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Short title: Cyanobacterial state transitions revisited 

One-sentence summary: Cyanobacterial state transitions, which balance photosystem 
activities during photosynthesis, depend on the plastoquinone pool redox state but not on 
cytochrome b6f or phosphorylation reactions. 

The author responsible for distribution of materials integral to the findings presented in this 
article in accordance with the policy described in the Instructions for Authors 
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ABSTRACT 
Photosynthetic organisms must sense and respond to fluctuating environmental conditions in 
order to perform efficient photosynthesis and to avoid the formation of dangerous reactive 
oxygen species. The excitation energy arriving at each photosystem permanently changes due 
to variations in the intensity and spectral properties of the absorbed light. Cyanobacteria, like 
plants and algae, have developed a mechanism, named state transitions, that balances 
photosystem activities. Here, we characterize the role of the cytochrome b6f complex and 
phosphorylation reactions in cyanobacterial state transitions using Synechococcus elongatus 
PCC 7942 and Synechocystis PCC 6803 as model organisms. First, large Photosystem II 
fluorescence quenching was observed in State II, which does not appear to be related to 
energy transfer from Photosystem II to Photosystem I (spillover). This membrane-associated 
process was inhibited by betaine, sucrose and high concentrations of phosphate. Then, using 
different chemicals affecting the plastoquinone pool redox state and cytochrome b6f activity, 
we demonstrate that this complex is not involved in state transitions in S. elongatus or 
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Synechocystis PCC6803. Finally, by constructing and characterizing 21 protein kinase and 
phosphatase mutants and using chemical inhibitors, we demonstrate that phosphorylation 
reactions are not essential for cyanobacterial state transitions. Thus, signal transduction is 
completely different in cyanobacterial and plant (green alga) state transitions.  

INTRODUCTION 1 

Photosynthetic organisms must cope with changes in the quality and quantity of 2 

incoming light. In order to survive and to optimize the use of light, they must adapt to 3 

changing environmental conditions by regulating the energy arriving at the reaction centers. 4 

Specific illumination of Photosystem II (PSII) or Photosystem I (PSI) creates an energy 5 

imbalance that leads to the over-reduction or over-oxidation of the intersystem electron 6 

transport chain. Murata (Murata, 1969) and Bonaventura and Myers (Bonaventura and Myers, 7 

1969) were the first to propose a mechanism, called “State transitions”, which rebalances the 8 

activity of reaction centers I and II. Two states were defined: State I, induced by light 9 

preferentially absorbed by PSI and characterized by a high PSII to PSI fluorescence ratio; 10 

State II, induced by light preferentially absorbed by PSII and characterized by a low PSII to 11 

PSI fluorescence ratio. The transition from one state to the other is triggered by changes in the 12 

redox state of the plastoquinone (PQ) pool (Allen et al., 1981; Mullineaux and Allen, 1990): 13 

oxidation of the PQ pool induces the transition to State I and its reduction induces the 14 

transition to State II.  15 

In plants and green algae, reduction of the PQ pool induces the activation of a specific 16 

kinase that phosphorylates the membrane-bound light harvesting complex II (LHCII). The 17 

phosphorylated LHCII detaches from PSII and attaches to PSI during the transition from State 18 

I to State II. Oxidation of the PQ pool deactivates the kinase and a phosphatase 19 

dephosphorylates LHCII, which again migrates to PSII. The migration of LHCII from one 20 

photosystem to the other allows for a readjustment in the distribution of excitation energy 21 

arriving at PSI and PSII (see review (Minagawa, 2011)).  22 

In red algae and cyanobacteria, the principal PSII antenna is the phycobilisome (PBS), 23 

a large extramembrane complex constituted by phycobiliproteins organized in a core from 24 

which rods radiate (reviews (Glazer, 1984; MacColl, 1998; Adir, 2008)). As a consequence, 25 

the processes involved in state transitions in these organisms differ. In red algae, the large 26 

fluorescence quenching induced by the illumination of dark-adapted cells is related to two 27 

different mechanisms: a PSII non-photochemical-quenching mechanism (qE) induced by a 28 

low luminal pH (Delphin et al., 1995; Delphin et al., 1996; Kowalczyk et al., 2013; Krupnik 29 

et al., 2013), in which the fluorescence quenching occurs at the level of the reaction centers 30 



 

3 
 

(Krupnik et al., 2013), and state transitions induced by changes in the redox state of the PQ 31 

pool, which involve changes in energy transfer from PSII to PSI (spillover) (Ley and Butler, 32 

1980; Kowalczyk et al., 2013). The relative importance of each mechanism varies among 33 

strains (Delphin et al., 1996; Kowalczyk et al., 2013). In cyanobacteria, the molecular 34 

mechanism of the PQ-pool dependent state transitions remains largely obscure. This process, 35 

which involves fluorescence changes occurring upon illumination of dark-adapted cells or 36 

under illumination with light absorbed more specifically by PSII or PSI, indeed remains an 37 

open question, despite the many studies resulting in the proposal of several hypotheses and 38 

models.  39 

In the mobile-phycobilisome model, the movement of phycobilisomes (PBSs) induces 40 

changes in direct energy transfer from PBS to PSII and PSI (Allen et al., 1985; Mullineaux 41 

and Allen, 1990; Mullineaux et al., 1997). This model attributes the low PSII fluorescence 42 

yield in State II to a lower amount of energy transfer from PBSs to PSII, together with larger 43 

energy transfer to PSI. The observations that PBSs are able to rapidly move on the thylakoid 44 

surface (Mullineaux et al., 1997) and that chemicals inhibiting PBS diffusion also inhibit state 45 

transitions support this model (Joshua and Mullineaux, 2004; Li et al., 2004; Li et al., 2006). 46 

