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Abstract

This contribution has two main objectives. First, it aims to compare empirically input-

oriented technical and economic capacity notions. Second, it aims to compare these

capacity notions on both convex and nonconvex technologies. After defining these ca-

pacity notions, an empirical comparison is performed using a secondary data set con-

taining data of French fruit producers. Anticipating two key empirical conclusions, we

find that all these different capacity notions follow different distributions, and also that

these distributions almost always differ under convex and nonconvex technologies.
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1 Introduction

Analysing efficiency and productivity using frontier technologies has become a standard em-

pirical tool serving a variety of academic, regulatory and managerial purposes. Indeed there

is a huge academic literature applying these methodologies for analyzing private and pub-

lic sector performance-related issues. Focusing on empirical surveys of certain well-studied

sectors, one can point, for example, to banking (Harker and Zenios (2001)), education (Wor-

thington (2001)), health care (Ozcan (2008)), insurance (Cummins and Weiss (2000)), justice

system (Voigt (2016)) and real estate (Anderson, Lewis, and Springer (2000)). Apart from

this surge of empirical applications, there has equally been an extended series of methodolog-

ical innovations in this literature surveyed in, for example, Hatami-Marbini, Emrouznejad,

and Tavana (2011) or Thanassoulis, Silva Portela, and Despić (2008).

An important area of regulatory applications has been the implementation of incentive

regulatory mechanisms (e.g., price cap regulation) using frontier-based performance bench-

marks in countries with liberalized network industries (e.g., electricity, gas, water utilities).

One survey focusing on its use in the electricity sector is Jamasb and Pollitt (2000). An ex-

ample of a managerial application is the use of frontier methods to save money by allowing

use of internal funds to pursue a growth strategy in a US bank (see, e.g., Sherman and

Ladino (1995)).

However, this frontier literature has largely ignored integrating the important notion

of capacity utilization. Consequently, part of what appears like inefficiency may in fact be

due to the short-run fixity of certain inputs, depending on the exact definition of capacity

utilization. It is of equal importance to account for heterogeneity in capacity utilization when

measuring productivity growth (e.g., Luh and Stefanou (1991)).

Capacity utilization of fixed inputs is relevant for both managers and policy makers

at various levels of aggregation and in all economic sectors. For instance, at the country

level capacity utilization is traditionally employed as a leading macro-economic indicator to

forecast inflation (e.g., Christiano (1981)). The management of excess vessel capacities has

recently become a key policy issue in fisheries due to degrading bio-stocks in this common

pool resource. As an example, a variety of capacity measures has been employed to evaluate

vessel decommissioning schemes (e.g., Walden, Kirkley, and Kitts (2003)). To curb overfish-

ing, governments must determine sustainable capacity levels by implementing a variety of

policy measures (e.g., licenses, fishing day restrictions, etc.). To define these policy measures,

scientists have developed short-run industry models based on vessel capacity estimates to
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allow planning the industry and infer realistic decommissioning schemes (see, e.g., Lindebo

(2005)).

However, different notions of capacity co-exist in the literature (e.g., Christiano (1981) or

Johansen (1968)). It is common to distinguish between technical or engineering concepts on

the one hand and economic capacity concepts on the other hand. Johansen (1968) developed

a technical or engineering approach by introducing a plant capacity notion. Plant capacity

is defined as the maximal amount that can be produced per unit of time with existing plants

and equipment without restrictions on the available variable inputs. This definition has been

transposed into a production frontier context using output-oriented efficiency measures by

Färe, Grosskopf, and Kokkelenberg (1989).

Most economic capacity concepts are based on the cost function. In the literature there

are basically at least three ways of defining a cost-based capacity notion (see, e.g., Nelson

(1989)). Each of these notions attempts to isolate the short-run inadequate or excessive

utilization of fixed inputs. A first notion of potential outputs is defined in terms of the

outputs produced at short-run minimum average total cost given existing plant and input

prices (for instance, Hickman (1964)). It stresses the need to exploit scale economies in

the short-run. A second definition of potential outputs is conceived in terms of the outputs

produced at minimum average total cost in the long-run (e.g., Cassels (1937), among others).

It is rarely used because its intertwining with the notion of scale economies. A third definition

corresponds to the outputs at which the short-run and long-run average total cost curves are

tangent. Since this tangency point is at the intersection of short-run and long-run expansion

paths, this notion has considerable theoretical appeal (for example, Klein (1960) or Segerson

and Squires (1990)).

We are unaware of any study comparing this wide range of technical and economic capac-

ity notions.1 One plausible hypothesis explaining this lack of comparative studies is that the

economic capacity notions at least implicitly adopt an input orientation, while the technical

plant capacity notion is traditionally based on output-oriented efficiency measures. However,

recently Cesaroni, Kerstens, and Van de Woestyne (2017) develop an input-oriented plant ca-

pacity notion based on input-oriented efficiency measures. Furthermore, Cesaroni, Kerstens,

and Van De Woestyne (2018) recently defined new long-run output- and input-oriented plant

capacity concepts. Therefore, a first major goal of this contribution is to make a theoretically

coherent input-oriented comparison between this wide variety of technical and economic ca-

pacity notions. As a point of comparison, we also include the output-oriented plant capacity

1Sahoo and Tone (2009) come closest to comparing some technical and economic capacity notions in
terms of inputs and costs using input-oriented nonparametric frontier models.
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notion which has been used quite often in the literature in the last three decades since its

inception (see Cesaroni, Kerstens, and Van de Woestyne (2017) for a literature review).

This research assumes that different capacity concepts should ideally measure somehow

a similar part of reality. Therefore, we require that these different capacity concepts satisfy

some minimal consistency conditions in terms of both the comparability of distributions and

the similarities in rankings.2 Anticipating our empirical results, formal testing reveals that in

almost all cases technical and economic capacity notions follow different distributions. These

differences are confirmed in terms of rankings between input-oriented plant capacity and

cost-based capacity notions under non-convexity, though less pronounced so under convexity.

It is well-known that the axiom of convexity has a potential impact on the empirical

analysis based on technologies (see, e.g., Tone and Sahoo (2003)). In our context, for instance,

Walden and Tomberlin (2010) document the effect of maintaining or dropping convexity on

the output-oriented plant capacity utilization concept. Equally so, Cesaroni, Kerstens, and

Van de Woestyne (2017) reveal the impact of convexity on both the output- and input-

oriented plant capacity utilization notions.

However, most researchers tend to ignore the potentially important impact of convexity

on the cost function. This is related to a property of the cost function in the outputs that is

ignored by most people. Indeed, some seminal contributions to axiomatic production theory

indicate that the cost function is nondecreasing and convex in the outputs if and only if the

technology is convex (e.g., Jacobsen (1970)). Otherwise, the cost function is nonconvex in

the outputs. Briec, Kerstens, and Vanden Eeckaut (2004) refine this general property and

prove that cost functions estimated on nonconvex technologies yield larger or equal cost

estimates compared to cost functions estimated on convex technologies. Both these types

of cost functions are identical when there is a single output and when constant returns to

scale prevail. The large majority of empirical studies have failed to put these properties

to a test. In our context, to the best of our knowledge the impact of convexity on cost-

based notions of capacity utilisation has never been evaluated. Therefore, a second major

goal of this contribution is to make a coherent input-oriented comparison between technical

and economic capacity notions using both convex and nonconvex technologies to assess the

impact of the convexity hypothesis. Again anticipating the empirical results, our formal tests

show that almost all capacity concepts seem to follow a different distribution under convexity

2This is inspired by the first two consistency conditions in the work of Bauer, Berger, Ferrier, and
Humphrey (1998) regarding the evaluation of efficiency measures resulting from different frontier estima-
tion methodologies. We are not convinced that the additional four consistency conditions make much sense
in the framework of measuring and evaluating different capacity utilisation concepts.
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and nonconvexity, though convexity seems to matter less in terms of rankings.

