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News and Noteworthy

• Insulin sensitivity as assessed by HOMA-IR was improved after 4-days of physical activity independent of frequency and duration of activity bouts.

• Temporal patterns of activity across the day differentially affect substrate oxidation.

• Frequent interruptions of sedentary time with short bouts of walking primarily increases 24-h carbohydrate oxidation whereas an energy-matched single continuous bout of moderate intensity walking primariliy increased 24-h fat oxidation.

Introduction

Sedentary behavior is associated with several adverse health outcomes including obesity, cardiometabolic diseases, diabetes, certain types of cancer and premature mortality [START_REF] Matthews | Amount of time spent in sedentary behaviors and causespecific mortality in US adults[END_REF][START_REF] Mummery | Occupational sitting time and overweight and obesity in Australian workers[END_REF]. These associations have been observed across sex, age, ethnicity, and even among individuals who meet the current intensity-based physical activity guidelines (i.e., 150-min/week of moderate intensity or 75-min/week of vigorous exercise) [START_REF] Mummery | Occupational sitting time and overweight and obesity in Australian workers[END_REF]. Isotemporal substitution modeling suggests that replacing 1h of sedentary time with either light or moderate-to-vigorous intensity physical activity (MVPA) in inactive adults was associated with lower mortality and risk factors of metabolic disease, with MVPA associated with the most potent health-enhancing timedependent behavior [START_REF] Buman | Reallocating time to sleep, sedentary behaviors, or active behaviors: associations with cardiovascular disease risk biomarkers, NHANES 2005-2006[END_REF][START_REF] Matthews | Accelerometer-measured doseresponse for physical activity, sedentary time, and mortality in US adults[END_REF]. Independent of potential confounders and time spent in other activities, reallocation of 30-min/day of sedentary time with an equal amount of MVPA is associated with lower blood triglycerides, glucose and insulin, and higher insulin sensitivity [START_REF] Buman | Reallocating time to sleep, sedentary behaviors, or active behaviors: associations with cardiovascular disease risk biomarkers, NHANES 2005-2006[END_REF].

Additionaly, observational studies suggest that interrupting sedentary time with frequent bouts of physical activity is associated with lower plasma glucose and insulin, waist circumference, inflammatory marker C-reactive protein even in individuals who regularly exercise [START_REF] Healy | Breaks in sedentary time: beneficial associations with metabolic risk[END_REF][START_REF] Healy | Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003-06[END_REF].

Adults whose sedentary time was mostly uninterrupted had less healthy cardiometabolic profiles, based on increased blood glucose and triglycerides, compared to those who had more frequent breaks in sedentary time [START_REF] Healy | Breaks in sedentary time: beneficial associations with metabolic risk[END_REF][START_REF] Healy | Objectively measured light-intensity physical activity is independently associated with 2-h plasma glucose[END_REF][START_REF] Healy | Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003-06[END_REF], even when controlling for total sedentary time, MVPA, age, sex and ethnicity [START_REF] Healy | Breaks in sedentary time: beneficial associations with metabolic risk[END_REF][START_REF] Healy | Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003-06[END_REF].

A number of acute and short-term studies (≤ 3 days) have shown that frequent interruptions of prolonged sedentary activities with short bouts of walking decrease postprandial plasma glucose and insulin concentrations compared to a prolonged sedentary condition (2, 5, 9-11, 18, 21, 27, 34). For example, Dunstan et al. [START_REF] Dempsey | Benefits for Type 2 Diabetes of Interrupting Prolonged Sitting With Brief Bouts of Light Walking or Simple Resistance Activities[END_REF] compared plasma glucose and insulin responses to uninterrupted sitting and 2-min bouts of activity every 20-min for 5-h in overweight adults.

Sitting was either interrupted by light (3.2 km/h) or moderate intensity (5.8-6.4 km/h) treadmill walking. Relative to uninterrupted sitting, glucose and insulin iAUC in response to standardized meal were both significantly reduced after the activity-break conditions. A possible hypothesis for the reduction in plasma glucose concentrations is that carbohydrate oxidation is increased to support the increased energy expenditure. To test this hypothesis, we used room calorimetry and stable isotope tracers to compare the short-term effects (4-d) of activity microbouts (5-min of moderate-intensity physical activity performed hourly for 9 consecutive hours) to a sedentary condition on 24-h nutrient oxidation in physically inactive adults with overweight and obesity.