In the spillover model, the energy transfer from PBS to PSII remains equal in both states, but 47 

the excess energy absorbed by PSII is transferred to PSI (spillover) in State II via a process 48 

involving the movement of photosystems (Ley and Butler, 1980; Bruce and Biggins, 1985; 49 

Olive et al., 1986; Biggins and Bruce, 1989; Biggins et al., 1989; Vernotte et al., 1992; El 50 

Bissati et al., 2000; Federman et al., 2000). The hypothesis that changes at the level of 51 

photosystems are responsible for state transitions is supported by various observations: state 52 

transitions occur in mutants lacking PBSs (Bruce et al., 1989; Olive et al., 1997; El Bissati et 53 

al., 2000); state transitions are accompanied by structural changes in membranes (Vernotte et 54 

al., 1992; Folea et al., 2008) and PSI monomerization/trimerization (Kruip et al., 1994; 55 

Schluchter et al., 1996; Aspinwall et al., 2004); and membrane fluidity influences state 56 

transitions (El Bissati et al., 2000). Nevertheless, there has been no clear demonstration that 57 

the spillover is larger in State II than in State I, although some studies have suggested this (see 58 

(Mullineaux et al., 1991; Bruce and Salehian, 1992)). It was also proposed that these two 59 

mechanisms coexist and are responsible for the fluorescence changes observed in state 60 

transitions: movement of PBS (changes in direct energy transfer from PBSs to photosystems) 61 

and movement of photosystems (changes in spillover) (Scott et al., 2006). However, more 62 

recent studies have questioned the definition of cyanobacterial state transitions as a rebalance 63 

of excitation energy arriving to one or another photosystem. The increase in fluorescence in 64 



 

4 
 

State I has principally been associated with the functional detachment of PBS from the 65 

photosystems (Kana et al., 2009; Kana, 2013; Chukhutsina et al., 2015), whereas the decrease 66 

in fluorescence in State II was mainly attributed to a specific fluorescence quenching of 67 

Photosystem II not involving spillover (Ranjbar Choubeh et al., 2018). 68 

Furthermore, the states of plants and cyanobacteria in darkness differ: while plants are 69 

generally in State I, cyanobacteria are in State II (Aoki and Katoh, 1982; Mullineaux and 70 

Allen, 1986). In cyanobacteria, respiration and photosynthesis occur in the thylakoid 71 

membranes, and PQ, cytochrome (cyt) b6f and plastocyanin (or cyt c6) are electron carriers 72 

common to both electron transport chains (review (Mullineaux, 2014)). During respiration, 73 

the homologs of mitochondrial Complex I (NDH-1) and Complex II (Succinate 74 

dehydrogenase, SDH) reduce the PQ pool, and different oxidases oxidize it (for review see 75 

(Mullineaux, 2014)). Different cyanobacterial strains present different PQ pool reduction 76 

states in darkness, giving different levels of dark PSII fluorescence (see for ex (Misumi et al., 77 

2016)). Upon illumination, PSI is activated and the PQ pool becomes more oxidized, leading 78 

to State I (Mullineaux and Allen, 1990; Campbell et al., 1998).  79 

In plants and green algae, the redox sensor of the PQ pool is the cyt b6f complex, 80 

which interacts with a specific kinase of the major membrane chlorophyll antenna, LHCII 81 

(Wollman and Lemaire, 1988). Phosphorylation of LHCII trimers induces their detachment 82 

from PSII and partial (or total) attachment to PSI, inducing the transition to State II (Kyle et 83 

al., 1984). Two reports suggest that cyt b6f also plays a role in cyanobacterial state transitions 84 

(Mao et al., 2002; Huang et al., 2003). However, further evidence is still needed to confirm its 85 

direct involvement. In this sense, the relationship between phosphorylation and cyanobacterial 86 

state transitions is also an open question. Allen and coworkers suggested that specific types of 87 

phosphorylation could occur during state transitions (Allen et al., 1985), but this was not 88 

confirmed in more recent works. Nevertheless, analysis of phospho-proteomes showed that 89 

phosphorylation takes place in PBSs and photosystems (Yang et al., 2013; Chen et al., 2015; 90 

Spat et al., 2015). In addition, when residues Ser22, 49 and 154 and Thr94 of phycocyanin 91 

(PBS protein) were mutated to non-phosphorylatable amino acids in Synechocystis cells, the 92 

kinetic and amplitude of transition to State I induced by light illumination of dark adapted 93 

cells appeared to be affected (Chen et al., 2015). Some functions of Ser/Thr kinases (Spk) 94 

have already been described. For example, SpkA is involved in the control of cell motility 95 

(Kamei et al., 2001; Panichkin et al., 2006); SpkB participates in the oxidative stress response 96 

by phosphorylating glycyl-tRNA-synthetase E-subunit (Mata-Cabana et al., 2012); SpkE 97 

might be involved in the regulation of nitrogen metabolism (Galkin, 2003); SpkD might be 98 
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involved in adjusting the pool of TCA (tricarboxylic acid) cycle metabolites (Laurent et al., 99 

