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Abstract

This article reconsiders the way metafrontiers and associated measures of efficiency are

obtained from nonparametric estimates of underlying group-specific frontiers. Both

convex and non-convex metasets have been applied, but the large majority of articles

applying this popular methodology assume that the metafrontier envelops a convex

metaset. We argue that associated estimates of efficiency are potentially unreliable. We

develop a refined methodology for nonparametric envelopment of non-convex metasets.

We apply our methodology to a secondary data set to illustrate the potential errors as-

sociated with the currently established methods. Anticipating our main conclusion, we

find that the convexification strategy consisting in assuming a convex metaset generally

leads to erroneous results.
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1 Introduction

Organisations in different industries, regions and countries can face different production

possibilities at different points in time. Differences in so-called production possibilities sets

may be due to differences in available technologies (i.e., differences in the methods that are

available to transform inputs into outputs) and/or to differences in production environments

(e.g., geography, climate, economic infrastructure). This article is concerned with one par-

ticular method for accounting for this type of heterogeneity when estimating production

relationships.

The problem of accounting for heterogeneity when estimating production relationships is

quite old. One solution that was initiated by Hayami and Ruttan (1970a) involves estimating

some type of meta-production function. This meta-production function concept has been

empirically applied in several agricultural studies comparing mainly country-level data (e.g.,

Binswanger, Yang, Bowers, and Mundlak (1987) and Lau and Yotopoulos (1989), among

others). An empirical survey of this literature is provided by Trueblood (1989).

Hayami and Ruttan (1970a, p. 898) “call the envelope of all known and potentially

discoverable activities a secular or “meta-production function”.” This secular production

function, which is distinct from a long run production function, gives the maximum output

possible using given inputs and a given amount of (existing and potentially discoverable)

technical knowledge. It is implicitly assumed that all firm managers have access to the same

set of input-output combinations, but each may choose a different input-output combination

from that set depending on specific circumstances (i.e., government regulations, relative input

prices, etc.). Cost-minimising adjustments in input mixes in response to changes in relative

input prices, for example, can be viewed as movements along a secular isoquant. Trueblood

(1989, Figure 1) and Hayami and Ruttan (1970b, Figure 5) draw figures depicting a secular

isoquant enveloping a series of less elastic isoquants. At least part of this literature allows

for inefficiency (e.g., Lau and Yotopoulos (1989)).

More recently, these basic ideas have been refined and transposed into a stochastic produc-

tion frontier framework by Battese and Rao (2002) and Battese, Rao, and O’Donnell (2004).

The seminal article refining the loose ends in the methodology and finalising the formal

framework for making efficiency comparisons across groups of firms using both stochastic

frontier analysis and nonparametric deterministic frontier analysis is O’Donnell, Rao, and

Battese (2008). These authors consider a meta-production possibility set (or metaset for

short) that is defined as the union of two or more underlying group-specific sets. They refer
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to the boundary of the metaset as a metafrontier, and they refer to the boundaries of the

group-specific sets as group-specific frontiers (or simply group frontiers).

Thereafter, this so-called metafrontier approach has been widely applied across sectors

and disciplines. Nonparametric metafrontier models have been estimated for sectors varying

from agriculture (e.g., Chen and Song (2008) and Latruffe, Fogarasi, and Desjeux (2012))

to banking (e.g., Casu, Ferrari, and Zhao (2013) and Kontolaimou and Tsekouras (2010)),

fisheries (Lee and Midani (2015)), hotels (Assaf, Barros, and Josiassen (2012) and Huang,

Ting, Lin, and Lin (2013), among others), schools (e.g., Thieme, Prior, and Tortosa-Ausina

(2013)), water utilities (e.g., De Witte and Marques (2009)) and wastewater treatment plants

(e.g., Sala-Garrido, Molinos-Senante, and Hernández-Sancho (2011)). Empirical metafron-

tier studies based on stochastic frontier analysis have been presented by Bos and Schmiedel

(2007), Lee and Hwang (2011) and Moreira and Bravo-Ureta (2010), among others.

Meanwhile, this basic metafrontier framework has been extended in several directions:

one example is the transposition to a cost (rather than production) frontier framework (e.g.,

Huang and Fu (2013)); another example is the estimation of the popular Malmquist pro-

ductivity indices relative to metafrontiers (see, e.g., Casu, Ferrari, and Zhao (2013) or Oh

and Lee (2010) for a primal index and Huang, Juo, and Fu (2015) for a dual approach); a fi-

nal example is the introduction of more elaborate metafrontier efficiency decompositions (see

Kounetas, Mourtos, and Tsekouras (2009) and Tsekouras, Chatzistamoulou, and Kounetas

(2017)).1

Note that some work in the literature does not refer explicitly to the metafrontier frame-

work, but implicitly borrows the basic idea of an overall frontier defined as the envelope

of different system or group-specific frontiers. Examples include Cooper, Seiford, and Tone

(2007, Section 7.5) who talk about combining different “systems” and Kittelsen, Winsnes,

Anthun, Goude, Hope, Häkkinen, Kalseth, Kilsmark, Medin, Rehnberg, and Rättö (2015)

who pragmatically define a common frontier over several Nordic countries when comparing

hospital productivity.

Reliable estimates of the metafrontier allow researchers to compute reliable estimates

of performance measures (e.g., technical efficiency, productivity change). In practice, it is

common to use assumptions about production possibilities sets to frame the estimation of

the metafrontier. Basic nonparametric frontier models are most often underpinned by the

assumption that all production possibilities sets are convex (C). Convexity of a production

1Sometimes this Malmquist productivity index, which is most frequently estimated within a frontier-
based framework, has been combined with the more traditional meta-production function approach: see,
e.g., Fulginiti and Perrin (1998).
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possibilities set means that if two input vectors x1 and x2 can produce two output vectors

y1 and y2 respectively, then any positive linear combination αx1 + (1 − α)x2 with α ∈

[0, 1] of these input vectors can produce the output vector αy1 + (1 − α)y2. The convexity

assumption is usually justified using a time divisibility argument (see Shephard (1970, p. 15)

and Hackman (2008, p. 39)): the argument is that if production processes are time divisible,

then a manager could use x1 to produce y1 a proportion α of the time, and then use x2

to produce y2 the rest of the time. There are two weaknesses in this argument. First, the

argument is untenable in the case of production processes with positive setup times (e.g.,

in some manufacturing processes). Second, even if group specific sets are convex, then the

metaset defined by their union need normally not be C (see O’Donnell, Rao, and Battese

(2008)).2

Despite this mathematical fact that even convex group specific sets do not lead to a C

metaset (defined as their union), O’Donnell, Rao, and Battese (2008) suggest estimating the

metafrontier as the nonparametric boundary of a C metaset. Exactly the same convexific-

ation strategy is usually made when estimating parametric metafrontiers (e.g., Battese and

Rao (2002), Battese, Rao, and O’Donnell (2004) and O’Donnell, Rao, and Battese (2008)).

Since this convexification strategy is normally not true, then estimates of the metafrontier

will be biased. The basic question addressed in this article is to which extent this convexi-

fication strategy yields estimates that are close to the true non-convex metaset defined as

the union of group specific sets. If this approximation is close, then there is not much of a

problem. However, if this approximation is poor, then potentially all articles that have so

far adopted a convexification strategy when applying the metafrontier approach are poten-

tially wrong.3 Therefore, associated measures of firm performance (e.g., technical efficiency,

productivity change) will be unreliable. This could potentially undermine the credibility of

policies (e.g., price cap (or RPI-X) regulation) where these performance measures are used.

