, ε)−A(t, ε) its

associated Laplacian matrix. Using the matrix notation, system (1) can be represented as

ẋ(t, t0, ε) = −L(t, ε)x(t, t0, ε), x(t0, t0, ε) = xt0(ε). (3)

2.2. Framework assumptions

In the following let us introduce some notation and the main hypotheses of this work. We denote

c(t, ε) = min
S@N

∑
i∈S,j /∈S

aij(t, ε), (4)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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which is known as the edge connectivity [24].

Assumption 1
The interaction weights satisfy the two following properties :

• c(t, ε) > 0,∀t ≥ t0 and
∫ +∞
t0

c(s, ε)ds = +∞.
• cut-balance: there exists K(ε) ≥ 1 such that for all non trivial subsets S @ N , t ≥ t0 and
ε ∈ I , ∑

i∈S,j /∈S

aij(t, ε) ≤ K(ε) ·
∑

i∈S,j /∈S

aji(t, ε),

From opinion dynamics perspective Assumption 1 is interpreted as follows. First, any set of agents
has a sufficiently important influence (the integral over time of this influence is infinite meaning that
it does not rapidly vanish) on the rest of the network. Second, while a set of individuals influences
the rest of the network, the reciprocal is also true i.e., the rest of the network influences the set with
a certain amont and the ratio between the two influences does not converge to 0 or∞.

Proposition 1 (see [14] for proof)
Suppose that Assumption 1 holds. Then, for any fixed ε ∈ I , and initial time t0, the trajectory of
system (1) reaches consensus (the value generally depends on t0 and ε).

The speed of convergence to consensus depends on the rate at which
∫ >
t0
c(s, ε)ds diverges (see

Proposition 4 in [12] for an explicit bound on the convergence speed). The disagreement between
agents can be characterized using the distance to consensus :

‖x(t, t1, ε)− α(t1, ε)1n‖∞.

To show that the consensus value is smooth w.r.t. parameter ε, we will require the distance to
consensus to be integrable, therefore we add the following assumption.

Assumption 2
Suppose that Assumption 1 holds so that consensus takes place. Moreover, suppose that the
disagreement converges to 0 uniformly in ε, and is uniformly integrable with convergence
characterized by a function d(t, t1) such that for all t1, t ≥ 0 with t ≥ t1,

‖x(t, t1, ε)− α(t1, ε)1n‖∞ ≤ d(t, t1)‖xt1 − α(t1, ε)1n‖∞,

where xt1 is the initial condition set at time t1 and∫ +∞

t1

d(t, t1)dt < +∞ and d(t, t1) ≤ 2,∀t1 ≥ t0.

Finally, assume that ∀ε ∈ I, K(ε) ∈ [1,K∗] where K∗ ≥ 1 is a uniform upper bound.

This assumption introduces finite bounds on the convergence speed and on the reciprocity of the
influences. For instance, this is satisfied in the context of opinion dynamics since agreement is not
instantaneously achieved.

Remark 1
If the uniform bound on K(ε) is satisfied in Assumption 2, one way to verify the uniform

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc



6 S. MARTIN, I-.C. MORĂRESCU, D. NEŠIĆ

integrability of x(t, t0, ε)− α(t0, ε)1n is to suppose there is a uniform lower bound
¯
c > 0 such

that ∀s ≥ t0,∀ε ∈ I, c(s, ε) ≥
¯
c, in which case x(t, t0, ε) converges uniformly exponentially fast to

α(t0, ε)1n (see Proposition 4 in [12]). A simple way to obtain this property is to make sure that the
interaction graph includes a strongly connected subgraph (N , EC) in which all interaction weights
remain lower bounded : ∀i, j ∈ N , (i, j) ∈ EC ⇒ aij ≥

¯
a with

¯
a > 0.

Lemma 1
The function d in Assumption 2 can always be chosen such that d(t, t1) ≤ 2.

Proof
We have that

‖x(t, t1, ε)− α(t1, ε)1n‖∞ ≤ max
i,j∈N

|xi(t, t1, ε)− xj(t, t1, ε)| ≤

max
i,j∈N

|xi(t1, t1, ε)− xj(t1, t1, ε)| ≤ 2‖xt1 − α(t1, ε)1n‖∞.

where the first inequality comes from the fact that consensus value is in the convex hull of the
states of the agents at time t. The second inequality follows from the fact that disagreement is
not increasing in consensus algorithms. Finally, the third inequality is a simple application of the
triangular inequality for norms.

From Proposition 1, it is known that the trajectory of system (1) will converge to consensus. It
remains to characterize the consensus value α(t0, ε). The analysis is carried out for general time-
varying, non-symmetric communication weights.

3. PARAMETRIC TIME-VARYING CONSENSUS SYSTEMS

The aim of this section is to study the behavior of the time-varying consensus system (1)
parametrized by ε ∈ I . As recalled below, the consensus value is always a convex combination
or weighted average of the current states of the agents. These weights correspond to the respective
contributions or importance that the agents have in forming the consensus value. These contributions
are called agent influence power. In general, we show that non-trivial bounds can be obtained
on these agent influence powers provided that the interaction weights satisfy some reciprocity
condition. Our main objective is to show that the AIPs and the consensus value vary smoothly
both in time and in the perturbation parameter. This will allow us to detect the most influent agents
in presence of perturbations, which is useful to efficiently control the overall consensus dynamics.
Although we provide rough approximations of the AIPs and of the consensus value, the paper does
not focus on the accurate approximation of these values.