Because a shift in carbohydrate oxidation with activity microbouts might be solely due to increased energy expenditure we also studied an energy matched single bout of moderateintensity physical activity performed in the morning. Only few studies have controlled for energy expenditure by comparing the effect of frequent interruptions of sedentary behavior with bouts of physical activity to an isocaloric continuous bout of physical activity, which remains the most common form of recommended physical activity [START_REF] Blankenship | Effects of subtracting sitting versus adding exercise on glycemic control and variability in sedentary office workers. Applied physiology, nutrition, and metabolism = Physiologie appliquee[END_REF][START_REF] Duvivier | Minimal intensity physical activity (standing and walking) of longer duration improves insulin action and plasma lipids more than shorter periods of moderate to vigorous exercise (cycling) in sedentary subjects when energy expenditure is comparable[END_REF][START_REF] Holmstrup | Multiple short bouts of exercise over 12-h period reduce glucose excursions more than an energy-matched single bout of exercise[END_REF][START_REF] Peddie | Breaking prolonged sitting reduces postprandial glycemia in healthy, normal-weight adults: a randomized crossover trial[END_REF]34). A finding that short frequent bouts of activity promote carboyhydrate oxidation in sedentary persons may inform on an approach to personalize exercise prescription for individuals who have difficulty complying with traditional physical activity recommendations and reducing the exposure to increased plasma glucose observed in highly sedentary populations.

Methods and Study Design

Participants

Eligible participants were aged 19-45 years, with a body mass index (BMI) between 27 and 33 kg/m 2 , weight stable for >3 months, had fasting plasma insulin concentrations below 25 µIU/mL, and self-reported > 6h/day sitting. Women were pre-menopausal but could use oral contraceptives. Exclusion criteria included clinically diagnosed diabetes, taking glucose-and/or lipid-lowering medication, dyslipidemia, smoking, or being physically active (>150-min/week moderate-intensity exercise). Participants were recruited between October 2014 and October 2016 from newspapers advertisements, public announcement, and flyers in the Denver and Aurora areas, Colorado, USA (see CONSORT diagram Figure 1).

Study design

Following a screening visit, each eligible subject completed three separate 4-day trial conditions that consisted of three days in free-living conditions followed by 24-h in a whole-room calorimeter. The three trial conditions were administered in random order:

-Sedentary (SED): During the 3-day free-living period, subjects were asked to maintain usual levels of daily activity, and were asked to refrain from structured exercise. On day 4, subjects remained sedentary in the whole-room calorimeter.

-Sedentary + 1 continuous bout of activity (ONE): During the 3-day free-living period, subjects were instructed to perform 45-min of moderate-intensity walking once per day in the morning and maintained usual levels of daily activity the rest of the day. On day 4, participants remained sedentary in the whole-room calorimeter except to perform one bout of 45-min moderate-intensity treadmill walking at 10:00AM.

-Sedentary + microbouts of activity (MICRO): During the 3-day run-in period, subjects performed 5-min of moderate intensity walking bouts each hour for 9 consecutive hours in daily life and maintained usual levels of daily activity the rest of the time. On day 4, participants performed 5-min moderate-intensity treadmill walking every hour for 9 consecutive hours from 1000h to 1800h and remained sedentary the rest of the day.

The study conditions were separated by a 28-day wash out period and women were studied in the follicular phase of the menstrual cycle. All the visits were conducted at the Clinical and Translational Research Center of University of Colorado Hospital (CTRC). This study was approved by the Colorado Multiple Institutional Review Board (COMIRB) and was in accordance with the Declaration of Helsinki.