To the best of our knowledge, these issues have not been fully investigated in the lit-

erature. De Witte and Marques (2009) and Thieme, Prior, and Tortosa-Ausina (2013),

for example, consider nonparametric estimation of non-convex (NC) group specific-sets and

metasets; they do not investigate the possibility that these sets may be convex. O’Donnell,

2Hung, Le Van, and Michel (2009) explore the complexities of optimal growth when the union of just two
separate C production possibilities sets exhibits a basic non-convexity.

3A Google Scholar search on 11 October 2018 obtained 4420 results for the expression “metafrontier”. Fur-
thermore, the key article of O’Donnell, Rao, and Battese (2008) has 736 cites on that same date. Obviously,
not all of these articles involved have adopted a convexification strategy and are potentially wrong. Instead of
listing culprits, we simply mention a few articles that do not adopt such a convexification strategy: examples
include Breustedt, Francksen, and Latacz-Lohmann (2007), Huang, Ting, Lin, and Lin (2013), Sala-Garrido,
Molinos-Senante, and Hernández-Sancho (2011)), Tiedemann, Francksen, and Latacz-Lohmann (2011), Ver-
schelde, Dumont, Rayp, and Merlevede (2016), among others.
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Fallah-Fini, and Triantis (2017) consider nonparametric estimation of C group-specific sets

and nonconvex metasets; they do not investigate the possibility that group-specific sets may

be non-convex. Tiedemann, Francksen, and Latacz-Lohmann (2011) consider nonparametric

estimation of C group-specific sets and NC metasets; they do not investigate the possibility

that metasets may be C (see also Sala-Garrido, Molinos-Senante, and Hernández-Sancho

(2011)). None of these authors conduct statistical tests concerning the effect of the convexi-

fication strategy on estimated efficiency scores.

Therefore, the main objectives of this article are three-fold. First, we recall some existing

results and state some new results for general sets showing the potential bias of the “con-

vexification” strategy that is used in the mainstream literature. To sharpen the focus, we

consider cases where the metaset is the union of both C and NC group-specific sets. Second,

to demonstrate the potential biases of the convexification strategy, we focus on the non-

parametric frontier approach, since there the proper methodology to create the metafrontier

from group-specific frontiers is easiest to establish (e.g., transposing and extending results

from Afsharian and Ahn (2015), among others). We thereby limit the discussion to the basic

C and NC nonparametric frontier specifications of technologies. The transposition of our

results to alternative nonparametric and other estimators is mentioned in the concluding

section. Third, using this nonparametric frontier approach, the similarities and differences

between both C and NC group-specific sets and the resulting different NC metasets are

empirically illustrated.

To achieve these objectives, this article is structured as follows. Section 2 explains how

technologies can be represented using technology-specific production possibility sets and

distance functions. Section 3 then explains how sets of technologies can be represented using

technology-specific production possibility sets and distance functions. Section 4 explains how

measures of technical efficiency can be written as the product of metatechnology ratios and

measures of residual technical efficiency; these measures can be viewed as measures of how

well technologies are chosen and used. Section 5 presents a number of results concerning hull

operators. It then uses these results to establish relationships between technology-specific

and metatechnology-specific production possibilities sets. Section 6 (resp. 7) explains how

free disposal hull (resp. data envelopment analysis) estimators can be used to estimate C

and NC technology-specific and metatechnology-specific production possibilities sets. These

estimators can also be used to estimate metatechnology ratios and measures of residual

technical efficiency. Section 8 discusses related metafrontier models and methods. Section

9 contains an empirical illustration based on a secondary data set. The focus here is on

the convexification strategy that is common in the mainstream literature. We find evidence
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that estimates of firm performance are significantly affected by this convexification strategy.

Section 10 summarises the article, transposes the key results to alternative estimators and

makes a concluding recommendation.

In order to save space and avoid repetition, the remainder of this article is almost totally

focused on estimating input distance functions and associated input-oriented measures of

firm performance. Extending our work to output distance functions and associated output-

oriented measures of performance is a trivial exercise that is left to the reader.

2 Technology and Technology-specific Frontier

In O’Donnell (2016, p.328), a technology is defined as “a technique, method or system for

transforming inputs into outputs . . . . For most practical intents and purposes, it is conveni-

ent to think of a technology as a book of instructions, or recipe”. We adopt this definition

here and we view a technology as a type of intellectual capital.4

Technology can be represented by a technology-specific production possibilities set (TPPS).

A TPPS is a set containing all input-output combinations that are possible using a given

technology. Let x ∈ R
M
+ and y ∈ R

N
+ denote vectors of inputs and outputs respectively.

Mathematically, the set of all pairs of input and output vectors that can be produced using

technology g is

tg = {(x, y) ∈ R
M+N
+ : x with technology g can produce y}. (1)

The boundary of this set is referred to as a technology-specific frontier. It is common to

assume the following:5

(T.1) (x, 0) ∈ tg for all x ∈ R
M
+ .

(T.2) If (0, y) ∈ tg, then y = 0.

4Other authors use the term “technology” quite differently. For example, Balk (1998, p.12) uses the
term to describe a set of feasible input-output combinations; in this article, sets of feasible input-output
combinations are referred to as production possibilities sets. As another example, Bresnahan and Trajtenberg
(1995) use the term “general purpose technologies” to refer to goods that can be used for many purposes,
e.g., “the steam engine, the electric motor, and semiconductors” (p. 83). In this article, goods are referred
to as either inputs or outputs depending on whether they are used in or come out of a given production
process.

5If only one technology exists, then the “g” notation can be suppressed and T.1 to T.6 collapse to the
axioms found in most textbooks.
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(T.3) tg is a closed subset of RM+N
+ .

(T.4) If (x, y) ∈ tg and (x′,−y′) ≥ (x,−y), then (x′, y′) ∈ tg.

(T.5) tg is a C set.

(T.6) If (x, y) ∈ tg, then there exists r > 0 such that (λx, λry) ∈ tg for all λ > 0.

These rather traditional assumptions concerning technology g state that: (i) inactivity is

possible, (ii) there is no free lunch, (iii) the set of feasible input-output combinations contains

all the points on its boundary (closedness), (iv) inputs and outputs are freely (or strongly)

disposable, (v) the production possibilities set is convex, and (vi) if inputs are increased by

one percent, then outputs can be increased by approximately r percent. The frontier is said

to exhibit decreasing returns to scale (DRS), constant returns to scale (CRS) or increasing

returns to scale (IRS) as r is less than, equal to, or greater than one (respectively). For more

details, see, for example, Hackman (2008). The first and last two assumptions (T.1, T.5 and

T.6) are not always maintained in this article.

If assumption T.4 is true, then tg can be represented using the following technology-

specific input distance function:

dgI(x, y) = sup
λ∈R+

{λ : (x/λ, y) ∈ tg} . (2)

This function is non-negative, linearly homogeneous in inputs, and no less than unity for all

all (x, y) ∈ tg.

3 Metatechnology and Metafrontier

We introduce the technology set or metatechnology Γ as the set of all technologies g (or

recipes) that exist in a given period.6 If we view a technology as a recipe, then we can follow

Caselli and Coleman (2006, p. 509) and view a technology set as “a library, containing

blueprints, or recipes to turn inputs into outputs”. In this article, the set of all input

and output vector pairs that are possible using a given technology set Γ (i.e., using some

6Other authors use the term “technology set” quite differently. For example, Färe and Primont (1995, p.
8), Coelli, Rao, O’Donnell, and Battese (2005, p. 42) and Afsharian and Ahn (2015, p. 6) use the term to
describe a set of feasible input-output combinations. O’Donnell (2016) refers to the set of technologies that
exist in a given period as a “metatechnology”.
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technology that is contained in Γ) is referred to as a metatechnology-specific production

possibilities set (MTPPS). Mathematically, this set of possible input-output combinations is

T Γ = {(x, y) ∈ R
M+N
+ : ∃g ∈ Γ : x and g can produce y}. (3)

Equivalently, T Γ = ∪g∈Γt
g where Γ is the technology set. The boundary of a MTPPS is

referred to as a metafrontier in this article.