3.1. Consensus value

To characterize the consensus value approximation, we heavily rely on the property of the
fundamental matrix of system (3). We start by defining this matrix and provide some properties
associated with its evolution and limit in time. This will in turn allow us to describe the consensus
value.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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INFLUENCE POWER APPROXIMATION IN TIME-VARYING AND DIRECTED NETWORKS 7

For all ε ∈ I we define, for all t, t1 ≥ t0 with t ≥ t1, the fundamental matrix Φ(t, t1, ε) of
system (3) such that

x(t, t0, ε) = Φ(t, t1, ε)x(t1, t0, ε). (5)

It is important to define Φ not only for t1 = t0 since we will need to study lim
t1→+∞

lim
t→+∞

Φ(t, t1, ε).

The fundamental matrix has the following important property [2] :
Property 1
For all t1 ≥ t0 and ε ∈ I , the fundamental matrix Φ(t, t1, ε) is invertible, it is independent of the
initial state xt0(ε) and it is solution of the following system :{

∂Φ
∂t (t, t1, ε) = −L(t, ε)Φ(t, t1, ε),

Φ(t1, t1, ε) = I.
(6)

First, we notice that the fundamental matrix components form convex combinations to obtain the
future state in function of past state. Indeed, as a direct consequence of Lemma 6 in [13], for all
t1, t ≥ t0 with t ≥ t1, for any i, j ∈ N , weight Φij(t, t1, ε) is non-negative and∑

j∈N

Φij(t, t1, ε) = 1. (7)

To relate the fundamental matrix to the final consensus value, we present he following rather
standard result on the limit of the fundamental matrix.
Lemma 2
For any t1 ≥ t0 and ε ∈ I , matrix Φ(t, t1, ε) has a limit when t→ +∞, which we denote by

Φ∗(t1, ε) = lim
t→+∞

Φ(t, t1, ε).

Moreover, there exists q(t1, ε) ∈ Rn such that

Φ∗(t1, ε) = 1n(q(t1, ε))
>. (8)

Similarly to Φ(t, t1, ε), the vector q(t1, ε) is independent of the initial state x(t0, t0, ε) = xt0(ε).

Reciprocally, vector q can be obtained in function of the fundamental matrix limit as

q(t1, ε) =
1

n
(Φ∗(t1, ε))

>1n. (9)

The vector q(t, ε) plays a major role in the rest of the study, in particular it relates the final consensus
value α(t0, ε) defined in equation (2) to the current states x(t, t0, ε) as given in the next instrumental
lemma.
Lemma 3
Quantity q(t, ε)>x(t, t0, ε) is invariant in time and defines the consensus value, i.e., for all ε ∈ I , for
all t ≥ t0,

q(t, ε)>x(t, t0, ε) = α(t0, ε).

Moreover, the coefficients qi(t, ε) are non-negative for all i ∈ N and t ≥ t0, and sum up to one :

q(t, ε)>1n = 1. (10)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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8 S. MARTIN, I-.C. MORĂRESCU, D. NEŠIĆ

Lemma 3 precisely characterizes the the consensus value α(t0, ε) and shows that it is a convex
combination of the current states xi(t, t0, ε) weighted by the coefficients in vector q(t, ε) (itself
related to the limit of the fundamental matrix). Consequently, quantity qi(t, ε) corresponds to the
contribution of the agent i’s state in the final consensus value α(t0, ε). Thus, we call q the agent
influence power vector (AIPV).

Accordingly, knowing bounds on coefficients qi(t, ε) will result in approximations for the
consensus value α(t0, ε). We provide such bounds in the next theorem.
Theorem 1
Under Assumption 1, the components qi(t, ε) are positive uniformly bounded w.r.t. time t: for all
t ≥ t0 and i ∈ {1, . . . , n}, n ≥ 2 one has

qi(t, ε) ∈ [qmin(ε), qmax(ε)] ⊆ (0, 1),

with
qmin(ε) =

(
e−K(ε)

n

)n−1

, qmax(ε) = 1− (n− 1)qmin(ε).

Proof
See Appendix 7.1.

One can check that qmin(ε) ∈ (0, 1
n ) and qmin(ε) ≤ qmax(ε). Moreover, if Assumption 2 is

satisfied, uniform bounds w.r.t. ε can be found for qmin(ε) and qmax(ε) by replacing K(ε) by K∗.
It is noteworthy that the lower-bound qmin(ε) in Theorem 1 can be close to 0 if an agent has small
influence on the consensus value. However, our result states that under Assumption 1 all the agents
have a non-zero contribution to consensus. In other words, the opinion of each individual matters
in the overall dynamics since all the components of the AIPV are non-zero. Consequently, one can
control the overall consensus value by continuously controlling the state of any agent despite its AIP
is very small. It is worth noting here that this result is a generalization of the classic result stating
that the left eigenvector associated with the eigenvalue 0 of a fixed Laplacian matrix (of a strongly
connected directed graph) has strictly positive components
Remark 2
We note that Theorem 1 does not hold in general without the cut-balance of the interaction network
contained in Assumption 1. For instance, if the interaction network is given by a tree, it can be
shown that the consensus value is the initial state of the root, irrespective of the initial state of the
other agents.

Remark 3
Note that Theorem 1 could have been stated on consensus systems with no dependance on a
parameter ε, but we kept this notation to remain consistent over the paper.

Corollary 1
Suppose Assumption 1 holds. Then, the final consensus value of (1) is within the following bounds:

α(t0, ε) ∈ [qmin(ε) ·min
i∈N

xt0,i , qmax(ε) ·max
i∈N

xt0,i],

where qmin(ε) and qmax(ε) are defined in Theorem 1.