Screening visit

At screening, written consent was obtained and participants were screened for exclusion criteria. This included a medical history and physical examination. The short version of the International Physical Activity Questionnaire (IPAQ) [START_REF] Booth | Assessment of physical activity: an international perspective[END_REF] was completed to assess eligibility based on inclusion criteria for habitual physical activity and time spent sedentary. Subjects then performed a test on a motorized treadmill to determine the walking pace that was prescribed for the ONE and MICRO conditions. The walking test started at a pace of 2.4 mph and the pace increased by increments of 0.3 mph every 2-min. At each level, subjects rated their perceived effort on a Borg scale from 0 (very light) to 20 (maximal exertion). The aim was to identify the speed that participants associated with a level of effort reaching 13 (somewhat hard). The walking test was stopped when the participant rated the speed of the treadmill with an RPE of 16 (hard to very hard). The treadmill speed associated with 13 RPE was the pace that was prescribed on day 4 for ONE and MICRO. For the three days of the run-in period, subjects were instructed to walk at a pace similar to what was established with the walking test, i.e. the participants perceived moderate-intensity walking pace, an RPE of 13.

Randomization

Participants were randomized to one of three possible trial-condition orders using balanced blocks prepared for male and female participants. The study statistician (Z.P.) prepared the computer-generated randomization lists and sealed envelopes for randomization. Once informed consent was obtained, a study member opened the sealed randomization envelope revealing the trial-condition order.

Run-in diet and physical activity

A 3-day standard diet was provided by the CTRC Metabolic Kitchen during the run-in to each inpatient study visit. The macronutrient composition of the diet was 30% fat, 55% carbohydrate (CHO) and 15% protein of total energy intake. Daily energy needs were calculated based on an estimate of resting metabolic rate (RMR) derived from the average of 1) direct measurement by hood indirect calorimetry and 2) an estimate using the following equation: [(23.9 x FFM in kg) + 372], where fat-free mass (FFM) was measured by dual energy X-ray absorptiometry (DXA, Hologic Delphi-W, Bedford, MA) [START_REF] Jankowski | Oral dehydroepiandrosterone replacement in older adults: effects on central adiposity, glucose metabolism and blood lipids[END_REF]35). The estimated RMR was then multiplied by an activity factor (1.4-1.7) based on the time spent physically active self-reported in the IPAQ. Participants were instructed to eat all food and bring back leftovers to the Metabolic Kitchen. They were also asked to abstain from consuming alcohol and to consume the same amount of caffeine (number of cups) for 24-h before each whole-room calorimeter stay. Daily energy needs in the chamber were estimated using the same equations as described above but applying an activity factor of 1.3. Compliance with the activity prescriptions (SED, ONE or MICRO) during the 3-day run in period was objectively assessed with the use of an inclinometer (ActivPAL, Glasgow, UK) and accelerometer (Actigraph GT3X+, Fort Walton Beach, FL). Results on physical activity during the run-in diet were reported elsewhere [START_REF] Jong | Breaking up Sedentary Time in Overweight/Obese Adults on Work Days and Non-Work Days: Results from a Feasibility Study[END_REF].

Inpatient study day

Figure 2 depicts the inpatient study protocol. Participants reported to the CTRC at 0730h, voided and were weighed. An IV catheter was placed into the antecubital vein for blood sampling. Subjects then entered the whole-room calorimeter for a 23-h stay. Subjects remained seated for the first hour to achieve a steady state within the individual and the whole-room calorimeter. A fasting blood sample was obtained at 0855h. Breakfast, lunch, dinner and snack were given at 0900h, 1300h, 1830h and 2130h and contained 30%, 35%, 25% and 10% of daily energy needs, respectively. The macronutrient composition of each meal was 65% CHO, 20% fat and 15% protein of total energy intake; a moderately-high carbohydrate diet was used to optimize our ability to observe differences in fuel utilization between the three conditions. 1-13 C oleic acid (20mg/kg of FFM, 99% enrichment, Cambridge Isotopic Laboratories, MA) was mixed and administered with the liquid breakfast meal. Breath and blood samples were then collected every hour for 14-h from 0900h-2200h, and at 0300h. Final blood and breath samples were collected at 0700h the following day. In MICRO, blood samples were collected prior each activity bout x 9 bouts. Blood samples were obtained by having subjects extend their arm through a port-hole imbedded in the wall of the whole-room calorimeter. Lights-out and a sleep opportunity was scheduled from 2230h to 0630h. Urine was collected in one jug for the "waking time" from the start of the study day to 2230h (bedtime), and in a second jug during "sleep time" from 2230h (bedtime) to 0700h the following morning. Study participants exited the whole-room calorimeter at 0700h.