This contribution is structured as follows. Section 2 summarizes the basic definitions

of the technology and the cost function. The next Section 3 reviews in detail both the

economic and technical capacity utilization definitions. This includes, among others, looking

at the issue of normalization, given the existence of inefficiencies, and a priori determining

the eventual impact of convexity. In the next Section 4 we develop an empirical illustration

making use of an existing secondary data set, which makes our results replicable. The focus

is on descriptive statistics, a formal testing of the resulting distributions, and a comparison

of Spearman rank correlations. A final section concludes.

2 Technology and Cost Functions: Basic Definitions

In this section we define technology and some basic notation. Given N -dimensional input

vectors x ∈ R
N
+ and M -dimensional output vectors y ∈ R

M
+ , the production possibility set

or technology T can be defined as T = {(x, y) | x can produce at least y}. The input set

L(y) = {x | (x, y) ∈ T} associated with T holds all input vectors x capable of producing

at least a given output vector y. In a similar way, the output set P (x) = {y | (x, y) ∈ T}

associated with T holds all output vectors y that can be produced from at most a given

input vector x.

Throughout this contribution, technology T satisfies some combination of the following

standard assumptions:

(T.1) Possibility of inaction and no free lunch, i.e., (0, 0) ∈ T and if (0, y) ∈ T , then y = 0.

(T.2) T is a closed subset of RN
+ × R

M
+ .

(T.3) Strong input and output disposal, i.e., if (x, y) ∈ T and (x′, y′) ∈ R
N
+ × R

M
+ , then

(x′,−y′) ≥ (x,−y) ⇒ (x′, y′) ∈ T .

(T.4) (x, y) ∈ T ⇒ δ(x, y) ∈ T for δ ∈ Γ, where:

(i) Γ ≡ ΓCRS = {δ | δ ≥ 0};

(ii) Γ ≡ ΓVRS = {δ | δ = 1}.

(T.5) T is convex.
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Briefly discussing these traditional axioms on technology, it is useful to recall: (i) inaction

is feasible, and there is no free lunch, (ii) closedness, (iii) free disposal of inputs and outputs,

(iv) returns to scale assumptions (i.e., constant returns to scale (CRS) and variable returns

to scale (VRS)), and (v) convexity of technology (see, e.g., Hackman (2008) for details). Not

all these axioms are maintained in the empirical analysis.3 In particular, key assumptions

distinguishing some of the technologies in the empirical analysis are CRS versus VRS, and

convexity versus nonconvexity.

The input distance function completely characterizes the input set L(y) and it can be

defined as follows:

Di(x, y | T ) = max{λ | λ ≥ 0, (x/λ, y) ∈ T} = max{λ | λ ≥ 0, x/λ ∈ L(y)}. (1)

The main properties of this input distance function are: (i) Di(x, y | T ) ≥ 1, with effi-

cient production on the boundary (isoquant) of L(y) represented by unity; (ii) it has a cost

interpretation (see, e.g., Hackman (2008)).

The inverse of this input distance function DFi(x, y | T ) = [Di(x, y | T )]−1 is known as

the radial input efficiency measure. Hence, the radial input efficiency measure is defined as:

DFi(x, y | T ) = min{λ | λ ≥ 0, λx ∈ L(y)}. (2)

Its key property is that it is situated between zero and unity (0 < DFi(x, y) ≤ 1), with

efficient production on the boundary (isoquant) of the input set L(y) represented by unity.

Switching to a dual representation of technology, the cost function can be defined as

the minimum expenditures needed to produce a given output vector y for a given vector of

semi-positive input prices (w ∈ R
N
+ ):

C(y, w | T ) = min
x

{wx | (x, y) ∈ T} = min
x

{wx : x ∈ L(y)}. (3)

Duality relations link these primal and dual representations of technology. Duality allows

a well-behaved technology to be reconstructed from the observations on cost minimizing

producer behavior, and the reverse. The duality between input distance function (1) and

3Note that the convex VRS technology does not satisfy inaction.
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cost function (3) is:

Di(x, y | T ) = min
w

{wx | C(y, w | T ) ≥ 1}, x ∈ L(y), (4)

C(y, w | T ) = min
x

{wx | Di(x, y | T ) ≥ 1}, w > 0. (5)

It is common to establish such duality relations under the hypothesis of a convex technology

or a convex input set (e.g., (Hackman, 2008, Ch. 7)). Briec, Kerstens, and Vanden Eeckaut

(2004) are the first to establish a local duality result between nonconvex technologies subject

to various scaling laws and their corresponding nonconvex cost functions.

Next, the radial output efficiency measure can be defined as:

DFo(x, y | T ) = max{θ | θ ≥ 0, θy ∈ P (x)}, (6)

and offers a complete characterization of the output set P (x). Its main properties are that

it is larger than or equal to unity (DFo(x, y | T ) ≥ 1), with efficient production on the

boundary (isoquant) of the output set P (x) represented by unity, and that the radial output

efficiency measure has a revenue interpretation (e.g., Hackman (2008)).

Partitioning the input vector into a fixed and variable part, we have x = (xf , xv) with

xf ∈ R
Nf

+ and xv ∈ R
Nv
+ such that N = Nf + Nv. Furthermore, we can make the same

distinction regarding the input price vector w = (wf , wv).

In a similar way to Färe, Grosskopf, and Valdmanis (1989), a short-run technology T f =

{(xf , y) ∈ R
Nf

+ × R
M
+ | (xf , xv) can produce at least y} and the corresponding input set

Lf (y) = {xf ∈ R
Nf

+ | (xf , y) ∈ T f} and output set P f (xf ) = {y | (xf , y) ∈ T f} can be

defined. Note that technology T f does not include variable inputs, and the maximal output

from this technology is determined solely by the fixed inputs. This yields an equivalent output

level as a technology where all the variable inputs are set to zero. Thus, technology T f is

obtained by a projection of technology T ⊂ R
N
+ × R

M
+ into the subspace R

Nf

+ × R
M
+ : i.e.,

by setting all variable inputs equal to zero. This projection maps (xf , xv, y) onto (xf , 0, y)

which is mathematically identified with (xf , y).4 The same applies by analogy to the input

set Lf (y) and the output set P f (xf ).

4In order to see this projection operationalized, start from model (2) in Appendix B and set xv
k = 0 for

all k. Consequently, the variable input constraints become 0 ≤ 0 which is always satisfied and so can be
removed without altering the outcome. The resulting model is model (3) of Appendix B.
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By analogy, the short-run total cost function is defined as follows:

C(w, xf , y | T ) = min
xv

{wvxv + wfxf | (xf , xv, y) ∈ T}. (7)

The short-run variable cost function is defined as:

V C(wv, xf , y | T ) = min
xv

{wvxv | (xf , xv, y) ∈ T}. (8)

Note that the short-run total cost function is simply the sum of the short-run variable cost

function and the observed fixed costs.