As stated in the Introduction, if the network is represented as a fixed directed graph, it is well
known that the consensus is a weighted average of the initial opinions and the weight of xt0,i in

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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INFLUENCE POWER APPROXIMATION IN TIME-VARYING AND DIRECTED NETWORKS 9

this average is the ith component of the left eigenvector (q) associated with the eigenvalue 0 of
the Laplacian matrix. The result in Corollary 1 is aligned with that since it states that consensus in
time varying case is also in between the bounds characterizing the weighted average of the initial
opinions with weights defined by the minimum and maximum AIP.

3.2. Smoothness w.r.t. time of the agent influence power vector

This section and the next one analyse two other important properties of the AIPV: one is smoothness
w.r.t. time t and the other is smoothness w.r.t. parameter ε. These properties allow quantifying
how the final consensus value and the AIPs are influenced by perturbations on the communication
weights. For this we need the following supplementary assumption.

Assumption 3 • The functions aij : R+ × I → R+ are twice continuously differentiable and
uniformly upper-bounded functions in both variables. We denote the supremum as

ā = sup
i,j∈N ,t≥0,ε∈I

aij(t, ε). (11)

• We also assume that its derivatives w.r.t. ε are uniformly bounded :

d̄a = sup
i,j∈N ,t≥0,ε∈I

∣∣∣∣∂aij∂ε
(t, ε)

∣∣∣∣ . (12)

• The initial condition xt0,i(ε) is twice continuously differentiable and uniformly lower and
upper-bounded in ε.

This Assumption makes sense in the framework of network interventions since the first part
assumes bounded influences of each individual on the others while the second part states that
influence weights cannot vary infinitely fast when the precision on their values has small variations.

Remark 4
Notice that Assumption 1 and the upper bound ā on the interaction weights defined in equation (11)
does not imply a uniform lower bound on the non-zero interaction weights. In fact, to satisfy the
lower bound on the edge-connectivity given in the first point of Assumption 1, some weights aij(t, ε)
may converge to 0 as long as this is compensated by some other stronger weights aik(t, ε).

Let x(t, t0, ε) = (x1(t, t0, ε), . . . , xn(t, t0, ε))
> ∈ Rn be the overall solution of the network

collecting the states of all the agents. Existence, uniqueness and smoothness of the solution x are
given in the following lemma.

Lemma 4 (see [14] for proof)
Let the initial time t0 and initial condition xt0(ε) be given. Under the smoothness and boundedness
Assumption 3 on aij(t, ε) and xt0(ε), for any fixed ε there exists a unique function x(·, t0, ε) :

[t0,+∞)→ Rn whose components satisfy equation (1) for all t ∈ [t0,+∞). Moreover, this function
is uniformly bounded in all its arguments and twice continuously differentiable w.r.t. both t and ε
and its first and second partial derivatives are continuous for all t ≥ t0 and ε ∈ I .

Lemma 5
Suppose Assumption 3 holds. The fundamental matrix Φ(t, t1, ε) associated with the general
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consensus system (1) is twice continuously differentiable w.r.t. t and ε and its partial derivative
w.r.t. ε evolves according to dynamics

∂

∂t

∂Φ

∂ε
(t, t1, ε) = −L(t, ε)

∂Φ

∂ε
(t, t1, ε)−

∂L

∂ε
(t, ε)Φ(t, t1, ε),

with uniform initial condition

∂Φ

∂ε
(t1, t1, ε) = 0,∀t1 ≥ t0, ε ∈ I.

Proof
Lemma 4 transfers the smoothness of the interaction weights aij(t, ε) to smoothness of the
trajectory. Equation (6) describes the trajectory of the fundamental matrix Φ(t, t1, ε). So, applying
Lemma 4 to equation (6) shows that Φ(t, t1, ε) is twice continuously differentiable w.r.t. t and ε
and its first and second partial derivative are continuous for all t ≥ t0 and ε ∈ I . Then, Schwarz’s
theorem [1] provides

∂

∂t

∂Φ

∂ε
(t, t1, ε) =

∂

∂ε

∂Φ

∂t
(t, t1, ε).

Differentiating the right hand side of system (3) w.r.t. ε yields

∂

∂t

∂Φ

∂ε
(t, t1, ε) =

∂

∂ε

(
− L(t, ε)Φ(t, t1, ε)

)
= −L(t, ε)

∂Φ

∂ε
(t, t1, ε)−

∂L

∂ε
(t, ε)Φ(t, t1, ε).

Moreover, since by definition Φ(t1, t1, ε) = In for all ε ∈ I , ∂Φ
∂ε (t1, t1, ε) = 0.

Notice that the partial derivative of the Laplacian matrix L w.r.t. ε appearing in Lemma 5 inherits
from L the right eigenvector 1n associated with the eigenvalue 0 :

∂L

∂ε
(t, ε0)1n = lim

ε→ε0

L(t, ε)− L(t, ε0)

ε− ε0
1n = 0. (13)

This property will be used later on to derive result on the smoothness of the consensus value w.r.t. ε
(see Theorem 3). We have provided smoothness properties of the fundamental matrix, we now turn
to its relation to the consensus value.

Theorem 2
Suppose that Assumptions 1 and 3 are satisfied. Then, q(t, ε) is continuously differentiable w.r.t.
time t. Let t1 ≥ t0 and ε ∈ I , then ∂qi

∂t (t1, ε0) is obtained without loss of generality by choosing
a specific initial state x(t0, t0, ε) = xt0(ε) so that x(t1, t0, ε) = ei, where ei is the i-th canonical
vector. In this case there holds

∂qi
∂t

(t1, ε0) = −q(t1, ε0)
∂x

∂t
(t1, ε0, t0).