Energy expenditure and substrate oxidation

Twenty-three hour respiratory gas exchange data were extrapolated to 24-h values. TEE and substrate oxidation were determined using O 2 consumption and CO 2 production determined from the flow rates and differences in gas concentrations between air entering and air exiting the calorimeter and nitrogen excretion in the urine, as previously described [START_REF] Melanson | A new approach for flow-through respirometry measurements in humans[END_REF]. EE and substrate oxidation [START_REF] Frayn | Calculation of substrate oxidation rates in vivo from gaseous exchange[END_REF] were determined over 24-h, waking time and sleeping time. Twenty-four hour energy balance was calculated as the difference between 24-h energy intake and 24-h TEE. Activity energy expenditure (AEE) was calculated as TEE -10% of TEE -SMR, where 10% TEE is the thermic effect of food and SMR (sleep metabolic rate) was the sleep metabolic rate measured from 0100h to 0300h [START_REF] Rising | Determinants of total daily energy expenditure: variability in physical activity[END_REF]. Participants collected an hourly breath sample for 13 CO 2 by blowing through a tube into two 15 ml vacutainer tubes. Breath CO 2 was sampled directly from the vacutainer with a syringe, and 13 CO 2 / 12 CO 2 was measured with isotopic ratio mass spectrometer (IRMS, Delta V, Thermo Electron, Bremen, Germany). The average baseline enrichment value was subtracted from the subsequent values for each subject, and each time point was expressed as the increase in enrichment relative to the subject's own baseline. By using time matched CO 2 production rates from the whole-room calorimeter, 1-13 C oleic acid oxidation was calculated as the instantaneous percentage recovery of 13 C in expired CO 2 per hour for 14-h and after 24-h cumulative oxidation rates were also calculated over 24-h as previously described (4) and after correction for CO 2 entrapment in the bicarbonate pool and TCA cycle [START_REF] Antoun | The [1-13C] acetate recovery factor to correct tracer-derived dietary fat oxidation is lower in overweight insulin-resistant subjects[END_REF].

Dietary fatty acid oxidation

Plasma analysis

Whole blood was added to a preservative (3.6 mg EDTA plus 2.4 mg glutathione in distilled water). Plasma and serum were separated after spinning and stored at -80°C until analyzed.

EDTA plasma samples were assayed for triglycerides (TG), glucose and insulin. Insulin concentrations were measured using a standard double antibody radioimmunoassay (EMD Millipore, St. Charles, Missouri). Serum glucose concentrations were determined using the hexokinase method, TG were measured using the enzymatic assay and non-esterified fatty acids (NEFA) by using commercial enzymatic assay (Wako Diagnostics, Mountain View, CA); all samples were run on the Beckman Coulter AU480 Chemistry Analyzer (Brea, CA).

Data and statistical analysis

The sample size was calculated using data from a previous study [START_REF] Dunstan | Breaking Up Prolonged Sitting Reduces Postprandial Glucose and Insulin Responses[END_REF]. In that study, the authors observed in 19 overweight men that interruptions of prolonged sitting with moderate-intensity activity (2-min every 20-min) reduced 5-h glucose and insulin incremental area under the curve (iAUC) by 29% and 23%, respectively, compared to uninterrupted sitting. Assuming the effect sizes between conditions would be similar to this study, we estimated that 20 paired observations were needed to achieve an 80% power to detect a direct treatment effect, while adopting a two-tailed testing and alpha < 0.05. iAUCs were calculated with the trapezoidal rule for plasma metabolites and insulin. Linear mixed models (LMM) were used to test differences in total substrate use, TG, FFA, glucose and insulin iAUCs and dietary fat oxidation with intervention as repeated effect, sequence, period and intervention as fixed effects and subjects as random effect with a compound symmetry covariance. Energy balance was taken into account as a covariate when necessary. Least significant difference (LSD) post-hoc tests were used to examine between condition differences.

Carryover effects were expected to be minimal because of the minimum 28-days washout period between consecutive interventions. Pearson correlation coefficients were calculated to examine the relationships among the outcomes, i.e. TEE, AEE, energy balance, substrate use, dietary fatty acid oxidation, and plasma metabolites and insulin iAUCs. Data are expressed as mean ± SD, unless otherwise stated. All statistical analyses were performed with SPSS (v22.0, IBM, SPSS Statistics Inc., Chicago, IL).