The sub-vector input efficiency measure reducing only the variable inputs is defined as

follows:

DF SR
i (xf , xv, y | T ) = min{λ | λ ≥ 0, (xf , λxv) ∈ L(y)}. (9)

Next, we need the particular input set L(0) = {x | (x, 0) ∈ T} for which the output level

is set to at least zero. The input efficiency measure reducing all inputs relative to this input

set with zero output level is given by:

DFi(x, 0 | T ) = min{λ | λ ≥ 0, λx ∈ L(0)}. (10)

Then, the sub-vector input efficiency measure reducing variable inputs evaluated relative to

this input set with zero output level is given by:

DF SR
i (xf , xv, 0 | T ) = min{λ | λ ≥ 0, (xf , λxv) ∈ L(0)}. (11)

By analogy, denote the radial output efficiency measure of the output set P f (xf ) by

DF f
o (x

f , y). This efficiency measure can be defined as

DF f
o (x

f , y | T ) = max{θ | θ ≥ 0, θy ∈ P f (xf )}. (12)

Next, we introduce the particular output set P = {y | ∃x : (x, y) ∈ T} containing all possible

outputs regardless of the required inputs. This set allows us to define a new efficiency measure

DFo(y | T ) that does not depend on a particular input vector x:

DFo(y | T ) = max{θ | θ ≥ 0, θy ∈ P}. (13)

8



Contrary to the radial output efficiency measure (6), this new efficiency measure DFo(y | T )

is allowed to choose the inputs needed for maximizing θ.

Now, for K observations (xk, yk) ∈ R
N
+ × R

M
+ , (k = 1, . . . , K) a unified algebraic repre-

sentation of convex and nonconvex nonparametric frontier technologies under CRS and VRS

assumptions is possible as follows:

TΛ,Γ =

{

(x, y) | x ≥

K
∑

k=1

xkδzk, y ≤

K
∑

k=1

ykδzk, z ∈ Λ, δ ∈ Γ

}

, (14)

where

(i) Γ ≡ ΓCRS = {δ | δ ≥ 0};

(ii) Γ ≡ ΓVRS = {δ | δ = 1};

and

(i) Λ ≡ ΛC =

{

z |

K
∑

k=1

zk = 1 and ∀k ∈ {1, . . . , K} : zk ≥ 0

}

;

(ii) Λ ≡ ΛNC =

{

z |
K
∑

k=1

zk = 1 and ∀k ∈ {1, . . . , K} : zk ∈ {0, 1}

}

.

Observe there is one activity vector z operating subject to a nonconvexity or convexity

constraint as well as a scaling parameter δ allowing for some particular scaling of all K

observations determining the technology. The activity vector z having real valued components

summing to unity represents the convexity axiom. This activity vector with binary valued

components summing to unity corresponds with nonconvexity. The scaling parameter δ is

free under CRS and fixed at the unit level under VRS.

To compute the input efficiency measure (2) or cost function (3) relative to convex tech-

nologies in (14) requires solving nonlinear programming (NLP) problems for each evaluated

observation. These NLPs can be easily transposed into the familiar linear programming (LP)

problems found in the literature (see Hackman (2008)).5 For the nonconvex technologies, non-

linear binary mixed integer programs must be solved, but alternative solution strategies are

available (see Kerstens and Van de Woestyne (2014)).

5By substituting tk = δzk in (14), one can rewrite the sum constraint on the activity vector z. Note that
the constraints on the scaling factor are integrated into the latter sum constraint and the LP appears.
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From here on, the above notions of efficiency measures and cost functions are conditioned

relative to nonparametric VRS or CRS technologies satisfying either convexity (denoted C)

or nonconvexity (denoted NC).

3 Economic and Technical Capacity Utilization: Liter-

ature Review and Definitions

A variety of capacity notions coexist in the economic literature. It is customary to distinguish

between technical (engineering) and economic (mainly cost-based) capacity concepts (see,

e.g., Johansen (1968); Nelson (1989)). We first address the economic concepts using a cost

function approach, and then turn to the technical or engineering notion.

3.1 Economic Capacity Concepts

At least three ways of defining a cost-based notion of capacity have been proposed in the

literature (see Nelson (1989)). Each of these notions aims to isolate the short-run excessive or

inadequate utilization of existing fixed inputs (e.g., capital stock). A first notion is defined

in terms of the output produced at short-run minimum average total cost given existing

input prices (see Hickman (1964), among others). A second definition focuses on the outputs

for which short-run and long-run average total costs curves are tangent (e.g., Segerson and

Squires (1990)). This tangency point notion is known under two variations depending on

what are supposed to be the decision variables. One notion assumes that outputs are constant

and determines optimal variable and fixed inputs. Another notion assumes that fixed inputs

cannot adjust, but outputs, output prices and fixed input prices do adjust. A third and final

definition of economic capacity considers the output determined by the minimum of the

long-run average total costs (e.g., Cassels (1937), Klein (1960)).

To apply these notions of economic capacity utilization using nonparametric frontier

technologies, one can characterize the above three economic capacity notions, one of which

has two variants, in a multiple output context in the following series of definitions (see, e.g,

De Borger, Kerstens, Prior, and Van de Woestyne (2012)).

Definition 3.1. The minimum of the short-run total cost function C(y, wv, xf | V RS) is

C(y, wv, xf | CRS).
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The minimum of the single output short-run average total cost function can be determined

indirectly in the multiple output case by solving for a variable cost function relative to a CRS

technology (V C(y, wv, xf | CRS)), and simply adding observed fixed costs FC = wfxf . The

resulting short-run total cost function C(y, wv, xf | CRS) = (V C(y, wv, xf | CRS) + FC)

offers the reference point for this capacity notion. In the convex case, computing a cost

function boils down to a well-known linear program. But, in the nonconvex case one must

solve a mixed binary integer linear program.

Definition 3.2. Let xf∗ represent optimal fixed inputs, p ∈ R
N
+ a vector of input prices,

and y(p, wf , xf ) the outputs that have been adjusted in terms of given output prices, fixed

input prices and the given fixed inputs. Then,

(i) tangency cost with modified fixed inputs Ctang1(y, w, xf∗ | V RS) is

C(y, w | V RS) = C(y, wv, xf∗ | V RS);

(ii) tangency cost with modified outputs Ctang2(y(p, wf , xf ), w, xf | V RS) is

C(y(p, wf , xf ), w | V RS) = C(y(p, wf , xf ), wv, xf | V RS).

First, the tangency point between short- and long-run costs can also be estimated using

nonparametric cost frontiers. Two tangency points can be derived depending on the choice

of decision variables.

One tangency cost notion assumes that outputs remain constant and then determines

optimal variable and fixed inputs Ctang1(y, w, xf∗ | V RS). This can be solved indirectly

by minimizing a long-run total cost function C(y, w | V RS) yielding optimal fixed inputs

(xf∗). By definition, the short-run and total cost function with fixed inputs equal to these

ex post optimal fixed inputs FC(y, wv, xf∗ | V RS) yields exactly the same solution in terms

of optimal costs and optimal variable inputs C(y, wv, xf∗ | V RS) = V C(y, wv, xf∗ | V RS) +

FC(y, wv, xf∗ | V RS). Hence, the optimal solution for C(y, w | V RS) generates the tangency

point we are looking for. In the convex case, computing this cost function requires solving

again a linear program. In the nonconvex case, one needs to solve a mixed binary integer

linear programming problem.