Note that the time dimension is not introduced in the above notions and corresponding

notations. However, if relevant, this time dimension can be included quite straightforwardly.

In this respect, we mention two natural implications. First, technologies can be identified

at a given time period t. Then, the technology set Γ contains all technologies g that exist

at that given time period. Consequently, all TPPSs and the corresponding MTPPS also

depend on that given time period. Second, one technology in particular could be considered

at different time periods (e.g., before, during, and after a crisis). Then, interpret this case as

having different technologies available, each with their corresponding TPPS. The technology

set Γ now contains these “different” technologies that determines the corresponding MTPPS.

If assumption T.4 is true, then T Γ can be represented using the following metatechnology-

specific input distance function:

DΓ
I (x, y) = max

g∈Γ
{dgI(x, y)}. (4)

Equivalently, DΓ
I (x, y) = supλ∈R+

{λ : (x/λ, y) ∈ T Γ}. This function is non-negative, linearly

homogeneous in inputs, and no less than unity for all (x, y) ∈ T Γ.

4 Technical Efficiency

In this article, the input-oriented metatechnology-specific technical efficiency (ITE) of a firm

that uses inputs x to produce outputs y using some technology g ∈ Γ is defined as the

reciprocal of the metatechnology-specific input distance function:

ITEΓ(x, y) = 1/DΓ
I (x, y). (5)

This measure goes back to the coefficient of resource utilisation defined by Debreu (1951,

p. 285). It is a radial measure of efficiency that lies in the closed unit interval. It indicates

the maximum equiproportionate reduction in x which still allows production of y by some
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technology g ∈ Γ.

If Γ contains more than one technology, then the measure of ITE defined by (5) can be

written as the product of an input-oriented metatechnology ratio (IMR) and a measure of

residual input-oriented technical efficiency (RITE). Mathematically, the IMR relative to the

technology set Γ of a firm that uses inputs x and technology g to produce outputs y is

IMRgΓ(x, y) = dgI(x, y)/D
Γ
I (x, y). (6)

This measure also lies in the closed unit interval. It can be viewed as an input-oriented

measure of whether a firm has chosen the best technology that is available. The associated

measure of RITE is

RITEg(x, y) = 1/dgI(x, y). (7)

This measure also lies in the closed unit interval. It indicates the maximum equiproportionate

reduction in x which still allows production of y when using technology g. It can also be

viewed as the component of ITE that remains after accounting for the IMR (hence the term

“residual”). Equations (4), (5) and (7) imply that

ITEΓ(x, y) = min
g∈Γ

{RITEg(x, y)}. (8)

An analogous definition of output-oriented technical efficiency (OTE) based on a similar

enumeration over groups has recently been defined by Afsharian and Ahn (2015). Note that

some of the components in (8) can be undefined for some input-output combinations that

are not contained in the group technology composing the technology or metatechnology (see

Briec and Kerstens (2009) for details on infeasibilities). Finally, equations (5), (6) and (7)

imply that

ITEΓ(x, y) = IMRgΓ(x, y) · RITEg(x, y). (9)

Thus, technical efficiency can be decomposed into the product of a metatechnology ratio

(measuring how close a technology-specific frontier is to the metafrontier) and a measure

of residual technical efficiency (measuring how close a firm is operating to the technology-

specific frontier). Equation (9) is an input-oriented version of the output-oriented efficiency

decomposition in O’Donnell, Rao, and Battese (2008, Eq. 10).
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5 Different Hull Operators and Their Properties

To inform our discussion of convexification, we first establish some results concerning the

monotonic hull, conical hull, and C hull of a general set A ⊆ R
M+N
+ .

Definition 5.1. For the set A ⊆ R
M+N
+ ,

(a) the monotonic hull of A is given by mon(A) = {z ∈ R
M+N
+ | ∃u ∈ A, ∃(x+, y−) ∈

R
M
+ × R

N
− such that z = u+ (x+, y−)};

(b) the conical hull ofA is given by cone(A) = {z ∈ R
M+N
+ | ∃u ∈ A, ∃λ ∈ R++ such that z =

λu};

(c) the C hull of A is given by conv(A) = {z ∈ R
M+N
+ | ∃ui ∈ A, ∃αi ∈ R+ with

∑

i αi =

1 such that z =
∑

i αiui}.

Obviously, the different hull operators of Definition 5.1 can be combined in several ways.

To mention just a few possibilities for A ⊆ R
M+N
+ , the C conical hull of A is conv(cone(A)),

the C monotonic hull of A is conv(mon(A)), the monotonic C hull of A is mon(conv(A)),

and the conical C hull of A is cone(conv(A)). The following proposition says that the order

in which these hull operators are applied on a given set does not matter.

Proposition 5.1. For the set A ⊆ R
M+N
+ ,

(a) mon(conv(A)) = conv(mon(A));

(b) cone(conv(A)) = conv(cone(A));

(c) mon(cone(A)) = cone(mon(A)).

The proof of this proposition and all other propositions is found in Appendix 1.

Figure 1 illustrates the hull operators of Definition 5.1 on a set A containing 32 data

points in R
2
+. The C hull conv(A) is the region enclosed by the dashed polyline starting

from observation 1 and continuing all the way round to observation 1 again. The monotonic

hull mon(A) consists of the region restricted to the first quadrant (i.e., the region with

positive x- and y-coordinates) located below and to the right of the solid polyline starting

vertical at the bottom towards observation 3 and then continuing to observations 2, 1, 23, 15,

31 and 16 using horizontal and vertical connections to end horizontally from observation 16
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onwards. Unifying both these regions results in the C monotonic hull conv(mon(A)). This is

the region restricted to the first quadrant below and to the right of the polyline starting with

the vertical solid line to observation 2, then continuing via the dashed lines to observations

1, 15 and 16 to end with the horizontal solid line from observations 16 onwards. The C

conical hull conv(cone(A)) consists of the region enclosed between the two dotted lines.

Figure 1: Different Hull operators Applied to the Same Set

x

y

The next proposition shows that a given set is contained in all hulls and that all hull

operators preserve subset relationships.

Proposition 5.2. For the sets A,B ⊆ R
M+N
+ with A ⊆ B,

(a) A ⊆ mon(A), A ⊆ cone(A), and A ⊆ conv(A);

(b) mon(A) ⊆ mon(B), cone(A) ⊆ cone(B), and conv(A) ⊆ conv(B).

In combination with the union operator on sets, we can establish the following results

(to the best of our knowledge, these results are new):7

7Operations on sets (or composition rules) have to our knowledge been discussed theoretically only while
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Proposition 5.3. For the sets A,B ⊆ R
M+N
+ ,

(a) mon(A) ∪mon(B) = mon(A ∪ B);

(b) cone(A) ∪ cone(B) = cone(A ∪B);

(c) conv(A) ∪ conv(B) ⊆ conv(A ∪ B).

Thus, the union of the monotonic (resp. conical) hulls of two sets is equal to the mono-

tonic (resp. conical) hull of the union of these two sets. However, the union of the C hulls

of two sets is only a subset of the C hull of the union of these two sets. The following result

can now be stated.