Results

Participant characteristics

The Consolidated Standards of Reporting Trials (CONSORT) diagram is shown as Figure 1.

Twenty-five sedentary overweight adults (n=12M/13F; 31.6±6.5 years; BMI=30.5±2.7 kg/m 2 ) were recruited to participate in the study. Data are shown for twenty participants (10M/10F; 32.4±6.3 years; BMI, 30.6±2.9 kg/m 2 ) who completed all the procedures. Participant's characteristics are displayed in Table 1. Daily patterns of EE and respiratory quotient (RQ) are presented in Supplemental Figure 1.

Twenty-four hour energy intake, expenditure, balance and nutrient oxidation

Twenty-four hour energy intake, expenditure and balance are shown in Figure 3A. By design, both TEE and AEE were matched between the two active conditions and significantly higher than SED (p<0.0001 for both). Because total energy intake was the same across all three study conditions, participants were in negative energy balance in both ONE (-1.50±0.17 MJ/d, p<0.01) and MICRO (-1.64±0.17 MJ/d, p<0.01) compared to SED. Twenty-four hour non-protein respiratory quotient (NPRQ) was lower in ONE compared to both SED and MICRO conditions (0.881±0.006 versus 0.900±0.006 and 0.900±0.009 respectively, p<0.05 for both; Figure 3D), even when accounting for differences in energy balance. MICRO was associated with higher 24-h carbohydrate oxidation compared to both ONE (p<0.01) and SED (p<0.001; Figure 3C). In contrast ONE was associated with higher 24-h total fat oxidation compared to SED (p<0.001) and higher 24-h dietary fat oxidation compared to both SED and MICRO (p<0.05 for both; Figure 3C andE). When taking energy balance into account, both 24-h total and dietary fat oxidation were higher and 24-h carbohydrate oxidation lower in ONE compared to MICRO (p<0.05 for all). When expressing nutrient oxidation as a percentage of TEE, we observed that ONE had greater reliance on fat as fuel and less on carbohydrate compared to SED. Nutrient oxidation as percentage of TEE was not altered in MICRO (Figure 3B).

In ONE, changes in both 24-h total and dietary fat oxidation were positively correlated with the increase in 24-h EE (R 2 =0.66, p<0.001; R 2 = 0.58, p<0.01, respectively) but these associations were not observed in MICRO even though the increase in 24-h EE was similar. In both active conditions, changes in 24-h fat oxidation were negatively correlated with changes in 24-h carbohydrate oxidation (ONE: R=-0.79, p<0.0001; MICRO: R=-0.84, p<0.0001). As expected, EE was significantly higher in ONE and MICRO compared to SED (p<0.0001 for both; Figure 4C) during the waking time when physical activity was performed. Waking NPRQ was lower in ONE compared to SED and MICRO (0.894±0.006 versus 0.911±0.005 and 0.914±0.009 respectively, p<0.05 for both). During sleep, NPRQ was lower in both ONE and MICRO compared to SED (0.847±0.009 and 0.852±0.008 versus 0.875±0.011, respectively, p<0.05 for both). In both active conditions, carbohydrate oxidation decreased during the night.

Substrate oxidation during waking and sleeping periods

Compared to SED this was associated with greater fat oxidation in ONE, but increased protein oxidation in MICRO (p<0.05 for all; Figure 4E).

Plasma metabolites and index of insulin sensitivity

Twenty-four-hour profiles of glucose, TG, insulin, and FFA are shown in Supplemental Figure 2.

There were no differences between conditions in fasting concentrations or 24-h iAUC values for plasma glucose, insulin, FFA and TG (Figure 5). After 4-d of both active conditions HOMA-IR was decreased compared to SED (SED=1.67±0.87, ONE= 1.20±0.52, MICRO=1.42±0.70; p<0.05 for both), indicating an improvement in fasting insulin sensitivity. In addition, insulin iAUC measured from the first to the last microbout of activity (1000h -1800h) was reduced in ONE (ONE= -16599±10871 µIU/mL.9h -1 ; p<0.0001) and MICRO (MICRO= -11570±8866 µIU/mL.9h -1 ; p<0.01) compared to SED (SED= -5283±10667 µIU/mL.9h -1 ) (Figure 5). No differences were noted over this same time period in plasma glucose, TG and FFA.