Another tangency point, favoured by Nelson (1989, p. 277) and analyzed in detail in

Briec, Kerstens, Prior, and Van de Woestyne (2010), assumes that fixed inputs cannot

be adjusted in the short-run, but that outputs, output prices (p ∈ R
M
+ ) and fixed input

11



prices are adjustable such that installed capacity is utilized ex post at a tangency cost level

(Ctang2(y(p, wf , xf ), w, xf | V RS)). Though one may object that outputs are assumed to be

exogenous in a competitive cost minimization model, this tangency notion offers a useful

reference point, since it retrospectively indicates the output quantities and prices as well as

the fixed input prices at which existing fixed inputs would have been optimally utilized. For

an arbitrary observation, this tangency cost level may imply an output level (y(p, wf , xf ))

below or above current outputs. In the convex case, optimal costs at this tangency point

are determined by solving for each observation a nonlinear system of inequalities (Briec,

Kerstens, Prior, and Van de Woestyne (2010)). In the nonconvex case, however, one must

solve for each observation a mixed binary integer nonlinear system of inequalities.

Definition 3.3. The minimum of the long-run total cost function C(y, w | V RS) is obtained

as C(y, w | CRS).

The minimum of long-run average total costs can be determined indirectly by solving for

a long-run total cost function defined relative to a CRS technology C(y, w | CRS). In the

convex case, computing this cost function again involves solving a linear program. For the

nonconvex case, one must solve a mixed binary integer linear programming problem. For

convenience, the way of computing all economic capacity concepts in the convex as well as

nonconvex case are spelled out in the Appendix B.

In a frontier context, some of the above cost-based capacity concepts or some combination

there-off have been reported in Giménez and Prior (2007), Prior-Jiménez (2003), or Sahoo

and Tone (2009), among others. Note that we have ignored the discussion of alternative

capacity concepts based on the revenue function (e.g., Lindebo, Hoff, and Vestergaard (2007))

or the profit function (e.g., Coelli, Grifell-Tatjé, and Perelman (2002)).

3.2 Plant Capacity Concepts

Johansen (1968) proposed a plant capacity notion that has been made operational by Färe,

Grosskopf, and Kokkelenberg (1989) and Färe, Grosskopf, and Valdmanis (1989) using a pair

of output-oriented efficiency measures. The plant capacity notion is defined by Johansen as

“the maximum amount that can be produced per unit of time with existing plant and

equipment, provided that the availability of variable factors of production is not restricted.”

Cesaroni, Kerstens, and Van de Woestyne (2017) develop a plant capacity notion using a

pair of input-oriented efficiency measures. All of these proposals use V RS technologies. We

now recall these definitions of the output- and input-oriented plant capacity utilization.
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Definition 3.4. The short-run output-oriented plant capacity utilization (PCUSR
o ) is de-

fined as:

PCUSR
o (x, xf , y | V RS) =

DFo(x, y | V RS)

DF f
o (xf , y | V RS)

, (15)

where DFo(x, y | V RS) and DF f
o (x

f , y | V RS) are output efficiency measures relative to

V RS technologies including respectively excluding the variable inputs as defined before. No-

tice that 0 < PCUSR
o (x, xf , y | V RS) ≤ 1, since 1 ≤ DFo(x, y | V RS) ≤ DF f

o (x
f , y | V RS).

Thus, output-oriented plant capacity utilization has an upper limit of unity, but no lower

limit. This output-oriented plant capacity utilisation compares the maximum amount of out-

puts with given inputs to the maximum amount of outputs in the sample with potentially

unlimited amounts of variable inputs: hence it is smaller than unity. It answers the ques-

tion how the current amount of efficient outputs relates to the maximal possible amounts

of efficient outputs given unlimited amounts of variable inputs. Following the terminology

introduced by Färe, Grosskopf, and Kokkelenberg (1989), Färe, Grosskopf, and Valdmanis

(1989) and Färe, Grosskopf, and Lovell (1994) one can distinguish between a so-called bi-

ased plant capacity measure DF f
o (x

f , y | V RS) and an unbiased plant capacity utilization

measure PCUSR
o (x, xf , y | V RS), where the ratio of efficiency measures ensures to eliminate

any existing inefficiency.

Cesaroni, Kerstens, and Van de Woestyne (2017) define a new input-oriented plant ca-

pacity measure as follows:

Definition 3.5. The short-run input-oriented plant capacity utilization (PCUSR
i ) is defined

as:

PCUSR
i (x, xf , y | V RS) =

DF SR
i (xf , xv, y | V RS)

DF SR
i (xf , xv, 0 | V RS)

, (16)

where DF SR
i (xf , xv, y | V RS) and DF SR

i (xf , xv, 0 | V RS) are both sub-vector input effi-

ciency measures reducing only the variable inputs relative to the technology, whereby the

latter efficiency measure is evaluated at a zero output level.6 Notice that PCUSR
i (x, xf , y |

V RS) ≥ 1, since 0 < DF SR
i (xf , xv, 0 | V RS) ≤ DF SR

i (xf , xv, y | V RS). Thus, input-

oriented plant capacity utilization has a lower limit of unity, but no upper limit. This input-

oriented plant capacity utilisation compares the minimum amount of variable inputs for

given amounts of outputs with the minimum amount of variable inputs with output levels

where production is initiated: hence it is larger than unity. It answers the question how the

6An equivalent formulation for DFSR
i (xf , xv, 0 | V RS) is DFSR

i (xf , xv, ymin | V RS), where ymin =
min

k=1,...,K
yk whereby the minimum is taken in a component-wise manner for every output over all observations:

see Proposition B.1 in Appendix B.
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amount of variable inputs compatible with the initialisation of production must be scaled up

to produce the current amount of outputs. Similar to the previous case, one can distinguish

between a so-called biased plant capacity measure DF SR
i (xf , xv, 0 | V RS) and an unbiased

plant capacity utilization measure PCUSR
i (x, xf , y | V RS), the latter being cleaned of any

prevailing inefficiency.

Cesaroni, Kerstens, and Van De Woestyne (2018) define new long-run output- and input-

oriented plant capacity concepts.

Definition 3.6. The long-run output-oriented plant capacity utilization (PCULR
o ) is defined

as:

PCULR
o (x, y | V RS) =

DFo(x, y | V RS)

DFo(y | V RS)
, (17)

where DFo(x, y | V RS) and DFo(y | V RS) are output efficiency measures relative to tech-

nologies including all inputs respectively ignoring all inputs. Notice that 0 < PCULR
o (x, y |

V RS) ≤ 1, since 1 ≤ DFo(x, y | V RS) ≤ DFo(y | V RS). Thus, long-run output-oriented

plant capacity utilisation has an upper limit of unity, but no lower limit. This long-run

output-oriented plant capacity utilisation compares the maximum amount of outputs with

given inputs to the maximum amount of outputs in the sample with potentially unlimited

amounts of both fixed and variable inputs: hence it is smaller than unity. It answers the ques-

tion how the current amount of efficient outputs relates to the maximal possible amounts

of efficient outputs given unlimited amounts of inputs. Again, it is possible to distinguish

between a so-called biased plant capacity measure DFo(y | V RS) and an unbiased plant

capacity utilization measure PCULR
o (x, y | V RS) that is free of any inefficiency.