Proof
See Appendix 7.2.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc



INFLUENCE POWER APPROXIMATION IN TIME-VARYING AND DIRECTED NETWORKS 11

3.3. Smoothness w.r.t. perturbation parameter of the agent influence power vector

We now turn to the smoothness of q w.r.t. parameter ε. This result relies on the continuity w.r.t. a
parameter of a limit of the solution to a differential equation when t→ +∞.

Theorem 3
Suppose that Assumptions 1, 2 and 3 are satisfied. Then, q(t, ε) and Φ∗(t, ε) are continuously
differentiable w.r.t. parameter ε. In this case there holds

∂q

∂ε
(t1, ε0) =

1

n

(
∂Φ∗

∂ε
(t1, ε0)

)>
1n

where
∂Φ∗

∂ε
(t1, ε) = lim

t→+∞

∫ >
t1

G(s, t, t1, ε)ds,

with
G(s, t, t1, ε) = −Φ(t, s, ε)

∂L

∂ε
(s, ε)Φ(s, t1, ε).

Moreover, ∥∥∂q
∂ε (t1, ε)

∥∥
∞ ≤ 2

∫ +∞

t1

d(s, t1) max
i,j∈N

∣∣∣∣∂aij∂ε
(s, ε)

∣∣∣∣ ds. (14)

Theorem 3 is a substantial generalization of Theorem 2 in [14] to the case of general time-varying
communication weights depending on a parameter. A direct corollary of Theorem 3 is the following.

Corollary 2
Suppose that Assumptions 1, 2 and 3 hold. Then, for all t1 ≥ t0, ε, ε0 ∈ I ,

‖q(t1, ε)− q(t1, ε0)‖∞ ≤ 2|ε− ε0|
∫ +∞
t1

d(s, t1) max
i,j∈N ,ε1∈I

∣∣∣∣∂aij∂ε
(s, ε1)

∣∣∣∣ ds.
The corollary comes from applying the mean value theorem to the bound found in Theorem 3.

If required, the uniform bound on the derivative of ∂aij/∂ε from equation (12) can be used to
obtain a uniform Lipschitz constant. Since, according to Lemma 3, the final consensus value is
α(t0, ε) = q(t0, ε)

>x(t0, t0, ε), another straightforward corollary to Theorem 3 is the following :

Corollary 3
Suppose that Assumptions 1, 2 and 3 are satisfied. Then the final consensus value α(t0, ε) is
continuously differentiable w.r.t. parameter ε.

4. CONSENSUS VALUE APPROXIMATION UNDER PERTURBED INTERCONNECTIONS

In this section we use the results proven in the previous section to solve the main problem considered
in this paper that is the approximation of the AIPV and of the consensus value when the interaction
weights are not perfectly known. The results are provided under a supplementary assumption on the
behavior of the interaction weights and of the perturbations that affects their variation. We also show
that the imposed assumption is necessary since when it does not hold we can built a counterexample.
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12 S. MARTIN, I-.C. MORĂRESCU, D. NEŠIĆ

4.1. AIPV approximation in presence of vanishing perturbation

In this section, we consider additive perturbations on the influence weights and their effect on the
consensus value and AIPV. We focus on dynamics (1) where the interaction weights are of the form

aij(t, ε) = lij(t) + εmij(t), (15)

where ε ∈ I is a small perturbation parameter. Here, we assume either I = [0, ε∗) or I = [0, ε∗] with
ε∗ > 0.

Assumption 4
We assume that ∃ε∗ such that

aij(t, ε) ≥ 0, ∀t ≥ t0, ε ∈ [0, ε∗].

Moreover, the functions lij(t) ≥ 0 and mij(t) are twice continuously differentiable and uniformly
upper-bounded. Moreover, we assume that the upper-bound on mij(t) is integrable:

dmax ,
∫ +∞

t0

max
i,j∈N

mij(t)dt < +∞. (16)

Finally, as in the previous section, the initial condition xt0,i(ε) is twice continuously differentiable
and uniformly lower and upper-bounded in ε.

The first part guarantees that the aij(t, ε) correspond to the components of a weighted adjacency
matrix. The last part of the assumption ensures the smoothness of the interaction weights and implies
Assumption 3. In the sequel, we assume that Assumption 4 is verified. In matrix form, system (1)
with interaction weights perturbed as in (15) rewrites as{

ẋ(t, t0, ε) = −(L(t) + εM(t))x(t, t0, ε),

with x(t0, t0, ε) = xt0(ε).
(17)

where matrix M(t) is the Laplacian matrix associated with the adjacency matrix (mij(t))ij .
The next result provides a characterization of the convergence speed of q(t1, ε) when the

parameter ε→ 0. Consequently, one also obtains a characterization of the convergence speed of
α(t0, ε) when the parameter ε→ 0.

Proposition 2
Suppose that Assumptions 1, 2 and 4 holds. For all ε ∈ [0, ε∗] the following holds

‖q(t1, ε)− q(t1, 0)‖∞ ≤ 4ε

∫ +∞

t1

max
i,j∈N

|mij(s)| ds,

and in particular,
∀t1 ≥ 0, lim

ε→0
q(t1, ε) = q(t1, 0).

Consequently,

|α(t0, ε)− α(t0, 0)| ≤ 4εδ(ε)

∫ +∞

t0

max
i,j∈N

|mij(s)| ds,
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where δ(ε) = ‖xt0(ε)− xt0(0)‖.