Proposition 5.4. For the sets A,B ⊆ R
M+N
+ ,

(a) conv(mon(A)) ∪ conv(mon(B)) ⊆ conv(mon(A ∪ B));

(b) conv(cone(A)) ∪ conv(cone(B)) ⊆ conv(cone(A ∪ B));

(c) cone(mon(A)) ∪ cone(mon(B)) = cone(mon(A ∪ B)).

Again, only the convexity operator yields subset relationships. Note that converse prop-

erties of (a) and (b) do not hold true. We leave it to the reader to illustrate this using a

counterexample. The counterexample used in the proof of Proposition 5.3(c) can serve as

inspiration.

All of the aforementioned hull operators and their properties can be applied to the pro-

duction possibilities sets introduced in Sections 2 and 3. Propositions 5.3 and 5.4 imply:

Proposition 5.5. If T Γ = ∪g∈Γt
g for the technology set Γ, then

(a) ∪g∈Γconv(mon(tg)) ⊆ conv(mon(T Γ));

(b) ∪g∈Γconv(cone(t
g))) ⊆ conv(cone(T Γ));

(c) ∪g∈Γconv(cone(mon(tg)))) ⊆ conv(cone(mon(T Γ)));

(d) ∪g∈Γmon(tg) = mon(T Γ);

(e) ∪g∈Γcone(mon(tg)) = cone(mon(T Γ)).

maintaining convexity: see, e.g., Ruys (1974).
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Proposition 5.5(a) says that the C monotonic hull of the MTPPS contains the union of

all C monotonic hulls of each TPPS. Equality is only obtained in restrictive special cases.

Proposition 5.5(b) says that the C conical hull of the MTPPS contains the union of all C

conical hulls of each TPPS. Proposition 5.5(c) says that the C conical monotonic hull of

the MTPPS contains the union of all C conical monotonic hulls of each TPPS. Proposition

5.5(d) says that the monotonic hull of the MTPPS equals the union of all monotonic hulls

of each TPPS. Proposition 5.5(e) says that the conical monotonic hull of the MTPPS equals

the union of all conical monotonic hulls of each TPPS.

The convexification strategy that is found in the mainstream efficiency literature is equi-

valent to assuming explicitly or implicitly that the subset relationships in Proposition 5.5(a-c)

can be replaced for practical purposes by an equality relationship. To the best of our know-

ledge, the consequences of such a convexification strategy have not been thoroughly assessed

in the literature.

In the next two sections, we consider the consequences of this convexification strategy

for nonparametric estimators of technology-specific frontiers and associated metafrontiers.

These estimators are all associated to initial observations. Therefore, we introduce the

following notations. Assume that n observations (x1, y1), . . . , (xn, yn) are available, and that

technology g is determined by ng ≤ n of these observations. To identify these particular

observations, consider the one-to-one index function φg mapping the set {1, . . . , ng} into the

set {1, . . . , n}. Then, (xφg(i), yφg(i)) denotes the i-th generating observation of g. To illustrate

these notations, consider the case where technology g is determined by the three observations

(x1, y1), (x3, y3) and (x8, y8). Then, ng = 3 and φg : {1, 2, 3} → {1, . . . , n} with φg(1) = 1,

φg(2) = 3 and φg(3) = 8.

6 Free Disposal Hull Estimators

If every TPPS is NC and the associated technology exhibits variable returns to scale (VRS),

then an asymptotically unbiased estimator for this TPPS is tgNC,V RS = mon(sg) with sg =

{(xφg(i), yφg(i)) : i = 1, . . . , ng} the set of ng initial observations determining technology g.

13



Equivalently,

tgNC,V RS =
{

(x, y) ∈ R
M+N
+ :

ng

∑

i=1

λφg(i)xφg(i) ≤ x,

ng

∑

i=1

λφg(i)yφg(i) ≥ y,

ng

∑

i=1

λφg(i) = 1, λφg(i) ∈ {0, 1}
}

. (10)

Proposition 5.5(d) implies that the associated asymptotically unbiased estimator for T Γ is

T Γ
NC,V RS = mon(∪g∈Γs

g). Equivalently,

T Γ
NC,V RS =

{

(x, y) ∈ R
M+N
+ :

∑

g∈Γ

ng

∑

i=1

λφg(i)xφg(i) ≤ x,
∑

g∈Γ

ng

∑

i=1

λφg(i)yφg(i) ≥ y,

∑

g∈Γ

ng

∑

i=1

λφg(i) = 1, λφg(i) ∈ {0, 1}
}

. (11)

Figure 2(a) illustrates the relationship between the estimators (10) and (11) for the single-

input-single-output case when only two technologies exist. In this figure, the estimated TPPS

t1NC,V RS (resp. t2NC,V RS) consists of all points between the polyline A1B1C1D1E1F1G1H1I1

(resp. A2B2C2D2E2F2G2H2I2) and the horizontal axis. The estimated MTPPS T
{1,2}
NC,V RS

consists of all points between the polyline A1B1C1D1PB2QF1RD2E2F2G2H2I2 and the ho-

rizontal axis. Notice the equality relationship of Proposition 5.5(d).

Figure 2: (a) NC and (b) C Group-Specific Technologies and NC Metatechnologies
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If every TPPS is NC and the associated technology exhibits constant returns to scale

(CRS), then an asymptotically unbiased estimator for this TPPS is tgNC,CRS = cone(mon(sg))

with sg = {(xφg(i), yφg(i)) : i = 1, . . . , ng} the set of ng initial observations determining

technology g. Equivalently,

tgNC,CRS =
{

(x, y) ∈ R
M+N
+ :

ng

∑

i=1

λφg(i)xφg(i) ≤ x,
ng

∑

i=1

λφg(i)yφg(i) ≥ y, λφg(i) ∈ {0, 1}
}

. (12)

Proposition 5.5(e) implies that the associated asymptotically unbiased estimator for T Γ is

T Γ
NC,V CS = cone(mon(∪g∈Γs

g)). Equivalently,

T Γ
NC,CRS =

{

(x, y) ∈ R
M+N
+ :

∑

g∈Γ

ng

∑

i=1

λφg(i)xφg(i) ≤ x,
∑

g∈Γ

ng

∑

i=1

λφg(i)yφg(i) ≥ y, λφg(i) ∈ {0, 1}
}

.

(13)

The estimators (10), (11), (12) and (13) are commonly known as free disposal hull (FDH)

estimators. Single output FDH estimators go back to Afriat (1972). If the technology-specific

frontiers exhibit VRS (resp. CRS), then the estimator (10) (resp. (12)) can be used to

construct an asymptotically unbiased estimator for the measure of RITE (7). The associated

estimators (11) and (13) can be used to construct asymptotically unbiased estimators for

the measure of ITE (5). FDH estimation of either a TPPS or MTPPS requires solving a

mixed integer linear program for each evaluated observation. However, Leleu (2006) and

Briec, Kerstens, and Vanden Eeckaut (2004) propose a linear programming (LP) solution

and a closed form solution based on an implicit enumeration strategy, respectively.

7 Data Envelopment Analysis Estimators

If every TPPS is C and the associated technology exhibits VRS, then an asymptotically

unbiased estimator for this TPPS is tgC,V RS = conv(mon(sg)) = mon(conv(sg)) with sg =

{(xφg(i), yφg(i)) : i = 1, . . . , ng} the set of ng initial observations determining technology g.

Equivalently,

tgC,V RS =
{

(x, y) ∈ R
M+N
+ :

ng

∑

i=1

λφg(i)xφg(i) ≤ x,
ng

∑

i=1

λφg(i)yφg(i) ≥ y,
ng

∑

i=1

λφg(i) = 1, λφg(i) ∈ R+

}

.