Definition 3.7. The long-run input-oriented plant capacity utilization (PCUSR
i ) is defined

as:

PCULR
i (x, y | V RS) =

DFi(x, y | V RS)

DFi(x, 0 | V RS)
, (18)

where DFi(x, y | V RS) and DFi(x, 0 | V RS) are both input efficiency measures aimed

at reducing all input dimensions relative to the technology, whereby the latter efficiency

measure is evaluated at a zero output level. Notice that PCULR
i (x, y | V RS) ≥ 1, since

0 < DFi(x, 0 | V RS) ≤ DFi(x, 0 | V RS) ≤ 1.7 Thus, long-run input-oriented plant capacity

utilisation has a lower limit of unity, but no upper limit. This long-run input-oriented plant

capacity utilisation compares the minimum amount of all inputs for given amounts of outputs

7An equivalent formulation for DFi(x, 0 | V RS) is DFi(x, ymin | V RS), where ymin = min
k=1,...,K

yk whereby

the minimum is taken in a component-wise manner for every output over all observations: see Proposition
B.2 in Appendix B.
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with the minimum amount of all inputs with outputs where production is initiated: hence

it is larger than unity. It answers the question how the amount of all inputs compatible

with the initialisation of production must be scaled up to produce the current amount of

outputs. Once more, one can distinguish between a so-called biased plant capacity measure

DFi(x, 0 | V RS) and an unbiased plant capacity utilization measure PCULR
i (x, y | V RS)

that is unaffected by any inefficiency. Given the recent date of the introduction of both the

short-run input-oriented plant capacity measure on the one hand, and the long-run plant

capacity notions on the other hand, we provide some more background information in the

Appendix A.

We note that the majority of capacity concepts presumes the existence of fixed inputs

distinct from variable inputs. But, both the economic capacity concept of the minimum of

the long-run total cost function (i.e., Definition 3.3) and the long-run plant capacity concepts

(i.e., Definitions 3.6 and 3.7) dissent from this view and assume that all inputs are subject

to change.

While these definitions in itself are sufficiently clear, it may be useful to underscore that

both these short-run concepts differ with respect to the property of attainability. As stressed

by Johansen (1968, p. 362), the extra variable inputs necessary to reach the maximal plant

capacity output may not be available at the firm level (or the change in variable inputs

is not necessarily costless), rendering the short-run output-oriented plant capacity notion

unattainable. Furthermore, even if these extra variable inputs are available at the firm level,

restrictions on the available extra variable inputs at the sector level may prevent all firms

from simultaneously reaching their maximal capacity output (or the change in variable inputs

may imply substantial costs). By contrast, the short-run input-oriented plant capacity notion

is always attainable in that one can always reduce the amount of existing variable inputs

such that one reaches an input set with zero output level. Doing so is possible at the firm

level as well as at the sectoral level. The same reasoning applies to the corresponding long-

run plant capacity concepts. The reader is referred to the work of Kerstens, Sadeghi, and

Van de Woestyne (2018) for further discussion on the issue of attainability.

In the convex case, computing these plant capacity measures involve solving a linear

program for each observation. For the nonconvex case, one must solve a mixed binary inte-

ger linear programming problem. For convenience, the way of computing all plant capacity

concepts in the convex as well as nonconvex case are spelled out in the Appendix B.
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3.3 Economic Capacity Concepts: Normalization and Impact of

Convexity

Since the literature has abundantly shown that inefficiencies are part and parcel of economic

life, following the plant capacity concepts it may be useful to normalize the economic capacity

concepts as well. We are inspired by the notion of overall efficiency (see Färe, Grosskopf, and

Lovell (1994) or Hackman (2008)), whereby in the case of the cost function one divides the

minimal cost by the observed costs (wx). Starting from the Definitions 3.1, 3.2 and 3.3, we

can now define the normalized economic capacity utilization concepts as follows:

Definition 3.8.

(i) The normalized minimum of the short-run total cost function CN(y, w
v, xf | V RS) is

C(y, wv, xf | CRS)/wx.

(ii) The normalized tangency cost with modified fixed inputs Ctang1
N (y, w, xf∗ | V RS) is

C(y, w | V )/wx = C(y, wv, xf∗ | V RS)/wx.

(iii) The normalized tangency cost with modified outputs Ctang2
N (y(p, wf , xf ), w, xf | V RS)

is C(y(p, wf , xf ), w | V RS)/wx = C(y(p, wf , xf ), wv, xf | V RS)/wx.

(iv) The normalized minimum of long-run total cost function is defined as CN(y, w | V RS)

is C(y, w | CRS)/wx.

Notice that all of these normalized economic capacity utilization concepts are

bounded above at unity, except for the normalized tangency cost with modified outputs

Ctang2
N (y(p, wf , xf ), w, xf | V RS) which can be smaller or larger than unity. To understand

this phenomenon we must first realize that for observed outputs, we have: C(y, w | V RS) 6=

C(y, wv, xf | V RS). As a consequence, in Definition 3.2 the optimal tangency cost may be

smaller or larger to each of the sides of this inequality. To be explicit, on the one hand we ob-

tain C(y(p, wf , xf ), w | V RS) = C(y(p, wf , xf ), wv, xf | V RS)
>
=
<
C(y, w | V RS), and on the

other hand we get: C(y(p, wf , xf ), w | V RS) = C(y(p, wf , xf ), wv, xf | V RS)
>
=
<
C(y, wv, xf |

V RS).

Finally, when comparing convex and nonconvex results, there are cases where plant and

economic capacity concepts can be ordered a priori. First, we state these results for the

biased plant capacity concepts as well as the non-normalized economic capacity concepts.

Proposition 3.1.
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(i) For the output-oriented plant capacity, we have: DF f
o (x

f , y | V RS,C) ≥ DF f
o (x

f , y |

V RS,NC).

(ii) For the input-oriented plant capacity, we have: DF SR
i (xf , xv, 0 | V RS,C) ≤

DF SR
i (xf , xv, 0 | V RS,NC).

(iii) For the output-oriented plant capacity, we have: DFo(y | V RS,C) ≥ DFo(y |

V RS,NC).

(iv) For the input-oriented plant capacity, we have: DFi(x, 0 | V RS,C) ≤ DFi(x, 0 |

V RS,NC).

(v) For the minimum of the short-run total cost function, we have: C(y, wv, xf | V RS,C) ≤

C(y, wv, xf | V RS,NC).

(vi) For the tangency cost with modified fixed inputs, we have: Ctang1(y, w, xf∗ | V RS,C) ≤

Ctang1(y, w, xf∗ | V RS,NC).

(vii) For the tangency cost with modified outputs, we have: Ctang2(y(p, wf , xf ), w, xf |

V RS,C)
>
=
<
Ctang2(y(p, wf , xf ), w, xf | V RS,NC) .

(viii) For the minimum of long-run total cost function, we have: C(y, w | V RS,C) ≤ C(y, w |

V RS,NC).

The proof of this Proposition 3.1 is in Appendix C. Thereafter, we do the same for

unbiased plant capacity utilization concepts and the normalized economic capacity utilization

concepts.

Proposition 3.2.

(i) For the short-run output-oriented plant capacity utilization, we have: PCUSR
o (x, xf , y |

V RS,C)
>
=
<
PCUSR

o (x, xf , y | V RS,NC).

(ii) For the short-run input-oriented plant capacity utilization, we have: PCUSR
i (x, xf , y |

V RS,C)
>
=
<
PCUSR

i (x, xf , y | V RS,NC).

(iii) For the long-run output-oriented plant capacity utilization, we have: PCULR
o (x, xf , y |

V RS,C)
>
=
<
PCULR

o (x, xf , y | V RS,NC).

(iv) For the long-run input-oriented plant capacity utilization, we have: PCULR
i (x, xf , y |

V RS,C)
>
=
<
PCULR

i (x, xf , y | V RS,NC).
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(v) For the minimum of the short-run total cost function, we have: CN(y, w
v, xf |

V RS,C) ≤ CN(y, w
v, xf | V RS,NC).

(vi) For the tangency cost with modified fixed inputs, we have: Ctang1
N (y, w, xf∗ | V RS,C) ≤

Ctang1
N (y, w, xf∗ | V RS,NC).

