Supplementary information

Role of PTA in the prevention of $\mathrm{Cu}($ Amyloid- β) induced ROS formation and Amyloid- β oligomerisation in the presence of $\mathbf{Z n}$

Elena Atrián-Blasco, ${ }^{\mathrm{a}, \mathrm{b}}$ Elena Cerrada, ${ }^{\mathrm{b}}$ Peter Faller, ${ }^{\mathrm{a}, \mathrm{c}}$ Mariano Laguna, ${ }^{\mathrm{b}}$ and Christelle Hureau, ${ }^{*}{ }^{\text {a }}$
a LCC-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France.
E-mail: christelle-hureau@lcc-toulouse.fr
${ }^{\text {b }}$ Instituto de Síntesis Química y Catálisis Homogénea, Universidad de Zaragoza-CSIC, Pza. San Francisco s/n, 50009 Zaragoza, Spain.
${ }^{\text {c Biometals and Biological Chemistry, Institut de Chimie, UMR 7177, Université de }}$ Strasbourg, CNRS, Le Bel, 4 rue B. Pascal, 67081 Strasbourg, France.

Figure S1. Zn K-edge XANES spectra of a mixture of (a) Zn in buffer, (b) $\mathrm{Zn}+5$ equiv. of PTA, (c) $\mathrm{Zn}\left(\mathrm{A} \beta_{16}\right)$ +5 equiv. of PTA, d) $\mathrm{Zn}\left(\mathrm{A} \beta_{16}\right)$. Conditions: $[\mathrm{Zn}(\mathrm{II})]=0.9 \mathrm{mM},\left[\mathrm{A} \beta_{16}\right]=1 \mathrm{mM},[\mathrm{PTA}]=5 \mathrm{mM},[\mathrm{HEPES}]=50$ $\mathrm{mM}, \mathrm{pH} 7.4$, glycerol $10 \% \mathrm{v} / \mathrm{v}$ was used as a cryoprotectant. $\mathrm{T}=20 \mathrm{~K}$.

Figure S2. ThT- fluorescence spectra as a function of time of the aggregation of $A \beta_{40}$, in presence of (A) $\mathrm{Cu}(\mathrm{II}),(\mathrm{B}) \mathrm{Zn}(\mathrm{II})$ and (C) $\mathrm{Cu}(\mathrm{II})+\mathrm{Zn}(\mathrm{II})$; and the effect of adding 5 or 20 equivalents of PTA. [Cu(II)]=10 or $18 \mu \mathrm{M},\left[\mathrm{A} \beta_{40}\right]=20 \mu \mathrm{M},[\mathrm{Zn}(\mathrm{II})]=10$ or $18 \mu \mathrm{M},[\mathrm{PTA}]=100$ or $400 \mu \mathrm{M},[\mathrm{ThT}]=10 \mu \mathrm{M},[\mathrm{NaCl}]=100$ $\mathrm{mM},[$ EDTA $]=0.1 \mu \mathrm{M},[$ HEPES $]=50 \mathrm{mM}, \mathrm{pH} 7.4, \mathrm{~T}=37^{\circ} \mathrm{C}$. Colour code of curves: (A) a) grey, apo-A β; b) light blue, $\mathrm{Cu}(\mathrm{A} \beta)$ at ratio $0.5: 1 ; c$) blue, $\mathrm{Cu}(\mathrm{AB})$ at ratio $0.9: 1$; d) light green, $\mathrm{Cu}(\mathrm{AB})$ at ratio $0.9: 1+$ 5 equiv. of PTA; e) green, $\mathrm{Cu}(\mathrm{A} \beta$) at ratio 0.9:1 + 20 equiv. of PTA; (B) a) grey, apo-A β; f) light orange, $Z n(A \beta)$ at ratio $0.5: 1 ; g$) orange, $Z n(A \beta)$ at ratio 0.9:1; h) light green, $Z n(A \beta)$ at ratio $0.9: 1+5$ equiv. PTA; i) green, $\mathrm{Zn}(\mathrm{A} \beta)$ at ratio $0.9: 1+20$ equiv. PTA; $(C) f)$ light orange, $Z n(A \beta)$ at ratio $0.5: 1$; g) orange, $\mathrm{Zn}(A \beta)$ at ratio 0.9:1; j) violet, $\mathrm{Cu}, \mathrm{Zn}(A \beta)$ at ratio 0.5:0.5:1; k) purple, $\mathrm{Cu}, \mathrm{Zn}(\mathrm{A} \beta)$ at ratio 0.9:0.9:1; I) light green, $C u, Z n(A \beta)$ at ratio 0.9:0.9:1 +5 equiv. PTA; m) green, $C u, Z n(A \beta)$ at ratio 0.9:0.9:1 +20 equiv. PTA.

Figure S3. TEM images corresponding to curves (a) apo-A β_{40}, (c) $\mathrm{Cu}\left(A \beta_{40}\right)$ formed at 0.9 equivalents of $\mathrm{Cu}(I I)$, (e) $\mathrm{Cu}\left(A \beta_{40}\right)+20$ equiv. of PTA, (g) $\mathrm{Zn}\left(A \beta_{40}\right)$ formed at 0.9 equivalents of $\mathrm{Zn}(\mathrm{II})$, (i) $\mathrm{Zn}\left(A \beta_{40}\right)+0.9$ equiv. of PTA, (k) $\mathrm{Cu}, \mathrm{Zn}\left(\mathrm{A} \beta_{40}\right)$ formed at 0.9 equivalents of $\mathrm{Cu}(I I)$ and $\mathrm{Zn}(I I)$, (m) $\mathrm{Cu}, \mathrm{Zn}\left(A \beta_{40}\right)+20$ equiv. of PTA. Samples were taken at $\mathrm{t}=72 \mathrm{~h}$, at two different zoom: 4 k and 12 k (scale bar $=200 \mathrm{~nm}$).