2008); SpkG plays an essential role in high-salt resistance (Liang et al., 2011); SpkC, SpkF 100 

and SpkK are involved in the phosphorylation of the GroES chaperone protein (Zorina et al., 101 

2014); and SpkG is involved in the phosphorylation of Fd5 (ferredoxin 5) protein (Angeleri et 102 

al., 2018). 103 

As a whole, the molecular mechanism behind cyanobacterial state transitions is still a 104 

matter of discussion, although many hypotheses have been proposed. Therefore, we decided 105 

to further study this mechanism by specifically addressing the role of the cyt b6f complex in 106 

this process.  107 

In the past decades, state transitions have mainly been studied in the cyanobacteria 108 

Synechocystis PCC 6803 (hereafter Synechocystis) (for ex: (Vernotte et al., 1992; Emlyn-109 

Jones et al., 1999; McConnell et al., 2002; Kondo et al., 2009; Chukhutsina et al., 2015)), 110 

Synechococcus PCC7002 (McConnell et al., 2002; Dong and Zhao, 2008; Dong et al., 2009) 111 

and Spirulina platensis (Li et al., 2004; Li et al., 2006). In these strains, the changes in 112 

fluorescence related to state transitions (dark versus blue [or far-red] illumination) are rather 113 

small, which makes mechanistic studies difficult. The differences in PSII fluorescence in 114 

darkness (State II) and under blue-light illumination (State I) are significantly larger in 115 

Synechococcus elongatus strain than in Synechocystis. Therefore, in the current study, we 116 

characterized state transitions in S. elongatus and compared them to those in Synechocystis 117 

PCC 6803, which allowed us to obtain clearer conclusions. Our results confirm recently 118 

published data demonstrating that a large amplitude of PSII fluorescence quenching is 119 

induced in State II in S. elongatus (Ranjbar Choubeh et al., 2018). This PSII quenching 120 

appears to be unrelated to spillover. In addition, not only do we show that the results and 121 

arguments used to link the cyt b6f complex with state transitions were not conclusive, but we 122 

also demonstrate that cyt b6f and protein phosphorylation reactions do not participate in this 123 

process in cyanobacteria. Thus, different signaling pathways are involved in state transitions 124 

in cyanobacteria compared to plants and green algae. 125 

 126 

RESULTS 127 

State transitions in S. elongatus and Synechocystis  128 

77 K fluorescence spectra in State II and State I 129 
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The absorbance spectra indicate that, under our growth conditions, S. elongatus 130 

presents a higher phycocyanin (PC, absorbance at 620 nm) to chlorophyll (Chl, absorbance at 131 

680 nm) ratio than Synechocystis (Figure 1). In addition, the PSI to PSII ratio (measured by 132 

(FA, FB)- and TyrD+ EPR signals) was around 2–3 in S. elongatus and 4–5 in Synechocystis 133 

cells (for details, see Methods). 134 

Figure 2 compares the low temperature (-196.15°C) 77 K fluorescence emission 135 

spectra of dark and blue-light adapted S. elongatus (A, C) and Synechocystis (B, D) cells. At 136 

this temperature, the fluorescence of both photosystems is visible, while at room temperature 137 

only PSII-related fluorescence is observed. 138 

Supplemental Figures 1 and 2 show the Gaussian decomposition of these spectra, 139 

providing a visualization of different components of the spectra. When the PBSs were 140 

preferentially excited (excitation at 590 nm), we observed a large peak at 650-660 nm related 141 

to PC and allophycocyanin (APC) fluorescence, a peak at 683 nm related to the chlorophyll 142 

binding protein CP43 and the last emitters of PBS, a peak (or shoulder in S. elongatus) at 695 143 

nm corresponding to Reaction Center II and CP47, and finally a peak at 718 nm (S. elongatus) 144 

or 722 nm (Synechocystis) related to PSI fluorescence (Vandorssen et al., 1987; Siefermann-145 

harms, 1988). The PSII-related peaks at 683 and 695 nm were higher in blue-light adapted 146 

cells (State I) than in dark-adapted cells (State II). The differences between the peaks in State 147 

I and II were larger in S. elongatus than in Synechocystis. Regarding PSI, the fluorescence 148 

was similar in dark- and light-adapted cells of both strains. 149 

When the chlorophyll was preferentially excited (excitation at 430 nm), the PSI 150 

emission peak (at 718 nm in S. elongatus and 722 nm in Synechocystis) was the highest in 151 

both strains. In addition, the PSII-related peaks at 685 and 695 nm were much higher in S.152 

elongatus than in Synechocystis, corresponding to a lower PSI to PSII ratio (2–3 in S.153 

elongatus versus 4–5 in Synechocystis). The PSI related peaks were similar in darkness and 154 

blue-light illumination. The absence of changes in PSI-related fluorescence during state 155 

transitions was confirmed by normalizing the S. elongatus spectra with an external dye 156 

(Rhodamine B) (Figure 3). The PSII-related peaks increased upon blue-light illumination in 157 

both strains. Nevertheless, the emission at 695 nm increased more than the one at 683 nm 158 

(Supplemental Figures 1 and 2). 159 

160 

Effect of hyper-osmotic buffers on state transitions 161 
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We investigated the effects of the hyper-osmotic buffers betaine (1 M, pH 7.0), 162 

sucrose (1 M) and phosphate (0.5 M, pH 7.5) on state transitions in S. elongatus cells (Figure 163 