(vii) For the tangency cost with modified outputs, we have: Ctang2
N (y(p, wf , xf ), w, xf |

V RS,C)
>
=
<
Ctang2

N (y(p, wf , xf ), w, xf | V RS,NC) .

(viii) For the minimum of long-run total cost function, we have: CN(y, w | V RS,C) ≤

CN(y, w | V RS,NC).

The proof of this Proposition 3.2 is in Appendix C.

Both propositions 3.1 and 3.2 form the basis for our statistical test comparing different

capacity notions among themselves and in relation to the convexity axiom. We opt for a

formal test statistic proposed by Li (1996) and refined by Fan and Ullah (1999) and Li,

Maasoumi, and Racine (2009) lately (henceforth Li-test). The null hypothesis of this Li-test

states that both distributions are equal for a given efficiency score or cost frontier estimate

and for a given underlying specification of technology. The alternative hypothesis is simply

that both distributions are different. This test is valid for both dependent and independent

variables. Note that dependency is a characteristic of frontier estimators: frontier efficiency

and cost levels depend on sample size, among others. Now, we are in a position to start

developing the empirical illustration.

4 Empirical Illustration

4.1 Data

To illustrate how the economic and plant capacity notions can be used, we draw upon

a secondary data set that is publicly available from the Journal of Applied Econometrics

Data Archive.8 This guarantees the replicability of all our empirical results. We opt for an

unbalanced panel of three years (1984-1986) of French fruit producers based on annual

accounting data collected in a survey (see Ivaldi, Ladoux, Ossard, and Simioni (1996) for

details). Two main criteria determined the selection of farms: (i) the production of apples

must be larger than zero, and (ii) the productive acreage of the orchard must be at least five

8Web site: http://qed.econ.queensu.ca/jae.
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acres. Three aggregate inputs are combined to produce two outputs. The three inputs are:

(i) capital (including land), (ii) labor, and (iii) materials. The two aggregate outputs are (i)

the production of apples, and (ii) an aggregate of alternative products. Also input prices are

available in French francs. The first input capital is considered as fixed.

Summary statistics for the 405 observations in total and details on the definitions of all

variables are available in Appendix 2 in Ivaldi, Ladoux, Ossard, and Simioni (1996). Observe

that the limited length of the panel (just three years) justifies the use of an intertemporal

frontier accumulating all observations in the technology: this approach fundamentally ignores

technical change.

Table 1: Descriptive statistics for French fruit producers (1984-1986)
Variable Trimmed meana Minimum Maximum

Capital (fixed input) 85602.58 8891 500452

Labor (variable input 229569 79569 1682201

Materials (variable input) 157610.9 19566 1523776

Volume of apple production (output) 2.146273 0.00061 37.98153

Volume of other products (output) 1.37793 0.000672 25.895

Price of capital 1.167934 0.167802 7.889478

Price of labor 1.059968 0.492821 1.771435

Price of materials 6.72676 1.732421 22.61063

Note: a10% trimming level.

Table 1 presents basic descriptive statistics for the inputs, the outputs, and the input

prices. One observes basically a lot of heterogeneity and a rather wide range for all inputs

and outputs. The range for some of the input prices is smaller. More details on the data are

available in Ivaldi, Ladoux, Ossard, and Simioni (1996).

In the following, we first discuss the biased plant capacity and non-normalized economic

capacity notions. Thereafter, we study the unbiased plant capacity utilization and normalized

economic capacity utilization (CU) notions.

4.2 Comparing Biased and Non-Normalized Capacity Notions

Table 2 shows basic descriptive statistics for all biased and non-normalized capacity notions.

We report the average, the standard deviation, and the minima and maxima depending on

the context. The relations between convex and nonconvex results are conditioned by the

relations described in Proposition 3.1. First, ignoring the capacity notion that cannot be

ranked (i.e., Ctang2), on average convex and nonconvex results are rather markedly different,
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except for BPCSR
i and BPCLR

i where the difference is quite small. Second, the range of

the results are sometimes different, but some share one of the extremes, except for BPCSR
i ,

BPCLR
i , and Ctang2 for which the range is identical.

Table 2: Descriptive statistics for all biased and non-normalized capacity notions
Convex BPCLR

o BPCLR
i BPCSR

o BPCSR
i SRC Ctang1 Ctang2 LRC

Average 18.33059 0.430065 5.414862 0.42333 620247.8 718839.9 315274.8 511506.1

Stand.Dev. 22.62704 0.201673 4.678063 0.194978 827159.9 1124454 1058872 758764.8

Minimum 1 0.047301 1 0.047301 10454.19 150112.7 132380.2 8507.063

Maximum 190.4508 1 35.29532 1 6238552 11815722 21170527 6095270

Nonconvex BPCLR
o BPCLR

i BPCSR
o BPCSR

i SRC Ctang1 Ctang2 LRC

Average 7.639567 0.435916 2.891018 0.430783 816915.6 1160906 301561.7 683063.1

Stand.Dev. 9.863395 0.206526 2.935252 0.202152 981389.5 1730077 1043655 880893.2

Minimum 1 0.047301 1 0.047301 14486.9 150112.7 132380.2 13147.43

Maximum 96.51148 1 32.45654 1 7100639 13448388 21170527 6754195

BPCLR
o : Biased long-run output-oriented plant capacity (DFo(y | V RS, .)).

BPCLR
i : Biased long-run input-oriented plant capacity (DFi(x, 0 | V RS, .)).

BPCSR
o : Biased short-run output-oriented plant capacity (DF f

o (x
f , y | V RS, .)).

BPCSR
i : Biased short-run input-oriented plant capacity (DF SR

i (xf , xv, 0 | V RS, .)).

SRC: Non-normalized short-run total cost (C(y, wv, xf | CRS, .)).

Ctang1: Non-normalized tangency cost with modified fixed inputs (Ctang1(y, w, xf∗ | V RS, .) ).

Ctang2: Non-normalized tangency cost with modified outputs (Ctang2(y(p, wf , xf ), w, xf | V RS, .) ).

LRC: Non-normalized long-run total cost(C(y, w | CRS, .)).

Table 3 reports the Li-test results and is structured as follows. First, components on the

diagonal (in bold) depict the Li-test statistic between the convex and nonconvex cases. Sec-

ond, the components under the diagonal show the Li-test statistic between convex capacities,

and the components above the diagonal show the Li-test statistic between nonconvex capac-

ities. The following three conclusions emerge from studying Table 3. First, for the convex

capacity notions (below the diagional) all capacity concepts follow two by two significantly

different distributions, though the Li-test statistics between BPCSR
i and BPCLR

i is only

marginally significant. Second, for the nonconvex capacity notions (above the diagional) al-

most all capacity concepts follow two by two significantly different distributions, though

again the Li-test statistics between BPCSR
i and BPCLR

i is only marginally significant. One

exception are SRC and LRC that have indistinguishable distributions. Third, all capacity

notions follow different distributions under convexity compared to nonconvexity (on the di-

agonal), though the Li-test statistic is only marginally significant for BPCSR
i and BPCLR

i

at the 10 % level.
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Table 3: Li-test between all biased and non-normalized capacity notions
Variables BPCLR

o BPCLR
i BPCSR

o BPCSR
i SRC Ctang1 Ctang2 LRC

BPCLR
o 22.6832*** 174.6714*** 26.6822*** 175.7298*** 288.4541*** 289.8256*** 296.0598*** 118.6018***

BPCLR
i 248.2363*** -1.5052* 113.4045*** -1.5551* 173.2542*** 173.1617*** 296.0599*** 173.2206***

BPCSR
o 35.9509*** 172.5672*** 24.7981*** 115.1117*** 288.4545*** 289.8256*** 296.0598*** 288.4553***

BPCSR
i 175.6912*** -1.5634* 173.8835*** -1.4369* 288.4547*** 176.1023*** 296.0599*** 176.0521***

SRC 288.6066*** 173.2392*** 288.6082*** 174.2108*** 3.7014*** 16.5229*** 79.0476*** 0.4898

Ctang1 290.8352*** 290.8353*** 133.9842*** 174.24*** 32.1426*** 10.798*** 104.1275*** 27.8555***

Ctang2 295.933*** 295.9333*** 295.9331*** 174.2678*** 66.8757*** 67.0158*** -2.4851*** 80.1807***

LRC 288.5402*** 288.5424*** 288.5418*** 288.5424*** 3.8733*** 59.186*** 76.0951*** 5.925***

Li test: critical values at 1% level= 2.33(∗ ∗ ∗); 5% level= 1.64(∗∗); 10%level= 1.28(∗).