(14)

This estimator is the convexified version of (10). It differs from (10) in that the nonnegative

activity (or intensity) variables (λφg(i)) are no longer restricted to be binary integers. The
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associated asymptotically unbiased estimator for T Γ is

T Γ
C,V RS = ∪g∈Γconv(mon(sg)). (15)

This estimator goes back at least as far as Tiedemann, Francksen, and Latacz-Lohmann

(2011, p. 578). Proposition 5.5(a) implies that it is not necessarily equal to the convexified

version of (11). The convexified version of (11) is HΓ
C,V RS = conv(mon(∪g∈Γs

g)). Equival-

ently,

HΓ
C,V RS =

{

(x, y) ∈ R
M+N
+ :

∑

g∈Γ

ng

∑

i=1

λφg(i)xφg(i) ≤ x,
∑

g∈Γ

ng

∑

i=1

λφg(i)yφg(i) ≥ y,

∑

g∈Γ

ng

∑

i=1

λφg(i) = 1, λφg(i) ∈ R+

}

. (16)

O’Donnell, Rao, and Battese (2008, p. 238) use an estimator of this type8 to construct

an estimator of OTE. Proposition 5.5(a) implies that HΓ
C,V RS ⊇ T Γ

C,V RS. Thus, except in

restrictive special cases (e.g., only one technology exists), it is an asymptotically biased

estimator of the MTPPS. The basic question we address in this article is whether it yields

efficiency estimates that are close to the estimates obtained using the asymptotically unbiased

estimator (15).

To the best of our knowledge, no single study has ever documented this bias issue.

Tiedemann, Francksen, and Latacz-Lohmann (2011) only compare C TPPSs to the correct

NC MTPPS defined as the union of these TPPSs, but they ignore the bias issue (see also

Sala-Garrido, Molinos-Senante, and Hernández-Sancho (2011)). This bias issue is only partly

documented in Huang, Ting, Lin, and Lin (2013) and in the unpublished paper of Breustedt,

Francksen, and Latacz-Lohmann (2007): the former article lists the units whose efficiency

measure is different on the true NC compared to the biased convexified MTPPSs (see their

Table 4), the latter study illustrates these same differences in metafrontier efficiency measures

mainly graphically. But, none of these studies reports any test statistic regarding these

differences in metafrontier efficiency measures.

Figure 2(b) illustrates the relationship between the estimators (14), (15) and (16) for

the single-input-single-output case when only two technologies exist.9 In this figure, the

8O’Donnell, Rao, and Battese (2008) effectively estimate OTE under the assumption that there is no
technical change.

9The data points in this figure are, in fact, the data points that were depicted earlier in Figure 2. However,
each TPPS is now assumed to be convex.
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estimated TPPS t1C,V RS (resp. t2C,V RS) consists of all points between the horizontal axis

and the polyline A1B1F1H1I1 (resp. A2B2F2H2I2). The estimated MTPPS T
{1,2}
C,V RS consists

of all points between the horizontal axis and the polyline A1B1PB2F2H2I2. While each

estimated TPPS is convex, the estimated MTPPS is clearly non-convex. The estimator (16)

convexifies this NC set by adding the region B1PB2F2B1; the resulting set H
{1,2}
C,V RS consists

of all points between the horizontal axis and the polyline A1B1F2H2I2. If we were to add

an additional technology, then the set T Γ
C,V RS may still not equal the C set HΓ

C,V RS; an

additional TPPS might fill up part of the region determined by B1PB2F2B1, but it could

easily create further non-convexities to the left or to the right of the existing one. Notice

in Figure 2(b) the subset relationship in Proposition 5.5(a). Obviously, one must realize

that in a multiple-input-multiple-output setting (rather than in a single-input-single-output

setting), the union of more than two TPPSs is only by sheer coincidence going to end up

yielding a C set. The most likely outcome is simply that the resulting MTPPS is non-convex.

If every TPPS is C and the associated technology exhibits CRS, then an asymptotically

unbiased estimator for this TPPS is tgC,CRS = conv(cone(mon(sg))) with sg = {(xφg(i), yφg(i)) :

i = 1, . . . , ng} the set of ng initial observations determining technology g. Equivalently,

tgC,CRS =
{

(x, y) ∈ R
M+N
+ :

ng

∑

i=1

λφg(i)xφg(i) ≤ x,
ng

∑

i=1

λiyφg(i) ≥ y, λφg(i) ∈ R+

}

. (17)

This estimator is the convexified version of (12). Again, it differs from (12) in that the

nonnegative activity variables are no longer restricted to be binary integers. The associated

asymptotically unbiased estimator for T Γ is

T Γ
C,CRS = ∪g∈Γconv(cone(mon(sg))). (18)

Proposition 5.5(c) implies that this is not necessarily equal to the convexified version of (13).

The convexified version of (13) is HΓ
C,CRS = conv(cone(mon(∪g∈Γs

g))). Equivalently,

HΓ
C,CRS =

{

(x, y) ∈ R
M+N
+ :

∑

g∈Γ

ng

∑

i=1

λφg(i)xφg(i) ≤ x,
∑

g∈Γ

ng

∑

i=1

λφg(i)yφg(i) ≥ y, λφg(i) ∈ R+

}

.

(19)

Proposition 5.5(c) implies that HΓ
C,CRS ⊇ T Γ

C,CRS. Thus, once again, except in restrictive

special cases, it is an asymptotically biased estimator of the MTPPS. Again, the basic

question is whether it yields efficiency estimates that are close to the estimates obtained

using the asymptotically unbiased estimator (18).
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The estimators (14), (16), (17) and (19) are commonly known as data envelopment

analysis (DEA) estimators. Single output DEA estimators also go back to at least Afriat

(1972). Multi-output DEA estimators appear to have been introduced to the literature by

Banker, Charnes, and Cooper (1984) and Färe, Grosskopf, and Lovell (1983). If the TPPS

exhibit VRS (resp. CRS), then the estimator (14) (resp. (17)) can be used to construct an

asymptotically unbiased estimator for the measure of RITE (7). This requires solving an LP

problem for each evaluated observation (see Hackman (2008) or Ray (2004)). The associated

estimators (15) and (18) can be used to construct asymptotically unbiased estimators for the

measure of ITE (5). Recently, Afsharian and Podinovski (2018) demonstrate that this can

be achieved in both cases by solving a single LP problem. For the reasons given earlier, the

estimators (16) and (19) cannot generally be used to construct an asymptotically unbiased

estimator for the measure of ITE.

8 Related Metafrontier Models and Methods

This article has focused on metafrontier methods for estimating the gaps between TPPSs

and the MTPPS. Metafrontier methods can also be used to estimate the gaps between

other types of production possibilities sets. For example, they can be used to estimate the

gaps between period-and-state-contingent production possibilities sets and period-specific

production possibilities sets. A period-and-state-contingent production possibilities set is a

set containing all input-output combinations that are possible in a given period in a given

state of the production environment (or state of nature). Suppose there are S ∈ Z+ possible

states of nature. Mathematically, the set of all input and output vector pairs that are possible

in period t in state s is T t(s) = {(x, y) ∈ R
M+N
+ : x can produce y in period t in state s}.