4 and Supplemental Figure 3). Control cells were incubated in the absence of chemicals in the 164 

dark (cells-II) or under blue-light illumination (cells-I). Aliquots of these cells were rapidly 165 

frozen. Cells-II and cells-I were then incubated with chemicals for 5 min under identical 166 

conditions (dark for cells-II, blue-light illumination for cells-I). Cells-II were then transferred 167 

to blue-light for 5 minutes before freezing, whereas Cells-I were transferred to dark for 5 168 

minutes before freezing. 77 K fluorescence spectra were then measured with excitation at 430 169 

nm and at 590 nm. The first effect observed upon addition of betaine and sucrose was a large 170 

general quenching of fluorescence, suggesting that these chemicals have an effect not only on 171 

PBSs but also on membranes (Figure 4 and Supplemental Figure 3). The quenching effect of 172 

hyper-osmotic media was previously reported in Synechocystis by (Papageorgiou et al., 1999), 173 

who attributed it to alterations in membrane fluidity. Nevertheless, the PBS quenching 174 

seemed to be larger than that of Chl, since the 683/695 and 660/695 ratios decreased after the 175 

addition of betaine and sucrose with excitation at 590 nm. By contrast, phosphate addition had 176 

a more specific quenching effect on PBS fluorescence, as seen by the relatively large decrease 177 

in fluorescence at 660 nm (Supplemental Figure 3).  178 

As previously observed (Joshua and Mullineaux, 2004; Li et al., 2004; Li et al., 2006), 179 

no fluorescence changes were detected in 77 K emission spectra obtained by excitation at 590 180 

nm when state transitions were tentatively induced in the presence of betaine, sucrose or 181 

phosphate (Figure 4 and Supplemental Figure 3). In addition, the chemicals also inhibited the 182 

fluorescence changes observed in the 77 K emission spectra obtained with 430 nm excitation 183 

(Figure 4 and Supplemental Figure 3). These results demonstrate that betaine, sucrose and 184 

phosphate also block the changes produced in the membranes. In conclusion, the effect of 185 

these hyper-osmotic buffers on state transitions could be due to the inhibition of PBS 186 

movement and/or processes occurring in the membrane.  187 

 188 

State transitions kinetics and the redox state of the PQ pool in darkness  189 

 190 

Figure 5 shows typical traces of room temperature fluorescence kinetics measured 191 

with a PAM fluorometer in dark-adapted S. elongatus (A) and Synechocystis (B) cells 192 

successively illuminated by low intensities of blue and orange light. Dark-adapted cells 193 

presented a low dark maximal fluorescence (Fmd), indicating that the cells were in State II. 194 

Upon illumination with blue-light, which preferentially excites chlorophyll, a large and rapid 195 
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increase in Fm’ was observed (arriving at a maximal Fmb’ level), indicating the transition to 196 

State I. The ratio Fvb to Fvd (Fv = variable fluorescence = Fm-F0) was approximately 4.0 in S. 197 

elongatus but only 1.2 in Synechocystis cells (Figure 5). The dark Fvd/F0 was much smaller in 198 

S. elongatus than in Synechocystis (0.22 versus 1.09). By contrast, small differences were 199 

observed in the Fvb/F0 ratio (0.83 versus 1.26). These data suggest that dark-adapted S. 200 

elongatus cells were in a “stronger” State II than Synechocystis cells.  201 

In order to elucidate whether this could be explained by a more reduced PQ pool in 202 

dark-adapted S. elongatus, we estimated the redox state of the PQ pool in each strain by 203 

measuring fluorescence induction curves in the absence and presence of DCMU, which 204 

inhibits electron transfer between the primary (QA) and secondary (QB) quinones in PSII 205 

(Figure 6). When dark-adapted cells are illuminated, the PQ pool becomes more reduced and 206 

the photochemical centers become partially closed. As a consequence, a concomitant 207 

fluorescence increase is observed until a steady state level is reached. The increase kinetics 208 

depends on both the initial redox state of the PQ pool and its rate of photochemical reduction 209 

under illumination. However, when DCMU is present,a maximum level of fluorescence is 210 

reached in which all the centers are closed and the rate of fluorescence increase depends only 211 

on the antenna size and is independent of the dark redox state of the PQ pool. Figure 7 (A and 212 

B) shows the fluorescence induction curves in the presence and absence of DCMU for S. 213 

elongatus and Synechocystis dark-adapted cells. The area between the curves is much larger 214 

for dark-adapted Synechocystis than for S. elongatus cells (59% vs. 33% of the DCMU area, 215 

respectively).  216 

Because the area between the curves is at least partially proportional to the amount of 217 

dark-oxidized PQ (Bennoun, 1982; Srivastava et al., 1995), these results suggest that the PQ 218 

pool is more reduced in dark-adapted S. elongatus cells than in Synechocystis. However, 219 

under illumination, the rates of PQ reduction by PSII and of PQH2 (reduced PQ) reoxidation 220 

by PSI also affect the kinetics of fluorescence induction. These rates could be different 221 

between the strains, as the PSI to PSII and the phycobiliprotein to chlorophyll ratios are 222 

different in Synechocystis and S. elongatus. Therefore, we performed a control experiment in 223 

which the PQ dark reduction level in each strain was modified without changing the size of 224 

the antenna or PSI and PSII activities. The dark PQ redox state depends on the relative 225 

activities of NDH-1/SDH and of cyanide-sensitive terminal oxidases (Cyd and Cox) (see 226 