Discussion

In this crossover study, we showed in sedentary overweight or obese adults that four days of frequent interruptions in sedentary time with short moderate intensity walking breaks every hour for nine hours leads to greater reliance upon carbohydrate as fuel compared to a sedentary control condition. In contrast and to our surprise, a single isoenergetic continuous bout of moderate-intensity walking led to greater total and dietary fat oxidation. These findings suggest that when energy expenditure is equal between the two active conditions, breaking up sedentary time impacts daily patterns in fuel utilization differently than when exercise is performed as a single bout in the morning.

Breaking up sedentary behavior with short bouts of activity resulted in improved postprandial glucose and insulin metabolism in several previous acute and short intervention studies (2, 5, 9-11, 18, 21, 27, 34). In the present study, we observed a significant reduction in plasma insulin iAUC when participants were performing microbouts of activity, but postprandial glucose concentration was not reduced over the 9h active period. There are several possible reasons for the discrepency in postprandial glucose reponses in response to short frequent breaks of prolonged sitting compared to sedentary control. Previous studies supplied liquid meal replacement shakes as the study day energy intake. While the use of liquid meal replacement shakes ensures accurate standardization of macronutrient intake it does not reflect the postprandial responses of foods that are regularly consumed by the target population. The current study administered food preference questionnaires and provided meals composed of whole-foods including dieatry fiber. Dietary fiber has been shown to attentuate postprandial plasma glucose responses [START_REF] Lunde | Variations in postprandial blood glucose responses and satiety after intake of three types of bread[END_REF][START_REF] Sadakiyo | Attenuation of postprandial blood glucose in humans consuming isomaltodextrin: carbohydrate loading studies[END_REF]. Additionally, the current study did not include participants with imparied glucose tolerance or type 2 diabetes as has been done in previous studies [START_REF] Dempsey | Benefits for Type 2 Diabetes of Interrupting Prolonged Sitting With Brief Bouts of Light Walking or Simple Resistance Activities[END_REF][START_REF] Dunstan | Breaking Up Prolonged Sitting Reduces Postprandial Glucose and Insulin Responses[END_REF][START_REF] Larsen | Breaking up of prolonged sitting over three days sustains, but does not enhance, lowering of postprandial plasma glucose and insulin in overweight and obese adults[END_REF]. Along this line, [START_REF] Blankenship | Effects of subtracting sitting versus adding exercise on glycemic control and variability in sedentary office workers. Applied physiology, nutrition, and metabolism = Physiologie appliquee[END_REF] studied overweight and obese participants similar to the present study but also did not observe differences in plasma glucose responses to a meal tolerance test administered at the end of a day after a protocol involving either frequent long or short activity breaks (conditions matched for EE) [START_REF] Blankenship | Effects of subtracting sitting versus adding exercise on glycemic control and variability in sedentary office workers. Applied physiology, nutrition, and metabolism = Physiologie appliquee[END_REF]. However, glycemic variability measured by continuous glucose monitoring was reduced in the two frequent break conditions, indicating improved glucose control [START_REF] Blankenship | Effects of subtracting sitting versus adding exercise on glycemic control and variability in sedentary office workers. Applied physiology, nutrition, and metabolism = Physiologie appliquee[END_REF]. [START_REF] Peddie | Breaking prolonged sitting reduces postprandial glycemia in healthy, normal-weight adults: a randomized crossover trial[END_REF] showed a reduction in postprandial glucose iAUC in young healthy male adults compared to sedentary condition when interrupting sitting with walking breaks of 1-min and 40-s every 30-min (30-min total walking) over 9h [START_REF] Peddie | Breaking prolonged sitting reduces postprandial glycemia in healthy, normal-weight adults: a randomized crossover trial[END_REF].