The boundary of this set is a period-and-state-contingent frontier. The associated period-

specific production possibilities set is T t = ∪s∈ΩT
t(s) where Ω = {1, . . . , S}. If inputs

are freely disposable, then T t(s) can be represented using the following period-and-state-

contingent input distance function:

Dt
I(x, y, s) = sup

λ∈R+

{

λ : (x/λ, y) ∈ T t(s)
}

. (20)

This distance function gives the largest factor by which it is possible to reduce x and still

produce y in period t in state s. The associated period-specific input distance function is

Dt
I(x, y) = max

s∈Ω
{Dt

I(x, y, s)}. (21)
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This distance function gives the largest factor by which it is possible to reduce x and still

produce y in period t. An associated input-oriented measure of firm and environmental

performance is the following input-oriented technical efficiency and environmental effect

(ITEEE):

ITEEEt(x, y) = 1/Dt
I(x, y). (22)

This is a radial measure of performance that lies in the closed unit interval. If there is

only one state of nature (i.e., there are no environmental effects), then it is equivalent to

the measure of ITE defined by (5). If S > 1, then it can be written as the product of an

input-oriented environmental effect (IEE) and a measure of ITE. Mathematically, the IEE

a firm that uses inputs x to produces outputs y in period t in state s is

IEEt(x, y, s) = Dt
I(x, y, s)/D

t
I(x, y). (23)

This measure also lies in the closed unit interval. It can be viewed as an input-oriented

measure of whether a firm is operating in the best production environment. The ITE of the

firm is

ITEt(x, y, s) = 1/Dt
I(x, y, s). (24)

This measure also lies in the closed unit interval. It can still be viewed as a measure of how

well the firm makes use of the technologies that exist in period t. Equations (21), (22) and

(24) imply that

ITEEEt(x, y) = min
s∈Ω

{ITEt(x, y, s)}. (25)

Finally, equations (22), (23) and (24) imply that

ITEEEt(x, y) = ITEt(x, y, s) · IEEt(x, y, s). (26)

Equations (22) to (26) are analogous to equations (5) to (9). Associated FDH and DEA

estimators of these quantities are analogous to the estimators discussed in Sections 6 and 7.

The message to take from this discussion is that various functions and measures of per-

formance associated with different production environments have the same mathematical

structure, but not necessarily the same interpretation, as those associated with the selection

and use of technologies. From a mathematical viewpoint, the distinction between technolo-

gies and environments is immaterial. The distinguishing feature of metafrontier models is

that firms can be classified into groups. If the classification is not obvious, then there are

several multivariate statistical methods that can be used to classify the units in a sample into

either some natural groups (e.g., using some variant of cluster analysis) or a set of existing
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groups (e.g., using discriminant analysis and its variations). Examples include Samoilenko

and Osei-Bryson (2010) and Llorca, Orea, and Pollitt (2014), among others. Along similar

lines, frontier estimates have been used in a variety of ways to distinguish strategic groups

(e.g., Athanassopoulos (2003), Warning (2004), among others). As long as groups can be

identified, the metafrontier framework is applicable.

The short article of Pastor and Lovell (2005) proposes a global Malmquist productivity

index based upon the specification of a single global technology constructed by taking a con-

vex cone over all data for all observations and all time periods simultaneously. It has the key

attractive feature of being circular (just like any fixed base index). However, Afsharian and

Ahn (2015) analyse this proposal in detail and fundamentally criticize the Pastor and Lovell

(2005) proposal for adopting -in our parlance- a convexification strategy that is unwarran-

ted. In particular, these authors point out that this strategy (1) neglects the role of each

contemporaneous technology in the determination of the global benchmark technology; (2)

assumes that convex combinations of observations across time periods are feasible; and (3)

previously computed results by the global Malmquist index can change significantly when a

new time period is incorporated. Therefore, Afsharian and Ahn (2015) plea to use a proper

union of convex cones defined per contemporaneous technology (instead of the convex cone

over the union of all observations).

9 Empirical Illustration: Hydroelectric Power Plants

In this section, we illustrate the implications of convexification using data that have pre-

viously been used by Atkinson and Dorfman (2009) to assess the performance of Chilean

hydroelectric power plants.

There are two main techniques (or technologies) used to generate hydroelectric power in

Chile. The first technology (given index 1) involves building a large dam on a river to store

water. Water is then released from the dam to spin turbines that generate electricity. The

advantage of so-called dam systems is that electricity generation is de-coupled from river

flows. The second type of hydroelectric power technology (given index 2) involves merely

diverting river flows through turbines. The advantage of so-called run-of-river (ROR), or

diversion, systems is that they are relatively inexpensive and have relatively little impact

on the environment. A disadvantage of these systems is that they cannot be used to match

electricity generation with consumer demand.10

10A third hydroelectric power technology, called pumped storage, can be used to match electricity gener-
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By construction, the technology set Γ = {1, 2}. The sample comprises data on M = 3

inputs and N = 1 output for 16 Chilean hydroelectric power plants over the 12 months

of the year 1997. There are 5 dam plants and 11 ROR plants in our sample. The data

are publicly available on the web site of the Journal of Applied Econometrics.11 The single

output is electricity generated (in gigawatt hours). The three inputs are labor (thousands of

workers), capital (real pesos), and water (cubic meters). More details concerning the data

can be accessed from Atkinson and Dorfman (2009) and Atkinson and Halab́ı (2005).

Our knowledge of hydroelectric power generation in Chile leads us to believe that it may

be possible for the manager of a given (dam or ROR) plant to use a given input vector to

produce a given level of output for some of the time, and then use a different input vector

to produce a different level of output the rest of the time. This suggests that each TPPS

may be convex. Consequently, we began by estimating these TPPSs t1 and t2 using the

“convexifying” DEA estimator (14). It is also our understanding that, given the different

types of capital involved in constructing different plants, the manager of a given plant cannot

operate a dam system for some of the time and then operate an ROR system the rest of

the time. This suggests that the MTPPS should not be convexified. Consequently, we

estimated the MTPPS using the DEA estimator (15). Descriptive statistics for the associated

estimates of ITE, RITE and IMR are reported in the columns labelled C-NC in Table 1 (the

acronym C-NC indicates that the TPPSs have been convexified, but the MTPPS has not

been convexified). Of course, TPPSs may not be convex. Consequently, we also estimated

the TPPSs using the non-convexifying FDH estimator (10). The associated estimator of

the period-specific production possibilities set is the non-convexifying FDH estimator (11).

Descriptive statistics for the associated estimates of ITE, RITE and IMR are reported in

the columns labelled NC-NC in Table 1 (the acronym NC-NC indicates that neither the

TPPSs nor the MTPPS have been convexified). In Table 1, both C-NC and NC-NC results

are reported in two blocks of three columns each. The last column contains the number of

infeasible solutions.12

Explaining the rows in Table 1, the first block of numbers in Table 1 contains summary

statistics for all 16× 12 = 192 observations in the sample. The next two blocks of numbers

contain summary statistics for the n1 = 5 × 12 = 60 dam observations and the n2 =

11× 12 = 132 ROR observations. The first row in each block reports the number of efficient

observations (i.e., the number of times the relevant measure of performance is estimated to be

ation with daily or weekly consumer demand. However, there are no pumped storage plants in our dataset.
11See: http://qed.econ.queensu.ca/jae/
12See Briec and Kerstens (2009) for an extensive discussion on the occurrence of infeasibilities for general

distance functions.
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1). The next three rows in each block report the geometric averages,13 standard deviations,

and minima of the relevant estimates.

Table 1: C-NC and NC-NC Estimates of ITE, RITE and the IMR

C-NC NC-NC Inf.