Figure 6); thus, the addition of sodium cyanide (NaCN) should lead to a large PQ-reduction 227 

level. A large effect of NaCN was observed in Synechocystis cells, in which the area between 228 

the curves (+/- DCMU) decreased from 59 in the absence of NaCN to 27% in its presence 229 
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(Figure 7). By contrast, the effect was much smaller in S. elongatus cells, with only a decrease 230 

from 33 to 24% (Figure 7). These results strongly suggest that the PQ pool was more strongly 231 

reduced in S. elongatus than in Synechocystis. 232 

The illumination of blue-light adapted cells with orange light (which preferentially 233 

excites phycobiliproteins) induced a decrease in Fm’ in both cyanobacterial strains (Figure 5). 234 

In Synechocystis cells, the steady state Fmo was similar to Fmd, whereas in S. elongatus, the 235 

Fmo was higher. As already mentioned, the “strength” of State II depends on the concentration 236 

of reduced PQ. Thus, our results indicate that the PQ pool was more strongly reduced in dark-237 

adapted S. elongatus than in orange light-illuminated cells. This was not the case in 238 

Synechocystis cells, where the redox state of the PQ pool appeared to be similar under both 239 

conditions.   240 

 241 

Is cytochrome b6f involved in state transitions in S. elongatus?  242 

Effect of DMBQ and DBMIB on state transitions. 243 

Mao et al. (Mao et al., 2002) and Huang et al. (Huang et al., 2003) proposed that cyt 244 

b6f is involved in the signaling pathway of cyanobacterial state transitions, as observed in 245 

green algae and plants. They based their proposal on the results obtained by chemically 246 

inducing state transitions in Synechocystis and Synechococcus PCC 7002 using 2,6-247 

dimethoxy-1,4-benzoquinone (DMBQ), p-benzoquinone (PBQ) and 2,5-dibromo-3-methyl-6-248 

isopropyl-p-benzoquinone (DBMIB). DMBQ and PBQ accept electrons from the PQ pool 249 

(Preston and Critchley, 1988), while DBMIB inhibits cyt b6f activity by attaching to the Qo 250 

site (the PQH2 binding site), preventing reoxidation of the PQ pool (Roberts and Kramer, 251 

2001) (Figure 6). These authors found that the addition of DMBQ (or PBQ) to dark-adapted 252 

cells induced an increase in Fmd, which they attributed to a partial transition to State I 253 

triggered by oxidation of the PQ pool. The simultaneous addition of DMBQ and DBMIB 254 

inhibited this increase. Both authors hypothesized that under these conditions, the PQ pool 255 

remained oxidized, which led them to conclude that the binding of DBMIB to the cyt b6f Qo 256 

site was primarily involved in the transition to State II. However, none of these studies 257 

demonstrated that the PQ pool remained oxidized under these conditions.  258 

Figure 8 shows the effect of DMBQ and DBMIB on Fmd in dark-adapted S. elongatus 259 

cells. The addition of DMBQ (250 µM) induced a slow increase in Fmd (and F0) related to a 260 

partial transition to State I. Higher concentrations of DMBQ cannot be used because they 261 

induce fluorescence quenching. When DBMIB (20 µM) was subsequently added, a rapid 262 
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decrease of Fmd (and F0) was observed (Figure 8A). When both chemicals were 263 

simultaneously added, the DMBQ-induced increase in fluorescence was inhibited (Figure 264 

8B). These effects of chemicals were therefore similar to those previously observed in 265 

Synechocystis and Synechococcus PCC 7002 cells (Huang et al., 2003; Mao et al., 2003).  266 

We then explored the dark redox state of the PQ pool in S. elongatus cells by 267 

analyzing the kinetics of fluorescence induction in the presence and absence of DCMU (as 268 

described in the previous section). The measurements were carried out in dark-adapted cells 269 

(15 min) in the presence of DMBQ alone (250 µM) or DMBQ and DBMIB (5 and 10 µM). 270 

The measurements were done after 3 min of incubation with DMBQ and at 1 and 3 min after 271 

the addition of DBMIB (Figure 9). As mentioned above, the PQ pool is reduced in dark-272 

adapted S. elongatus cells: the area between the curves (+/- DCMU) is small and Fmd is low 273 

(Figure 7A). The addition of DMBQ increased the level of Fmd and the area between the two 274 

curves (+/- DCMU), suggesting that the PQ pool had become oxidized (Figure 9A). Since 275 

DMBQ also accepts electrons from the PQ pool during the light measurement, the larger area 276 

between the curves is also partially related to its activity during the measurement.  277 

The addition of 5 µM DBMIB induced a rapid decrease of Fmd and of the area between 278 

the curves. The smaller area indicated that the PQ pool was more strongly reduced in darkness 279 

and during the light measurement in the presence of DBMIB (Figure 9B). Longer periods of 280 

incubation with DBMIB induced a larger decrease in area, indicating a larger reduction of the 281 

PQ pool even in the presence of DMBQ (Figure 9C). In line with these results, the addition of 282 

10 µM DBMIB had a faster and larger effect (Figure 9D and E). Thus, the DMBQ-induced 283 

transition to State I is inhibited by DBMIB, likely because DBMIB treatment leads to the 284 

reduction of the PQ pool, even in the presence of DMBQ, at least in S. elongatus. 285 