Similarly, Bailey et al showed in overweight young adults a beneficial effect on postprandial glycemia when sitting was interrupted by 2-min bouts of light walking every 20-min (28-min total) for 6-h (2). In the current study, independent of changes in substrate use, both modalities of physical activity improved insulin sensitivity after four days as indicated by the decrease in HOMA-IR in the fasted state the following morning and the decrease in postprandial insulin iAUC during the active period. Taken together, both exercise interventions improved indexes of insulin sensitivity but through a differential metabolic response to varying frequencies of activity bouts. These studies suggest that while less apparent in non-diabetic populations, frequent interruptions of sedentary time help control glucose metabolism via a better insulin sensitivity and greater use of carbohydrate as fuel in postprandial state and over 24-h thus lowering glycemia mean and variability. The magnitude of the effects may be related to the frequency of the interruptions. Interestingly, these effects seem to be independent of energy balance, and likely related to the frequent interruptions of sedentary time.

To distinguish the effect of energy expenditure from those resulting from the frequent interruptions of sedentary time, we included an isoenergetic single continuous bout of moderate intensity walking in the study design. At the same energy expenditure and energy deficit, frequent interruptions of sedentary activity with short bouts of moderate intensity physical activity primarily rely upon carbohydrate substrate to maintain energetic homeostasis over 24-h, while a single bout of moderate-intensity activity favors the oxidation of both 24-h total and dietary fatty acids, as previously reported (4). One could assume that the greater use of fat oxidation observed with physical activity performed as a continuous long bout may result over the long-run in a greater weight loss than what could be attained by performing multiple short bouts of activity. Jackicic et al. [START_REF] Jakicic | Effects of intermittent exercise and use of home exercise equipment on adherence, weight loss, and fitness in overweight women: a randomized trial[END_REF] showed that multiple short bouts and time-matched long continuous bouts of activity induced similar weight loss after 18 months of intervention in sedentary overweight women. It is however important to note that the short bouts were of 10min duration which could be long enough to trigger fat oxidation compared to 5-min bout of activity. Future studies looking at the long-term impact of microbouts of activity versus long bouts of activity on body weight regulation will be needed to further test this hypothesis.

The differential effects between these two active conditions was also observed over the waking and sleeping periods when examined separately. During the waking period, frequent interruptions in sedentary time was associated with greater carbohydrate oxidation while the performance of a single bout of walking led to an increase in both carbohydrate and lipid oxidation. As suggested by the tight correlation between carbohydrate and fat oxidation observed over 24-h for each active condition, nutrient oxidation is likely the result of competition between substrates entering the TCA cycle [START_REF] Randle | Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years[END_REF]. One may assume the potential following scenario. Glucose was preferentially used with the short bouts of activity because it was readily available as skeletal muscle glycogen, especially during the first minutes of the bout of activity.

The regular muscle contractions spread across the day with the frequent interruptions of sedentary time may have further stimulated the translocation from the cytoplasm to the membrane of the glucose transporter GLUT4, as previously shown [START_REF] Bergouignan | Frequent interruptions of sedentary time modulates contraction-and insulin-stimulated glucose uptake pathways in muscle: Ancillary analysis from randomized clinical trials[END_REF]. This triggered the uptake and oxidation of glucose by the cell to provide energy. Because the microbouts of activity were performed in the postprandial state only, glucose was constantly available and competing against fat. When performing 45-min of walking, glycogen storage was at least partly depleted thus allowing fat to be oxidized for energy expenditure and glycogen pools were refilled. Because of the close relationship between energy and fat balances [START_REF] Galgani | Energy metabolism, fuel selection and body weight regulation[END_REF][START_REF] Schrauwen | Fat balance in obese subjects: role of glycogen stores[END_REF], we observed that at the equal energy expenditure, fat oxidation was increased but only when physical activity was performed as one single bout.