Proof
First notice that ∂aij∂ε (s, ε) = mij(s). As a consequence, we can apply Corollary 2 to show that

‖q(t1, ε)− q(t1, 0)‖∞ ≤ 2ε
∫ +∞
t1

d(s, t1) max
i,j∈N

|mij(s)| ds ≤ 4ε

∫ +∞

t1

max
i,j∈N

|mij(s)| ds,

where we have used d(s, t1) ≤ 2 according to Assumption 2. The last part of the statement becomes
a direct corollary of Lemma 3.

Corollary 4
Under Assumptions 1, 2 and 4 we have

lim
t1→+∞

q(t1, ε) = lim
t1→+∞

q(t1, 0),∀ε ∈ [0, ε∗].

In the context of targeted advertising, the time-convergence of the AIPV q given by Corollary 4
means that the contribution of each agent will undergo little evolution after some time. This
enables a marketer to use its present approximation of the agent influence powers for its subsequent
campaigns. The time-convergence of q may seem natural. However, it is not always true for general
consensus systems of type (3), even in instances where the systems converges to consensus. This
fact is illustrated via an example in Section 4.2.

4.2. Example of oscillating q

The aim of this section is to show that systems which involve uniformly varying weights with non
vanishing perturbation, unlike the ones described in Section 4.1, may lead to a non converging vector
q. Let us study a system of type (1) with two agents. The interaction weights have the following
evolution in time {

a12(t, ε) = 1
2 (1 + ε cos(ηt)),

a21(t, ε) = 1
2 (1− ε cos(ηt)),

(18)

where ε ∈ [0, 1) and η ≥ 0 are constant parameters. In other words, we assume that the confidence
of each agent in its neighbor oscillates around 1/2 which may be interpreted as passive and active
phases of each individual. This translates the fact that each AIP become periodically dominant in the
computation of the final agreement. This system satisfies Assumption 1 with finiteK(ε) = 1+ε

1−ε ≥ 1,
and as a consequence converges to consensus (see Proposition 1). However, the system does not
satisfy the condition (16) in Assumption 4, required for Proposition 2 to apply. Setting x1(0) = 1

and x2(0) = 0 and integrating equation (1), we can show that

x1(t, 0, ε)− x2(t, 0, ε) = e−t,

from which, by integration, exact solutions for x1 and x2 can be obtained as :

x1(t, 0, ε) = α(0, ε) +
e−t

2

(
1 +

ε(cos(ηt)− η sin(ηt))

η2 + 1

)
,
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Figure 1. (Left) trajectory of 2-agent system (1) for interaction weights defined in equation (18) with ε = 0.9,
η = 1. (Right) first component q1(t, ε) of the convex combination providing the asymptotic consensus value

α in function of the current state x(t, 0, ε).

where the final consensus value is

α(0, ε) =
1

2

(
1− ε

η2 + 1

)
.

For this case, the convex combination q can be obtained using q1 + q2 = 1 and q(t, ε)>x(t, 0, ε) =

α(0, ε) so that

q1(t, ε) = 1− x1(t, 0, ε)− α(0, ε)

e−t
=

1

2

(
1− ε(cos(ηt)− η sin(ηt))

η2 + 1

)
,

which does not converge despite asymptotic consensus for x1 and x2 as long as ε, η 6= 0 as shown
in Fig. 1: the contribution of x1 and x2 for the asymptotic consensus value keeps oscillating over
time.

5. APPLICATION TO NETWORK INTERVENTION

To close this paper, we explain how our theoretical results apply in the context of network
intervention. In order that the discussion remains easy to follow, we use a simple network of n = 15

agents connected based on the fixed directed graph from Fig. 2 below.
We assume that a marketer wants to advertise a service/product over the network. The agents’

states represent their opinions or level of desire toward this product. If chosen between [0, 1], agents’
states can also be seen as the probability that an agent will buy the product. As explained in [23],
the revenue of the marketer is proportional to the number of agents favoring this product. Opinions
are assumed to evolve according to the consensus dynamics (1). Following the marketing strategy
proposed in [18], the marketer targets certain agents to modify their opinions and potentially affect
the rest of the network indirectly over time. To maximize its revenue, the marketer must first identify
the key influencers in the network. As shown in [18], these are precisely the ones who have the
greatest agent influence power qi(t, ε). In Section 3.1, we have made explicit that the agent influence

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc



INFLUENCE POWER APPROXIMATION IN TIME-VARYING AND DIRECTED NETWORKS 15

1

2

3

4

5

6

7

8

9

10

1112

13

14

15

Figure 2. Graph representing the network topology. The size of each node is proportional to the
corresponding agent influence power

power vector q can be computed if the interaction weights involved in the opinion dynamics are
known. However, it is often more realistic to suppose that the values of the interaction weights have
been estimated by a learning algorithm employed by a marketer to identify the network topology
such as the one developed in [25]. As a consequence, a relevant model for the estimated interaction
weights is the one given by the perturbed weights (15) from Section 4 where ε corresponds to
a measure of accuracy of the learning algorithm. Since the revenue is related to an appropriate
identification of the agent influence powers, the following question arises : how do identification
errors on the interaction weights impact the approximation of the agent influence powers ? This is
precisely the information that Proposition 2 provides giving the distance between the true AIPV
when ε = 0 and the estimated one. To illustrate how the perturbation level ε affects the AIPV, we
show in Fig. 3 the AIPV for different levels of perturbation. Precisely we consider that lij ∈ {0, 1}
according to the graph in Fig. 2 while mij ∈ [0, 1] is randomly chosen and remains fixed. Then we
take ε ∈ {0, 0.1, 0.5, 1}. As proven by our main results, the AIPV depends smoothly on parameter
ε so that when ε is closer to 0 the AIPV is better approximated. Consequently, a company that
wants to perform targeted advertising will improve its revenue by investing in a learning algorithm
providing a more accurate AIPV (see [25]).