Table 4 reports the Spearman rank correlation coefficients for biased and non-normalized

capacity notions. This table is structured in a similar way as Table 3. In this table, compo-

nents on the diagonal (in bold) depict the rank correlation between the convex and nonconvex

cases. The components under the diagonal show the rank correlation between convex capac-

ities and the components above the diagonal show the rank correlation between nonconvex

capacities.

Table 4: Spearman rank correlations between all biased and non-normalized capacity notions
Variables BPCLR

o BPCLR
i BPCSR

o BPCSR
i SRC Ctang1 Ctang2 LRC

BPCLR
o 0.855** .571** .652** .560** -.737** -.629** -.101* -.753**

BPCLR
i .672** 0.998** .294** .991** -.695** -.707** -.388** -.708**

BPCSR
o .734** .257** 0.918** .304** -.631** -.543** -.106* -.643**

BPCSR
i .662** .988** .271** 0.996** -.694** -.707** -.404** -.701**

SRC -.883** -.713** -.498** -.708** 0.967** .939** .469** .975**

Ctang1 -.851** -.692** -.543** -.697** .934** 0.965** .579** .947**

Ctang2 -.257** -.353** -.122* -.379** .479** .641** 0.981** .462**

LRC -.944** -.691** -.646** -.684** .960** .950** .460** 0.988**

** Correlation is significant at the 0.01 level (2-tailed).

* Correlation is significant at the 0.05 level (2-tailed).

The following three conclusions emerge from studying Table 4. First, for the convex

results, one can observe that SRC and LRC have the highest rank correlation among cost-

based capacity notions, and that BPCSR
i rank correlates better with all cost-based capacity

notions in absolute values than BPCSR
o . By contrast, BPCLR

o rank correlates in absolute

values better with three out of four cost-based capacity notions than BPCLR
i . BPCSR

i rank

correlates better with BPCLR
i than BPCSR

o correlates with BPCLR
o . Finally, the long-run

plant capacity concepts rank correlate better among themselves than the corresponding

short-run concepts.

21



Second, for the nonconvex results, exactly the same first two conclusions emerge. BPCLR
o

and BPCLR
i both rank correlate in absolute values better with two out of four cost-based

capacity notions. The input-oriented plant capacity concepts rank correlates better among

themselves than the output-oriented plant capacity concepts. Finally, the long-run plant ca-

pacity concepts rank correlate better among themselves than the corresponding short-run

concepts. Third, comparing convex and nonconvex results, the rank correlations are remark-

ably high overall among cost-based capacities notions, and these are highest for BPCSR
i

compared to BPCSR
o and highest for BPCLR

i compared to BPCLR
o .

4.3 Comparing Unbiased and Normalized Capacity Utilization No-

tions

Turning now to the unbiased and normalized capacity utilization notions, we develop a

structure of arguments close to the one in the previous subsection. Table 5 lists descriptive

statistics for all unbiased and normalized capacity utilization notions similar to Table 2. We

again report the average, the standard deviation, and the minima and maxima depending

on the context.

We first briefly comment on some of the convex averages to elucidate the underlying CU

concepts. First, the average PCUSR
o of 0.710459 means that the efficient outputs are situated

at 71% of maximal efficient outputs. Second, the average PCUSR
i of 1.733724 implies that

variable inputs must be scaled up about 73% from where production is initiated to be able to

produce the current level of outputs. The long run plant capacity concepts are very similar

in interpretation. Third, the average SRCN of 0.331119 means that the minimum of the

short-run total cost function is at about 33% of observed costs. The other cost-based CU

notions have very similar interpretations.

In this case, the relations between convex and nonconvex results are determined by the

relations described in Proposition 3.2. First, ignoring the five CU notions that cannot be

ranked, on average convex and nonconvex results are rather markedly different for the three

other CU notions (i.e., SRCN , C
tang1
N and LRCN). Second, the range of the results differ

sometimes. But, some share one of the extremes, except for PCUSR
i , PCULR

i and Ctang2
N for

which the range is again identical.
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Table 5: Descriptive statistics for all unbiased and normalized CU-notions
Convex PCULR

o PCULR
i PCUSR

o PCUSR
i SRCN Ctang1

N Ctang2
N LRCN

Average 0.297313 1.776266 0.710459 1.733724 0.331119 0.43418 0.391276 0.260619

Stand.Dev. 0.196011 1.68314 0.221112 1.636011 0.173495 0.189827 2.280111 0.161353

Minimum 0.005251 1 0.070056 1 0.053327 0.103932 0.017937 0.036357

Maximum 1 21.14141 1 21.14141 1 1 45.5131 1

Nonconvex PCULR
o PCULR

i PCUSR
o PCUSR

i SRCN Ctang1
N Ctang2

N LRCN

Average 0.371884 2.584806 0.690958 2.539953 0.464158 0.629439 0.372487 0.378417

Stand.Dev. 0.252098 2.16346 0.244674 2.156585 0.253099 0.247589 2.270101 0.218591

Minimum 0.01639 1 0.096771 1 0.069012 0.133735 0.017937 0.039328

Maximum 1 21.14141 1 21.14141 1 1 45.5131 1

PCULR
o : Unbiased long-run output-oriented plant capacity utilization (PCULR

o (x, y | V RS, .)).

PCULR
i : Unbiased long-run input-oriented plant capacity utilization (PCULR

i (x, y | V RS, .)).

PCUSR
o : Unbiased short-run output-oriented plant capacity utilization (PCUSR

o (x, xf , y | V RS, .)).

PCUSR
i : Unbiased short-run input-oriented plant capacity utilization (PCUSR

i (x, xf , y | V RS, .)).

SRCN : Normalized short-run total cost (C(y, wv, xf | CRS, .)/wx).

Ctang1
N : Normalized tangency cost with modified fixed inputs (Ctang1(y, w, xf∗ | V RS, .)/wx).

Ctang2
N : Normalized tangency cost with modified outputs (Ctang2(y(p, wf , xf ), w, xf | V RS, .)/wx).

LRCN : Normalized long-run total cost (C(y, w | CRS, .)/wx).

Table 6 reports the Li-test statistics and it is structured in a similar way as Table 3

above. A glance at Table 6 yields the following conclusions. First, for the convex capacity

notions (below the diagional) almost all capacity concepts follow two by two significantly

different distributions, except PCULR
o and LRCN that have indistinguishable distributions.

Second, for the nonconvex capacity notions (above the diagional) all capacity concepts follow

two by two significantly different distributions. Third, all capacity notions follow different

distributions under convexity compared to nonconvexity (on the diagonal).