ITE RITE IMR ITE RITE IMR

All 192 #Eff. Obs. 21 24 163 154 168 175

Observations Geom. Mean 0.7582 0.8046 0.9424 0.9391 0.9629 0.9752

Stand. Dev. 0.2009 0.1791 0.1260 0.1378 0.1076 0.0878

Min. 0.1325 0.2094 0.3740 0.3154 0.3154 0.3866

Li-test† 34.15 37.15 2.13

p-value (0.000) (0.000) (0.022)

60 Dam #Eff. Obs. 1 4 31 39 52 44

Observations Geom. Mean 0.6751 0.8163 0.8271 0.8811 0.9547 0.9229 29

Stand. Dev. 0.2141 0.1645 0.1896 0.1867 0.1181 0.1495

Min. 0.1325 0.2681 0.3740 0.3212 0.3212 0.3866

132 ROR #Eff. Obs. 20 20 132 115 116 131

Observations Geom. Mean 0.7994 0.7994 1.0000 0.9667 0.9667 ≈1.000 0

Stand. Dev. 0.1853 0.1853 0.0000 0.1024 0.1024 0.0004

Min. 0.2094 0.2094 1.0000 0.3154 0.3154 0.9953

† Li test: exact p values are reported in round brackets underneath.

Four observations can be made with regard to Table 1. First, by construction, estimates

of ITE obtained using the estimators (14) and (15) can be no higher than the estimates

obtained using the estimators (10) and (11) (i.e., estimates of ITE obtained using the C-NC

model can be no higher than those obtained using the NC-NC model). Table 1 reveals that,

in the case of Chilean hydroelectric power generators, estimates of ITE obtained using (14)

and (15) are on average 1−0.7582/0.9391 = 19.3% lower than estimates obtained using (10)

and (11).

Second, also by construction, estimates of RITE obtained using the estimator (14) can

be no higher than the estimates obtained using the estimator (10) (i.e., estimates of RITE

obtained using the C-NC model can also be no higher than those obtained using the NC-NC

model). Table 1 reveals that, in our application, estimates of RITE obtained using (14) are

on average 1− 0.8046/0.9629 = 16.4% lower than estimates obtained using (10).

Third, in theory, estimates of the IMRs obtained using the estimators (14) and (15) can

be either higher or lower than the estimates obtained using the estimators (10) and (11) (i.e.,

13The use of geometric averages guarantees that the multiplicative decomposition (9) holds exactly.
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estimates of the IMRs obtained using the C-NC model can be either higher or lower than

those obtained using the NC-NC model). Table 1 reveals that, in our application, estimates

of the IMRs obtained using (14) and (15) are on average 1 − 0.9424/0.9752 = 3.4% lower

than estimates obtained using (10) and (11). The minima reported for the ROR observations

reveal that there was at least one observation where the IMR obtained using the estimators

(14) and (15) was higher than the IMR obtained using the estimators (10) and (11).

Finally, the IMR estimates obtained using the C-NC (resp. NC-NC) model and the

132 ROR observations are all (resp. nearly all) equal to one. This indicates that ROR

hydroelectric power systems are superior to dam systems. Indeed, we estimate that approx-

imately half of the observed input-output combinations of ROR plants would not even have

been feasible using dam plants (i.e., they lie outside the estimated dam-specific production

possibilities set). As far as we know, there are only a handful of other studies that use

metafrontier methods to determine the inferiority or superiority of different technologies.

For example, Sala-Garrido, Molinos-Senante, and Hernández-Sancho (2011) compare four

wastewater treatment technologies and find that one technology dominates all others.

Fourth, among dam plants there are 29 instances of infeasible solutions when computing

some of the distances to the C TPPSs in determining ITE. This amounts to about 15% of

the sample. By contrast, ROR plants do not encounter any infeasible solutions at all.

Figure 3(a) displays the kernel densities of the ITE estimates that were summarised at

the top of Table 1.14 The two densities appear to be quite different. For a formal assessment

of this difference, we employ a nonparametric test initially proposed by Li (1996). This

test has been refined by Fan and Ullah (1999) and others: the most recent development

is by Li, Maasoumi, and Racine (2009). This nonparametric test analyzes the differences

between entire distributions instead of focusing on, for instance, first moments (as, e.g.,

the Wilcoxon signed-ranks test). It tests the statistical significance of differences between

two kernel-based estimates of density functions, f and g, of a random variable x. The null

hypothesis states the equality of both density functions almost everywhere (H0 : f(x) =

g(x) for all x). The alternative hypothesis negates the equality of both density functions

(H1 : f(x) 6= g(x) for some x). This test is valid for both dependent and independent

variables: observe that dependency is a characteristic of frontier estimators (i.e., efficiency

levels depend on sample size, among others). Simar and Zelenyuk (2006) fine tune this test

statistic further for nonparametric frontier estimators to circumvent the problem of spurious

mass at the boundary: their Algorithm I ignores the boundary estimates and their Algorithm

14Each density was estimated using N = 192 observations. For reasons of comparability, a common
Sheather and Jones plug-in bandwidth was used (see, e.g., Sheather (2004)).
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II smooths boundary estimates by adding uniform noise of an order of magnitude less than

the order of magnitude of noise added by the specific estimator. Monte Carlo evidence

suggests that Algorithm II performs slightly better overall, though the power of the test

statistic decreases with the dimensionality of the production specification.15 In short, we

adopt the Li, Maasoumi, and Racine (2009) version of this test amended with Algorithm II

from Simar and Zelenyuk (2006). For this test statistic, we report on the next line the exact

p value using 2000 bootstrap replications starting from a conventional 5% significance level

(i.e., α = 0.05). The test statistic was calculated to be 34.15. The p value indicates that

we can reject the null hypothesis and conclude that the two distributions are significantly

different.

Figure 3: Kernel Density Estimates of (a) ITE, (b) RITE, and (c) IMRs
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Figure 3(b) displays the kernel densities of the RITE estimates that were summarised

at the top of Table 1. Again, the two densities seem quite different. In this case, the Li

test statistic amounts to 37.15. The p value indicates that we can again reject the null

hypothesis and conclude that the two distributions are significantly different.

Figure 3(c) displays the kernel densities of the IMRs that were summarised at the top

of Table 1. In this case, the two densities appear to be quite similar. The Li test statistic

15In fact, there is not much theoretical argument to adopt either algorithm. Simar and Zelenyuk (2006,
p. 508) concede: “Although these ways of curing the discontinuity problem by smoothing or deleting the
efficiency scores equal to unity is somewhat ad hoc, at this point they seem to be the only two approaches
that work well.”
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was calculated to be only 2.13. The large p value indicates that we do not reject the null

hypothesis that the two distributions are equal.

The estimates reported in Table 1 and Figures 3(a) to 3(c) are perfectly consistent with

what we understand about the different types of physical capital used in Chilean hydroelec-

tric power generation. Engineering considerations have led us to understand that it is not

possible for the manager of a given (dam or ROR) plant to produce electricity using a linear

combination of the physical capital used in a dam system and the physical capital used in

an ROR system. This implies that it is not appropriate to follow common practice and

convexify the MTPPS. To assess the impact of (inappropriately) convexifying this set, we

estimated the MTPPS using the convexifying DEA estimator (16). Descriptive statistics for

the associated estimates of ITE and IMR are reported in the columns labelled C-C in Table

2 (the acronym C-C indicates that the TPPSs and MTPPS have all been convexified).16

Table 2: C-NC and C-C Estimates of ITE and the IMR

ITE IMR

C-NC C-C Difference C-NC C-C Difference

All 192 # Eff. Obs. 21 23 88 163 71 88

Observations Arith. Mean. 0.7940 0.7770 0.0170 0.9541 0.9335 0.0206

Stand. Dev. 0.2009 0.2030 0.0470 0.1260 0.1317 0.0554

Min. 0.1325 0.1325 0.0000 0.3740 0.3740 0.0000

Li-test† -1.32 15.21

p-value (0.951) (0.000)

60 Dam # Eff. Obs. 1 2 18 31 1 18

Observations Arith. Mean. 0.7205 0.6820 0.0385 0.8530 0.8080 0.0450

Stand. Dev. 0.2141 0.2025 0.0760 0.1896 0.1776 0.0890

Min. 0.1325 0.1325 0.0000 0.3740 0.3740 0.0000

132 ROR # Eff. Obs. 20 21 70 132 70 70

Observations Arith. Mean. 0.8274 0.8202 0.0072 1.0000 0.9905 0.0095

Stand. Dev. 0.1853 0.1879 0.0170 0.0000 0.0217 0.0217

Min. 0.2094 0.2094 0.0000 1.0000 0.9036 0.0000

† Li test: exact p values are reported in round brackets underneath.