6. CONCLUSION

In this paper, we have studied linear consensus systems with directed and time-varying interactions.
A first focus was on characterizing the asymptotic consensus value of the system. The consensus
value can be expressed in terms of the contribution of each agent in the final consensus that
have been called the agent influence powers (AIPs). Knowing the AIPs enable to identify the key
influencers in a network. A second focus was to provide approximations for the AIPs. Under the cut-
balance assumption on the interaction weights, the AIP are strictly positive meaning that each agent
plays a non vanishing role in the asymptotic consensus value. We have also shown that the AIPs vary
smoothly w.r.t. additive perturbations on the interaction weights. Finally, we have demonstrated that
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Figure 3. Comparison of the estimations of agent influence powers (AIP) qi for various levels of perturbation
ε. For each agent, the leftmost bar represents the true agent influence power obtained when interaction
weights are completely known (ε = 0). On the opposite, the rightmost bar is the estimated consensus share

when the uncertainty on the interaction weights is highest (ε = 1).

for L1 additive perturbation, the AIPs converge asymptotically in time. On the contrary, when this
assumption is not satisfied, we have provided a counter-example where the AIPs keep oscillating
over time while the agents converge to a consensus. Finally, we have provided an interpretation of
the theoretical results in the context of network intervention such as targeted marketing over digital
social networks.

7. APPENDIX

7.1. Proof of Theorem 1

First let ε ∈ I . Since ε is fixed throughout this Appendix section, we drop the ε notation altogether.
In this Appendix, we provide intermediate results: Lemma 6, Lemma 7 and Corollary 5 which
allow to obtain Theorem 1. Let t ≥ t0 and S @ N . Denote τS(t) the first time after t for which the
cumulated influence send by group S exceeds 1 :

τS(t) = min

τ ≥ t|
∫ τ

t

∑
i∈N\S,

∑
j∈S

aij(s)ds = 1

 .

The first point in Assumption 1 guarentees that τS(t) is finite.

Lemma 6
Let t ≥ t0. For all S @ N , there exists i ∈ N \ S such that for all j ∈ S ∪ {i},∑

h∈S

Φjh(t, τS(t)) ≥ η,

where η = exp(−K)/n.

Proof
We define an artificial trajectory u satisfying system (3) over [t, τS(t)] with initial states uh(t) = 1

for h ∈ S and ui(t) = 0 for i ∈ N \ S (this idea was also exploited in Lemma 6 and Remark 3

in [13]). Then, for all s ∈ [t, τS(t)], and j ∈ N , the trajectory remains in the convex hull of the
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initial states: uj(s) ∈ [0, 1]. By equation (5), for all j ∈ N ,

uj(τS(t)) =
∑
h∈N

Φjh(t, τS(t))uh(t) =
∑
h∈S

Φjh(t, τS(t)).

It remains to show there exists i ∈ N \ S such that

ui(τS(t)) ≥ η, (19)

which we do in two steps. First we start by showing that for all s ∈ [t, τS(t)] and h ∈ S,

uh(s) ≥ e−K . (20)

The second step is to prove that equation (19) holds by contradiction.
Step 1. Denote

¯
h(s) ∈ S and

¯
u(s) such that

¯
u(s) = u

¯
h(s) = min

h∈S
uh(s).

In [9], it has been proven that for almost all time s ∈ [t, τS(t)],

˙
¯
u(s) =

∑
i∈N

a
¯
hi(s)(ui(s)−

¯
u(s)).

Moreover, a
¯
hi(s) ≥ 0. Also, by definition of

¯
u, (ui(s)−

¯
u(s)) ≥ 0,∀i ∈ S, so these terms can be

ignored from the sum. Finally recall all states remain in the convex hull of the initial conditions :
∀i ∈ N \ S, ui(s) ≥ 0. As a consequence, using Assumption 1, we have

˙
¯
u(s) ≥ −

∑
i∈N\S

a
¯
hi(s)¯

u(s) ≥ −

 ∑
i∈N\S

∑
h∈S

ahi(s)


¯
u(s) ≥ −K

 ∑
i∈N\S

∑
h∈S

aih(s)


¯
u(s).

From this linear differential inequality, a comparison theorem provides a lower bound on
¯
u(s).

Using the definition of τS(t), this lower bound becomes
¯
u(s) ≥ e−K

¯
u(t) = e−K , where

¯
u(t) = 1

comes from the choice of initial condition uh(t) = 1 for h ∈ S. Equation (20) is now granted.
Step 2. Assume, for the purpose of showing contradiction, that for all i ∈ N \ S and s ∈ [t, τS(t)],

ui(s) < η =
e−K

n
< e−K . (21)

Equations (20) and (21) mean that groups S and N \ S remain separated by the distinct thresholds
e−K

n and e−K so that

¯
u(s)− max

i∈N\S
ui(s) ≥ e−K −

e−K

n
=

(n− 1)e−K

n
, γ.
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Denote Σ(s) =
∑

i∈N\S K
−iui(s) ≥ 0. Then, the cut-balance Assumption 1 allows applying [12,

Lemma 9] to obtain :

Σ̇(s) ≥ γ
∑
i∈N\S

∑
h∈S

aih(s).