Table 6: Li-test between all unbiased and normalized CU-notions
Variables PCULR

o PCULR
i PCUSR

o PCUSR
i SRCN Ctang1

N Ctang2
N LRCN

PCULR
o 5.1188*** 118.4083*** 54.4991*** 116.8833*** 11.2028*** 33.7377*** 8.2625*** 3.4488***

PCULR
i 142.2835*** 27.068*** 94.1687*** -2.8477*** 106.417*** 92.5103*** 144.72*** 118.3195***

PCUSR
i 57.2157*** 68.3072*** 10.2515*** 96.2052*** 25.1713*** 4.0829*** 83.4402*** 49.933***

PCUSR
o 155.5302*** -2.9622*** 173.8835*** 31.0053*** 105.8964*** 93.404*** 143.2459*** 116.4413***

SRCN 5.9226*** 124.2871*** 288.6082*** 174.2108*** 6.6207*** 9.9527*** 20.4263*** 3.7252***

Ctang1
N 34.943*** 106.7562*** 133.9842*** 174.24*** 32.1426*** 25.0337*** 58.8827*** 27.8878***

Ctang2
N 3.3979*** 142.0431*** 295.9331*** 174.2678*** 66.8757*** 67.0158*** -2.8515*** 14.5216***

LRCN 0.7119 156.8096*** 288.5418*** 288.5424*** 3.8733*** 59.186*** 76.0951*** 12.6322***

Li test: critical values at 1% level= 2.33(∗ ∗ ∗); 5% level= 1.64(∗∗); 10%level= 1.28(∗).

Table 7 reports the Spearman rank correlation coefficients for unbiased and normalized

capacity utilization notions. As in Table 4, the components on the diagonal show the rank

correlation between convex and nonconvex cases. The components under the diagonal show
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the rank correlation between convex CU notions, and the components above the diagonal

show the rank correlation between nonconvex CU notions.

Table 7: Spearman rank correlations between all unbiased and normalized CU-notions
Variables PCULR

o PCULR
i PCUSR

o PCUSR
i SRCN Ctang1

N Ctang2
N LRCN

PCULR
o 0.797** .502** .517** .455** .164** -0.073 -.605** .162**

PCULR
i .571** 0.899** .426** .972** .391** .260** -.689** .484**

PCUSR
o .425** .197** 0.706** .418** .253** 0.042 -.403** .224**

PCUSR
i .565** .985** .181** 0.888** .443** .307** -.661** .521**

SRCN 0.054 .617** -.241** .650** 0.893** .734** 0.041 .935**

Ctang1
N -.527** .138** -.295** .156** .569** 0.807** .273** .769**

Ctang2
N -.876** -.552** -.326** -.534** -0.026 .630** 0.997** 0.016

LRCN 0.073 .737** -0.085 .749** .894** .585** -0.074 0.957**

**. Correlation is significant at the 0.01 level(2-tailed).

*. Correlation is significant at the 0.05 level(2-tailed).

A close look at Table 7 leads to the following three conclusions. First, for the convex

results, one can notice that PCUSR
i rank correlates better with all cost-based CU notions in

absolute values than PCUSR
o , except for the Ctang1

N CU notion. PCULR
o and PCULR

i both

rank correlate in absolute values better with two out of four cost-based CU notions. The

input-oriented plant capacity concepts rank correlates better among themselves than the

output-oriented plant capacity concepts. Finally, the long-run plant capacity concepts rank

correlate better among themselves than the corresponding short-run concepts. Furthermore,

SRCN and LRCN again obtain the highest rank correlation among cost-based CU notions.

Finally, PCUSR
o and PCULR

o essentially have a zero correlation with LRCN .

Second, for the nonconvex results, PCUSR
i and PCULR

i both rank correlate better with

all cost-based CU notions in absolute values than their output-oriented counterparts. The

input-oriented plant capacity concepts rank correlates better among themselves than the

output-oriented plant capacity concepts. Finally, the long-run plant capacity concepts rank

correlate better among themselves than the corresponding short-run concepts. In addition,

PCUSR
o and PCULR

o have now a close to zero correlation with Ctang1
N . Third, comparing

convex and nonconvex results, the rank correlations are remarkably high overall among cost-

based CU notions, and these are highest for PCUSR
i compared to PCUSR

o and highest for

PCULR
i compared to PCULR

o .
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5 Conclusions

This contribution has set itself two major goals. A first major goal has been to make a theo-

retically coherent input-oriented comparison between the introduced technical and economic

capacity notions. As a point of comparison, also the output-oriented plant capacity notion

has been included. A second major goal has been to make this coherent input-oriented com-

parison among capacity notions using both convex and nonconvex technologies to assess the

impact of the convexity axiom. Theoretically, the investigation of this convexity hypothesis

has led us to establish the cases where plant and economic capacity concepts can be ordered

a priori (see Propositions 3.1 and 3.2).

The empirical results have shown the following key results. First, there appears quite

some heterogeneity among the different technical and economic capacity notions in terms of

descriptive statistics. Second, formal testing has revealed that in almost all cases technical

and economic capacity notions follow different distributions. Thus, each of these concepts

seems to capture a different part of economic reality. Furthermore, each and every capacity

concept seems also to follow almost always a different distribution under convexity and

nonconvexity. Thus, convexity matters from a distributional viewpoint. Third, the study

of Spearman rank correlation coefficients reveals that almost uniformly the input-oriented

plant capacity notion correlates better with the cost-based capacity notions than the output-

oriented plant capacity notion under nonconvexity (less pronounced so under convexity).

Furthermore, the rank correlations are overall high for convex and nonconvex results. Thus,

convexity seems to matter less from a ranking point of view.

Therefore, two key conclusions emerge from this contribution. First, the recently intro-

duced input-oriented plant capacity notions lend themselves overall more naturally to com-

parisons with cost-based capacity notions than the more traditional output-oriented plant

capacity notions. Thus, while the short-run output-oriented plant capacity notion enjoys

some popularity in empirical applications (see the literature review in Cesaroni, Kerstens,

and Van de Woestyne (2017)), applied researchers should probably consider using the new

input-oriented plant capacity notions that are more in line with the traditional cost-based

capacity notions widespread in economics in terms of both the resulting distributions and

rankings..

Second, convexity matters also for both technical and economic capacity notions. There-

fore, it seems essential to further empirically explore potential differences between estimates

based on convex and nonconvex technologies and cost functions in even greater detail (e.g.,
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the impact on economies of scope, the effect on mergers and acquisitions, etc.). Thus, even

though theoretically the impact of convexity has been known for some time, it is important

to further explore the impact of convexity on key economic value relations in practice. The

current evidence provided shows that this impact is nonnegligible when measuting capacity

and that convexification may not be harmless.

As an agenda for future research, we can mention three issues. First, it would be good if

our empirical results regarding both the comparison of input-oriented technical and economic

capacity notions as well as the impact of the convexity axiom in this context would be

corroborated in additional empirical work by other researchers. Second, while the input-

oriented plant capacity notion compares well with cost-based capacity notions, one may

wonder whether the traditional output-oriented plant capacity would fit much better with

capacity notions based on the revenue function (see, e.g., Lindebo, Hoff, and Vestergaard

(2007) or Segerson and Squires (1995)). This conjecture remains to be explored.
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Färe, R., S. Grosskopf, and V. Valdmanis (1989): “Capacity, Competition and Effi-

ciency in Hospitals: A Nonparametric Approach,” Journal of Productivity Analysis, 1(2),

123–138.
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