Most of the column and row labels in Table 2 are self explanatory. The columns labelled

“Difference” report the differences between the C-NC and the C-C results. For example, the

average difference between the C-NC and C-C estimates of ITE is 0.7940− 0.7770 = 0.0170.

A Li test was once again applied to all 192 observations to test the null hypothesis that

16Descriptive statistics for the associated RITE estimates were already reported in the C-NC column in
Table 1.

25



the two ITE (resp. IMR) distributions are equal. The test statistic obtained is -1.32 (resp.

15.21). The large (resp. small) p value indicates that we do not reject (resp. reject) the

null hypothesis that the two ITE (resp. IMR) distributions are equal.

By construction, estimates of ITE obtained using the convexifying DEA estimator (16)

can be no higher than the estimates obtained using the asymptotically unbiased estimator

(15) (i.e., estimates of ITE obtained using the C-C model can be no higher than those

obtained using the C-NC model). Table 2 reveals that, in the case of Chilean hydroelectric

power generators, estimates of ITE obtained using (16) are on average 1.70 percentage points

lower than those obtained using (15). This represents a 0.017/0.794 = 2.1% decrease in

estimated average ITE. For the subset of firms that use the dam (resp. ROR) technology,

using the estimator (16) instead of the estimator (15) results in a 0.0385/0.7205 = 5.3% (resp.

0.0072/0.8274 = 0.9%) decrease in estimated average ITE. By construction,17 qualitatively

similar conclusions can be drawn regarding the IMRs.

10 Conclusions

In their seminal paper, O’Donnell, Rao, and Battese (2008) consider a metaset that is defined

as the union of two or more underlying group-specific sets. They refer to the boundary of

the metaset as a metafrontier, and they refer to the boundaries of the group-specific sets as

group frontiers. They suggest estimating the metafrontier under the assumption that the

metaset is convex. If this assumption is false, then their “convexifying” estimator is biased.

Our key result, Proposition 5.5, shows that both C and NC group-specific sets can (and

generally do) yield NC metasets. This suggests that the convexification strategy should not

be maintained a priori. In any case, it should be empirically tested.

We used secondary data on Chilean hydroelectric power plants to explore the con-

sequences of making incorrect assumptions about the convexity or nonconvexity of TPPSs

and MTPPS. We focused on the consequences of a convexification strategy for input-oriented

estimates of metatechnology ratios and associated measures of technical efficiency. Estim-

ates of input-oriented technical efficiency (ITE), residual input-oriented technical efficiency

(RITE) and input-oriented metatechnology ratios (IMRs) were moderately sensitive to these

assumptions. While we could have engaged in a data mining exercise to scan for a variety

17The RITE estimates obtained using the C-C and C-NC models are identical (both were obtained using
the convexifying DEA estimator (14)). If the ITE estimates obtained from the C-C model can be no higher
than those obtained from the C-NC model, then the decomposition (9) implies that IMR estimates obtained
from the C-C model can be no higher than those obtained from the C-NC model.
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of data sets that would have supported our basic hypotheses more strongly, we have simply

taken a data set that is publicly available so that readers can easily duplicate our results.

Since one counterexample is sufficient to invalidate an hypothesis, our results can be safely

taken to reject the assumption that the convexification strategy suggested by O’Donnell,

Rao, and Battese (2008) is empirically innocuous.

We recommend that users of metafrontier methods should form MTPPS as the (possibly

non-convex) union of either C or NC TPPSs. The shortcut suggested in the seminal article of

O’Donnell, Rao, and Battese (2008) (i.e., convexify the metaset) generally leads to erroneous

results. This critical conclusion that convexity need not be an innocuous assumption is in

line with some earlier results in the literature. Briec, Kerstens, and Vanden Eeckaut (2004)

already illustrated how the measurement of technical and scale efficiencies is affected by

the convexity axiom. Kerstens and Managi (2012) show how the Luenberger productivity

indicator as well as its decomposition into technical change and efficiency change are affected

by convexity. Finally, Briec, Kerstens, and Vanden Eeckaut (2004) establish theoretically,

and illustrate empirically, how the convexity axiom not only affects technologies, but also

affects the level of the cost function derived from it (see also Balaguer-Coll, Prior, and

Tortosa-Ausina (2007) for another empirical illustration).18 Thus, convexity seems to matter

both from a theoretical and empirical perspective.

Furthermore, we can briefly indicate whether and how these results based on general

technologies and on a nonparametric approach using data envelopment analysis and free

disposal hull estimators can be transposed to alternative frontier methodologies. First, the

transposition to alternative nonparametric frontier methods (e.g., conditional C and NC

models, C and NC order-m models (see Daraio and Simar (2007))) is straightforward by

definition. Second, adopting this meticulous construction of a MTPPS should be rather

straightforward in a deterministic parametric approach: it is just a matter of properly trans-

posing the constructive results from the nonparametric approach. Third, the implications

for a proper construction of a MTPPS in the far more popular stochastic frontier model

have just recently been explored in Amsler, O’Donnell, and Schmidt (2017). Unfortunately,

simulation methods must generally be used to construct a stochastic metafrontier that cor-

rectly envelops two or more stochastic group frontiers (for details, see Amsler, O’Donnell,

and Schmidt (2017)). Finally, transposing this construction of a MTPPS in a stochastic non-

parametric approach seems rather straightforward (see, e.g., Afsharian (2017) who focuses

on the StoNED method).

18In fact, WACM is implicitly based on an FDH technology: see Ray (2004).
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Finally, it is clear that further research is needed to assess how the many different meta-

frontier applications discussed in Section 1 are affected by the possibly incorrect assumption

that the MTPPS is convex. We encourage researchers to test this assumption in their em-

pirical work. Some first steps seem to have been taken by Afsharian and Ahn (2015) and

Afsharian, Ahn, and Harms (2017) when developing some variation on the primal Malmquist

productivity index. Furthermore, empirical testing of the impact of assuming an equality in

Proposition 5.5 property (c) in contrast to an approach in part (e) remains to be done: this

boils down to redoing our empirical analysis using cone technologies. Furthermore, while we

have used a rather generally valid test statistic, specific statistical tests of convexity versus

non-convexity have been proposed in a theoretical framework developed by Kneip, Simar,

and Wilson (2016). Implementing such a specific test approach may eventually sharpen

our results. In a similar vein, there have been a variety of alternative proposals around

to account for heterogeneity in frontier models. Popular methods include the use of latent

class models (e.g., Orea and Kumbhakar (2004) in a stochastic frontier context), or aggreg-

ation over groups or industries (e.g., Zelenyuk (2006) or Mayer and Zelenyuk (2014), but

see Balk (2016) for some caveats). There are also alternative proposals around to handle

heterogeneity: Simar, Vanhems, and Van Keilegom (2016) or Tsekouras, Chatzistamoulou,

and Kounetas (2017) to give some examples. In fact, to the best of our knowledge no the-

oretical or empirical review has ever compared some let alone all of these different methods

to account for heterogeneity in a frontier framework. Obviously, there is a lot of scope for

future work.
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