We further studied the effects of DBMIB by adding different concentrations of this 286 

chemical (2.5, 5, 10, 15 and 20 µM) to S. elongatus cells adapted to State 1 by illumination 287 

with blue-green light or by adding DMBQ in darkness (Figure 8C). Under illumination, all 288 

concentrations of DBMIB efficiently induced a large transition to State 2 with rather similar 289 

kinetics (red curves). However, concentrations higher than 5 µM were necessary to induce the 290 

transition to State 2 in darkness and in the presence of DMBQ. In this case, the rate and 291 

amplitude of the transition depended on DBMIB concentration. Thus, the same concentration 292 

of DBMIB had different effects under illumination and in darkness, in the presence of 293 

DBMQ. For example, 5 µM DBIMB induced almost maximum fluorescence quenching under 294 

illumination but was unable to induce any quenching in darkness in the presence of DMBQ. 295 

Upon illumination of dark-adapted cells in the presence of DMBQ and different 296 
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concentrations of DBMIB (2.5, 5, 10, 15 µM), larger fluorescence quenching was induced 297 

(Figure 8D). These results strongly suggest that the transition to State II is induced by the 298 

reduction of the PQ pool and not by the binding of DBMIB to the Qo site in cyt b6f.  299 

 300 

Effect of the TMPD on state transitions  301 

 302 

We then looked for another chemical compound that does not interact with cyt b6f and 303 

can oxidize the PQ pool in the presence of DBMIB to further confirm that this complex does 304 

not play a role in state transitions. N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) 305 

represents such a compound, since it restores oxygen evolution by reversing the inhibitory 306 

effect of DBMIB on the photosynthetic electron transport chain (Draber et al., 1970; Nanba 307 

and Katoh, 1985) (Figure 6). Nanba and Satoh (Nanba and Katoh, 1985) demonstrated that 308 

TMPD accepts electrons from the PQ pool and directly donates them to P700+, bypassing the 309 

DBMIB-poisoned cyt b6f complex. However, TMPD is also a good electron acceptor from 310 

PSI and can generate cyclic electron transfer around PSI (Hiyama and Ke, 1972) (Figure 6). 311 

This chemical has opposite effects on state transitions, depending on the preferential electron 312 

donor to TMPD (PQ pool versus PSI). 313 

It is expected that, under blue-light in the absence of DBMIB (State I), the addition of 314 

TMPD should have no effect on fluorescence if TMPD is efficient at oxidizing reduced PQ, 315 

as the PQ pool should remain oxidized. However, exactly the opposite effect was observed: a 316 

large quenching of fluorescence was induced upon TMPD addition. The amplitude of 317 

quenching depended on the TMPD concentration (Supplemental Figure 4A-D). This effect 318 

can be explained by assuming that, under these conditions, TMPD is primarily involved in 319 

cyclic electron transport and functions poorly as an oxidizer of reduced PQ. Cyclic electron 320 

transport also limits linear electron flow through cyt b6f and consequently contributes to PQ 321 

reduction. In accordance with the poor efficiency of TMPD in oxidizing reduced PQ under 322 

these conditions, the addition of TMPD to DBMIB-poisoned cells led to no change in 323 

fluorescence, indicating that State II was maintained (Supplemental Figure 4E). In addition, 324 

TMPD did not hinder the effect of DBMIB on state transitions: large fluorescence quenching 325 

was observed even in the presence of TMPD (Supplemental Figure 4F).   326 

In an attempt to modify the behavior of TMPD, we added methyl viologen (MV) to 327 

the reaction. MV is a good electron acceptor from PSI that could compete with TMPD at this 328 

level. This approach was found to be successful: the addition of DBMIB following that of 329 

TMPD led to only a small decrease in fluorescence, indicating that under these conditions, 330 
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TMPD was efficient at performing electron uptake from the PQ pool (Supplemental Figure 331 

4G). Notably, the presence of MV did not affect state transitions in the absence of TMPD 332 

(Supplemental Figure 4F and G). 333 

More importantly, when TMPD was added in the presence of MV to largely quenched 334 

DBMIB-poisoned cells, it induced a large increase in fluorescence related to the transition to 335 

State 1 (Figure 10). The final Fv was 70% that of cells under blue-light illumination in the 336 

absence of chemicals. The transition to State 1 induced by TMPD under blue-light 337 

illumination was larger than that induced by DMBQ in darkness (55%). Thus, TMPD is able 338 

to reverse the effect of DBMIB by taking electrons from PQ and giving them to PSI, 339 

bypassing the inhibited cyt b6f complex. Similar results were obtained with Synechocystis 340 

cells using 3 mM MV and 7.5 µM TMPD (Figure 10). In conclusion, the transition to State I 341 

can be induced even when cyt b6f is inhibited by DBMIB by partially oxidizing the PQ pool. 342 

 343 

Are protein phosphorylation reactions required for cyanobacterial state transitions?  344 

In plants and green algae, conformational changes induced in the cyt b6f complex 345 

(especially in the Rieske protein) by the occupancy of the Qo site by a PQH2 molecule (Zhang 346 

et al., 1998; Zito et al., 1999; Breyton, 2000; Finazzi et al., 2001) activates a specific kinase 347 