During the sleeping periods, carbohydrate oxidation was reduced in the two active conditions compared to the sedentary condition. Interestingly, while this was in favor of increased fat oxidation after 45-min of moderate-intensity walking performed in the morning, it was associated with an increase in protein oxidation following a day performing microbouts of activity. However, measurement of protein oxidation via urinary nitrogen excretion is not a direct measure of protein oxidation but an assessment of protein deamination. The greater disappearance of protein may rather reflect a use of protein for gluconeogenesis to replenish muscle glycogen than a use of protein as fuel for the body. Over 24-h, the microbouts of activity likely trigger the use of glycogen stores and its replenishment, thus enhancing glycogen turnover; future studies will be needed to test this hypothesis. These differences and changes in nocturnal nutrient metabolism are important given the growing body of data pointing towards a key role of sleep in the regulation of energy homeostasis and metabolism [START_REF] Reutrakul | Sleep influences on obesity, insulin resistance, and risk of type 2 diabetes[END_REF]. For example, we showed that higher rates of nocturnal fat oxidation are associated with lower weight gain over five years in adults [START_REF] Rynders | Ability to adjust nocturnal fat oxidation in response to overfeeding predicts 5-year weight gain in adults[END_REF]. Future research is needed to better understand the changes induced by the two different types of physical activity interventions on the changes observed in waking and sleeping nutrient metabolism.

A major strength of this study is that it was a randomized controlled trial testing energy-matched active conditions to isolate the respective effects of the frequency of interruptions of sedentary time from energy expenditure. Also, diet, alcohol and caffeine consumption were controlled, and nutrient metabolism was measured over 24-h in a whole-room calorimeter. There are some methodological factors that limit generalisability of the present findings. Comparing the active conditions to the sedentary conditions in stable energy balance would have been more rigorous, and most likely representative of what happened in daily life in chronic situations. We however mathematically and statistically accounted for differences in energy balance, and the two active conditions were in similar energy imbalance. Another limitation was the artificial elevation of dietary carbohydrate oxidation that may have potentialized the use of carbohydrate as fuel during the MICRO condition. Additionally, while dietary fat oxidation was measured, we cannot comment on the source of carbohydrate that was oxidized during the study day. Future studies using both fat and carbohydrate stable isotope tracers will be needed.

Conclusions and future directions

In conclusion, we showed that while four days of frequent interruptions in sitting time primarily relies upon carbohydrate as fuel, a single long bout of activity primarily influences lipid metabolism. This suggests that the beneficial effects of interrupting sedentary time on glucose control that was previously reported is likely related to a greater reliance upon carbohydrate as fuel. This effect does not appear to be related to energy expenditure and balance, but rather to increasing the frequency of muscle contractions spread across the day. Underlying mechanisms at play as well as the role of moderating factors such as weight status, insulin resistance and sex need to be examined in the future.
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 3 Figure 3: Absolute and relative twenty-four hour nutrient oxidation, balance and dietary fat oxidation (A) Energy intake (MJ/d), energy expenditure (MJ/d) and energy balance (MJ/d) during the study day in the whole room calorimeter. (B) Relative contribution (%) of carbohydrate (CHO), fat (FAT) and protein (PRO) oxidation to total 24-h energy

Figure 4 :

 4 Figure 4: Waking and sleeping substrate oxidation Absolute and relative substrate oxidation during waking (0800h-2230h) and sleeping (2230h-0630h) time. (A) Relative contribution (%) of carbohydrate (CHO), fat (FAT) and protein oxidations to waking energy expenditure. (B) Waking absolute nutrient oxidation (g) of carbohydrate (CHO), fat (FAT) and protein oxidations for waking energy expenditure. (C) Waking energy expenditure. (D) Relative contribution (%) of carbohydrate (CHO), fat (FAT) and protein oxidations to sleeping energy expenditure. (E) Sleeping absolute nutrient oxidation (g) of carbohydrate (CHO), fat (FAT) and protein oxidations for sleeping energy expenditure. (F) Sleeping energy expenditure. %EE, percent contribution to energy expenditure; g, grams; MJ, mega Joules. Data are presented as mean ± SEM. * p<0.05, ** p<0.01, *** p<0.001.

Figure 5 :

 5 Figure 5: Twenty-four hour and active period iAUCs for plasma metabolites iAUCs for plasma glucose, TG, insulin and FFAs measured during the inpatient study day. (A) 24-h and active period plasma glucose iAUCs. (B) 24-h and active period plasma TG iAUCs. (C) 24-h and active period plasma insulin iAUCs. (D) 24-h and active period plasma FFA iAUCs. Acive period iAUC measured from the first to the last microbout of activity (1000h -1800h). TG, triglyceride; FFA, free fatty acids; SED, sedentary exposure; ONE, one bout (45-min moderate intensity at 1000h) walking
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