Since Σ(t) = 0, by integration, we obtain

Σ(τS(t)) ≥ γ
∫ τS(t)

t

∑
i∈N\S

∑
h∈S

aih(s)ds ≥ γ,

where the definition of τS(t) has been used for the last inequality. Denote j ∈
arg maxi∈N\S{K−iui(τS(t))}. Then,

K−juj(τS(t)) ≥ Σ(τS(t))

n− 1
≥ γ

n− 1
≥ e−K

n
= η.

Using , and K ≥ 1, we obtain

uj(τS(t)) ≥ η with j ∈ N \ S,

which contradicts equation (21) and shows that equation (19) holds and the lemma is proven.

Lemma 7
Let p, d ∈ {1, . . . , n} such that p < d. Let Sp @ N with |Sp| = p and tp ≥ t0. Then, there exists a
growing sequence of sets Sp+1 . . . , Sd @ N of cardinality |Sb| = b such that for all b ∈ {p, . . . d−
1}, and Sb ⊆ Sb+1, which verifies that for all b ∈ {p+ 1, . . . d},

∀j ∈ Sb,
∑
h∈Sp

Φjh(tp, tb) ≥ ηb−p, (22)

where η = e−K/n and tb = (τSb−1
◦ . . . ◦ τSp)(tp) with ◦ standing for the composition of functions.

Proof
We prove the lemma by induction on b. For b = p+ 1, the equation (22) is obtained as a direct
consequence of Lemma 6 with S := Sp and Sp+1 = S ∪ {i}. Assume that equation (22) is true for
some b ∈ {p+ 1, . . . d− 1}. We apply Lemma 6 with S := Sb and t := tb to obtain the existence of
an element i′ ∈ N \ Sb such that for all j ∈ Sb ∪ {i′},∑

h∈Sb

Φi′h(tb, tb+1) ≥ η. (23)

Denote Sb+1 = Sb ∪ {i′}. Let j ∈ Sb+1. To prove (22) for b := b+ 1, notice that by definition of the
fundamental matrix, ∑

h∈Sp

Φjh(tp, tb+1) =
∑
h∈Sp

∑
l∈Sb

Φjl(tb, tb+1)Φlh(tp, tb).
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Applying inequality (23) and then equation (22), we obtain∑
h∈Sp

Φjh(tp, tb+1) = η
∑
h∈Sp

Φlh(tp, tb) ≥ η · ηb−p = η(b+1)−p.

Corollary 5
Let t ≥ 0. There exists a finite time t′ ≥ t such that for all r, j ∈ N ,

∀s ≥ t′,Φjr(t, s) ≥ (exp(−K)/n)
n−1

.

Proof
Let r ∈ N . Applying Lemma 7 with p = 1, d = n provides the existence of τ ≥ t such that for all
h ∈ N ,

Φhr(t, τ) ≥ ηn−1.

Let s ≥ τ and h ∈ N . The fundamental matrix definition provides

Φjr(t, s) =
∑
h∈N

Φjh(τ, s)Φhr(t, τ) ≥ ηn−1
∑
h∈N

Φjh(τ, s) = ηn−1.

Taking the largest τ for all r ∈ N allows to conclude.

Proof of Theorem 1: We now derive the lower bound qmin. Since for all i, j ∈ N , Φij(t,+∞) =

qkj (t), Corollary 5 when s→ +∞ directly provides

qkj (t) ≥ (exp(−K)/n)
n−1 ≥ qmin.

We now turn to the upper bound qmax. We have

qi(t) = 1−
∑

j∈N\{i}

qj(t) ≤ 1− (n− 1)qmin.

7.2. Proof of Theorem 2

Let ε ∈ I and t1 ≥ t0. Note that by Property 1 and Lemma 2, the fundamental matrix Φ(t, s, ε) is
invertible and both this matrix and the AIPV q(t, ε) are independent of the choice of initial condition
xt0(ε). So, without loss of generality, we assume the initial condition xt0(ε) = (Φ(t1, t0, ε))

−1ei,
which, by equation (5), implies x(t1, t0, ε) = ei. We first show that q(t, ε) is continuous w.r.t. t in
(t1, ε). For readability, we momentarily drop the ε dependency for q and the ε, t0 dependency for x.
Let t ≥ t0. On one hand, recalling the choice x(t1) = ei and using the invariance of qTx given by
Lemma 3, we have

qi(t1) = q(t1)>x(t1) = q(t)>x(t) = qi(t)xi(t) +
∑
j 6=i

qj(t)xj(t)

= qi(t)xi(t) +
∑
j 6=i

qj(t)(xj(t)− xj(t1)),

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc



20 S. MARTIN, I-.C. MORĂRESCU, D. NEŠIĆ

where we used for j 6= i, xj(t1) = 0. On the other hand, since xi(t1) = 1,

qi(t) = qi(t)xi(t)− qi(t)(xi(t)− 1) = qi(t)xi(t)− qi(t)(xi(t)− xi(t1)).

Subtracting the two previous equations, and then using that for j ∈ N , qj(t) ∈ [0, 1],

|qi(t)− qi(t1)| ≤
∑
j∈N

qj(t)|xj(t)− xj(t1)| ≤
∑
j∈N

|xj(t)− xj(t1)| ≤ ‖x(t)− x(t1)‖1.

We obtain
|qi(t)− qi(t1)| ≤ ‖x(t)− x(t1)‖1.

From Lemma 4, x is continuous w.r.t. t, accordingly, we obtain the continuity of qi with regard to
t. Since by Lemma 4, x is twice continuously differentiable w.r.t. time t, for any fixed ε and t ≥ t0,
there exists a function d1 ∈ C1(R+) such that

x(t)− x(t1)

(t− t1)
= d1(t) and d1(t1) =

∂x

∂t
(t1). (24)

First using x(t1) = ei and then the time-invariance of qTx from Lemma 3, we have

qi(t1)− qi(t) = (q(t1)− q(t))>x(t1) = q(t)>(x(t)− x(t1)).