(STN7/Stt7) (Depege et al., 2003; Bellafiore et al., 2005)), which phosphorylates the mobile 348 

trimers of LHCII, inducing their detachment from PSII. As previously mentioned, at least two 349 

studies suggested that protein phosphorylation by one specific Ser/Thr kinase could also 350 

trigger cyanobacterial state transitions (Allen et al., 1985; Chen et al., 2015). To test this 351 

hypothesis, we created Synechocystis protein kinase and phosphatase mutants. Synechocystis 352 

has 12 genes encoding putative Ser/Thr kinases (SPTKs). Seven of these genes encode 353 

proteins belonging to the PKN2 subfamily (spkA to spkG) and five belonging to the ABC1 354 

subfamily (spkH to spkL) (Zorina, 2013). Each gene was individually deleted by replacing it 355 

with a kanamycin resistance cassette (see Methods for details). We also individually deleted 356 

genes encoding nine phosphatases: slr0328 (PTP family), sll1771, slr1860, sll1033, sll0602, 357 

slr0114, slr1983 (PPM family), sll1387 (PPP family) and slr0946. Thus, we created 12 single 358 

Synechocystis kinase mutants and 9 single Synechocystis phosphatase mutants. To determine 359 

if the mutants were affected in state transitions, we illuminated dark-adapted mutant cells with 360 

blue light to induce the transition to State I, followed by orange light to induce the transition 361 

to State II (Figure 11). All of the dark-adapted single mutants went to State I upon blue light 362 

illumination and then to State II during orange light illumination (Figure 11 and Supplemental 363 

Figure 5). The rates of decrease in fluorescence during the State I to State II transition were 364 
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similar in WT and mutant cells (Figure 11 and Supplemental Figure 5). These experiments 365 

indicate that no specific Ser/Thr kinase or phosphatase is involved in cyanobacterial state 366 

transitions, as it is the case in green algae and plants. 367 

To confirm that phosphorylation reactions are not essential for cyanobacterial state 368 

transitions, we tested the effects of kinase and phosphatase inhibitors on Synechocystis and S.369 

elongatus. Staurosporine and K252a (a derivative of staurosporine) are potent inhibitors of 370 

Ser/Thr and Tyr kinases that interact with their ATP binding sites ((Fernandez et al., 2006; 371 

Nakano and Omura, 2009)). NaF inhibits Ser/Thr and acid phosphatases and Na3VO4 inhibits 372 

Tyr and alkaline phosphatases ((Delphin et al., 1995; McCartney et al., 1997) and references 373 

inside). Staurosporine and NaF were shown to inhibit state transitions in the green alga 374 

Chlamydomonas reinhardtii ((Delphin et al., 1995) and references inside). Figure 12 shows 375 

that the presence of staurosporine or K252a, which were added in excess (21 µM and 1 µM, 376 

with the IC50 of these compounds 0.6 µM and 96 nM, respectively (Nakano and Omura, 377 

2009)) did not inhibit state transitions in Synechocystis or S. elongatus. 378 

To confirm that these kinase inhibitors are able to enter cyanobacterial cells and inhibit 379 

phosphorylation reactions, we tested their effects on the phosphorylation of the PII protein in 380 

S. elongatus. The PII protein (glnB gene product) is involved in the tight coordination of381 

carbon and nitrogen assimilation. Its activity involves the phosphorylation and 382 

dephosphorylation of a Ser residue (Forchhammer and Tandeau de Marsac, 1995a, 1995b). In 383 

ammonium-grown cells, PII is completely dephosphorylated. The transfer of cells to medium 384 

lacking combined nitrogen induces phosphorylation of PII (Forchhammer and Tandeau de 385 

Marsac, 1995a, 1995b). The phosphorylation state of PII can be analyzed by gel 386 

electrophoresis in a phos-tag gel SDS page system and by immunoblot detection. In this 387 

system, phosphorylated proteins migrate more slowly than non-phosphorylated ones 388 

(Kinoshita and Kinoshita-Kikuta, 2011). Figure 12G shows that the presence of staurosporine 389 

and K252a completely inhibited the phosphorylation of the PII protein under nitrogen 390 

starvation conditions. This result indicates that both kinase inhibitors entered into S. elongatus 391 

cells and were able to inhibit protein phosphorylation. 392 

Finally, phosphatase inhibitors (NaF and Na3VO4) also did not affect state transitions 393 

(Figure 13). Nevertheless, NaF induced the partial inhibition of the oxygen evolving activity 394 

of PSII (Supplemental Figure 6) and a general decrease in fluorescence (Figure 13) in 395 

Synechocystis, indicating that this chemical entered the cells. In conclusion, our experiments 396 

show that phosphorylation reactions are not involved in cyanobacterial state transitions. 397 

398 
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DISCUSSION 399 

While the mechanism of state transitions in plants and green algae has been largely 400 

elucidated, it remains to be characterized in cyanobacteria. Contradictory hypotheses have 401 

been proposed about cyanobacterial state transitions based on studies addressing different 402 

aspects of the mechanism: the movement of PBS, spillover, reorganization of membrane 403 

complexes, involvement of Cyt b6f and/or phosphorylation reactions in signal transduction. 404 

However, none of these hypotheses has been definitively supported. Our results help to 405 

elucidate open questions about the mechanism behind the large fluorescence quenching 406 

observed in State II and the alleged role of the cyt b6f complex in the signaling pathway 407 

involved in cyanobacterial state transitions. 408 

409 

The contributions of phycobilisome versus the membrane to state transitions 410 

It was previously shown that PBS can easily move and that high concentrations of 411 

betaine, sucrose and phosphate inhibit the diffusion of PBS and state transitions (Joshua and 412 