Dividing by (t− t1) and using equation (24), one obtains

qi(t1)− qi(t)
(t− t1)

= q(t)T d1(t).

Coming back to the original notation that points out the dependence on ε, since d1 ∈ C1(R+) and q
is continuous w.r.t. t we obtain that q ∈ C1(R+) and taking t→ t1, it comes

∂qi
∂t

(t1, ε) = −q(t1, ε)
∂x

∂t
(t1, t0, ε) when x(t1, t0, ε) = ei.

7.3. Proof of Theorem 3

We first provide a classical result.

Lemma 8 (Variation of parameters [2])
Consider the non-homogeneous system{

ẏ(t) = B(t)y(t) + u(t),

y(t1) = y1,

where y(t), u(t) ∈ Rn, B(t) ∈ Rn×n, with B(t) and u(t) are piece-wise continuous. The solution to
this system is

y(t) = Ψ(t, t1)y(t1) +

∫ t

t1

Ψ(t, s)u(s)ds,

where Ψ(t, t1) is the fundamental matrix associated with the homogeneous system ẏ(t) = B(t)y(t).
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Proof of Theorem 3
According to Lemma 5, ∂Φ

∂ε (t, t1, ε) follows a non-homogeneous linear differential system with 0

as uniform initial condition. The corresponding homogeneous equation is the consensus system (3)
and accordingly it has fundamental matrix Φ(t, t1, ε) as defined in equation (5). Using the Variation
of the constants formula (Lemma 8) with 0 as the initial condition, we obtain

∂Φ

∂ε
(t, t1, ε) =

∫ t

t1

G(s, t, t1, ε)ds,

with

G(s, t, t1, ε) = −Φ(t, s, ε)
∂L

∂ε
(s, ε)Φ(s, t1, ε) = −Φ(t, s, ε)

∂L

∂ε
(s, ε)(Φ(s, t1, ε)− Φ∗(t1, ε)) (25)

where for the last equality, we used that ∂L∂ε (s, ε) has left eigenvector 1n associated with eigenvalue
0 (see (13)) and the definition of Φ∗(t1, ε) as a rank-1 matrix (see (8)). We now show that ∂

∂ε and
limt→+∞ can be interchanged. To do so, we prove that : i) G(s, t, t1, ε) is continuous in ε ; ii) Φ∗

can be expressed in function of G ; and iii) G(s, t, t1, ε) is uniformly dominated by an integrable
function so that Lebesgue’s Dominated Convergence Theorem can be applied to obtain ∂Φ∗

∂ε .
i) According to the first equality in equation (25), the smoothness assumptions on aij(t, ε) and
Lemma 4, we have that G(s, t, t1, ε) is continuous in all its arguments.
ii) By Fubini’s Theorem [7], using the continuity of G(s, t, t1, ε),

Φ(t, t1, ε) = Φ(t, t1, ε0) +

∫ ε

ε0

∂Φ

∂ε
(t, η, t1)dη = Φ(t, t1, ε0) +

∫ ε

ε0

∫ t

t1

G(s, t, t1, η)dsdη

= Φ(t, t1, ε0) +

∫ t

t1

f(s, t, t1, ε)ds,

where f(s, t, t1, ε) ,
∫ ε
ε0
G(s, t, t1, η)dη. Taking the limit,

Φ∗(t1, ε) = Φ∗(t1, ε0) +

∫ +∞

t1

f(s, t, t1, ε)ds, (26)

with ∂f
∂ε (s, t, t1, ε) = G(s, t, t1, ε).

iii) Regarding the domination, we use the second equality in equation (25) to bound ‖G(s, t, t1, ε)‖.
First, using equation (7), ‖Φ(t, s, ε)‖∞ = 1. Moreover, by definition of the Laplacian matrix,∥∥∥∥∂L∂ε (s, ε)

∥∥∥∥
∞
≤ 2n max

i,j∈N

∣∣∣∣∂aij∂ε
(s, ε)

∣∣∣∣ (27)

and using equation (12), ‖∂L∂ε (s, ε)‖∞ ≤ 2nd̄a. Secondly, since all components of Φ and Φ∗ are in
[0, 1] and sum to one (see equation (7)), the initial disagreement satisfies

‖Φ(t1, t1, ε)− Φ∗(t1, ε)‖∞ ≤ 1.
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Then, according to equation (6), Φ(s, t1, ε) satisfies the consensus dynamics and therefore,
Assumption 2 shows that Φ(s, t1, ε) converges to Φ∗(t1, ε) at a speed characterized by

‖Φ(s, t1, ε)− Φ∗(t1, ε)‖∞ ≤ d(s, t0).

To summarize, equation (25) shows that we have

‖G(s, t, t1, ε)‖∞ ≤ 2nd̄ad(s, t1).

According to Assumption 2, the right hand side of the previous inequality is integrable. As
a consequence, by the Lebesgue’s Dominated Convergence Theorem [22],

∫ >
t1
G(s, t, t1, ε)ds

converges uniformly in ε when t→ +∞ and limt→+∞
∫ >
t1
f(s, t, t1, ε)ds is continuously

differentiable w.r.t. ε for ε ∈ I and following equation (26), so is Φ∗(t, t1, ε) and moreover,
∂Φ∗

∂ε (t1, ε) = limt→+∞
∫ t
t1
G(s, t, t1, ε)ds.
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