Mullineaux, 2004; Li et al., 2004; Li et al., 2006). Li and coworkers (Li et al., 2004) also 413 

observed that, in Spirulina platensis, betaine inhibits changes in 77 K emission spectra with 414 

430 nm excitation. However, the authors did not discuss this last result. Based on these works, 415 

it was concluded that the movement of PBS from one photosystem to the other was the main 416 

reason for the observed changes in fluorescence. By contrast, we demonstrated that these 417 

chemicals, in addition to hindering PBS movement, inhibit fluorescence changes that depend 418 

on membrane processes. No fluorescence change in 77 K emission spectra was detected in the 419 

presence of betaine, sucrose or phosphate upon cells illumination, not only when PBSs were 420 

excited but also when Chl was excited. Thus, based on these experiments, it cannot be 421 

concluded that the movement of PBS is the main contributor to state transitions in 422 

cyanobacteria. 423 

Our experiments did not allow us to distinguish which changes, if any, occur at the 424 

level of PBS during state transitions: detachment of PBS from one or both photosystems or 425 

changes in energy transfer from PBS to one or the other photosystem. Nevertheless, we 426 

expect the contribution of these changes to be small in both S. elongatus and Synechocystis, 427 

since the main increase in fluorescence emission from State II to State I was related to PSII 428 

(G3, 695 nm emission peak) (Supplemental Figures 1 and 2). 429 

430 

Photosystem II quenching is involved in State II 431 
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Van Amerongen’s group recently showed that state transitions involve a reversible 432 

quenching of PSII fluorescence independently of spillover changes in S. elongatus cells 433 

(Ranjbar Choubeh et al., 2018). They measured the fluorescence decay kinetics of cells in 434 

State II and State I with a streak camera using 430 nm or 577 nm excitation at 77 K. By 435 

performing global analysis of the data, the authors obtained decay-associated spectra. When 436 

430 nm excitation was used, PSII emission decreased, but the decay-associated spectra 437 

showed that PSI emission was similar in State I and State II. This argues against a change in 438 

spill-over during state transitions. This was also observed in Synechocystis cells (Ranjbar 439 

Choubeh et al., 2018). 440 

Our results confirm these observations. We showed that both the 683 nm and 695 nm 441 

peaks decrease in State II (under Chl and PBS excitation), whereas the 718 nm peak did not 442 

change (see Supplemental Figures 1 and 2, including peak deconvolution to visualize different 443 

components of the spectra). The absence of changes in PSI-related fluorescence during state 444 

transitions was confirmed by normalizing the spectra with an external dye (Rhodamine B) 445 

(Figure 3). These results indicate that PSII emission is largely quenched in State II and that 446 

spillover from PSII to PSI does not contribute to this quenching. The PSII-related quenching 447 

mechanism remains to be elucidated.  448 

 449 

The role of Cyt b6f in cyanobacterial state transitions 450 

One of the big questions that remain to be answered about the mechanism of 451 

cyanobacterial state transitions is how the signal is transmitted from the PQ pool to the PBS 452 

and/or photosystems to induce their movements or fluorescence quenching. In plants and 453 

green algae, the binding (and subsequent release) of PQH2 in the Qo site of the cyt b6f 454 

complex plays a critical role in the activation of a specific Ser/Thr kinase that phosphorylates 455 

LHCII (Vener et al., 1995; Vener et al., 1997; Zito et al., 1999). The phosphorylated LCHII 456 

detaches from PSII and totally (or partially) associates with PSI (Vener et al., 1997; Wollman, 457 

2001). The role of the Qo site in state transitions was first suggested based on the effect of 458 

DBMIB in Chlamydomonas, where DBMIB inhibits State I to State II transition, although in 459 

its presence, the PQ pool is largely reduced (Finazzi et al., 2001). By contrast, in 460 

cyanobacteria, DBMIB induces the State I to State II transition. This occurs even in the 461 

presence of DCMU (which inhibits photoreduction of the PQ pool by PSII) or DMBQ (which 462 

oxidizes the PQ pool by taking electrons from PQH2) (present results and (Mao et al., 2002; 463 

Huang et al., 2003)). These authors proposed that the action of DBMIB is related to its 464 
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binding to the Qo site and not to the reduction of the PQ pool. The authors assumed that the 465 

PQ pool remains oxidized in the presence of both DBMIB and DMBQ (or PBQ). 466 

Here, we demonstrated that this is not true, as the addition of DBMIB induced 467 

reduction of the PQ pool even in the presence of DMBQ. Moreover, we demonstrated that the 468 

same concentration of DBMIB has different effects on state transitions depending on the 469 

experimental conditions. For instance, DBMIB at 5 µM was unable to induce the transition to 470 

State II in dark-adapted cells in the presence of DMBQ, whereas it induced large quenching in 471 

blue-green light-adapted cells in the absence or presence of DMBQ. The amplitude of 472 

fluorescence quenching induced by 10 µM DBMIB was also larger under illumination than in 473 

darkness in the presence of DMBQ. Altogether, these experiments strongly suggested that the 474 

cyt b6f complex is not involved in cyanobacterial state transitions. The finding that the 475 

addition of TMPD to DBMIB-poisoned cells induced a large increase in fluorescence related 476 

to PQ oxidation and transition to State I indicates that DBMIB binding to the Qo site of cyt 477 

b6f is not involved in the transition to State II. Under these conditions, DBMIB remained 478 

attached to the Qo site, and the cyt b6f complex was inactive. As an alternative, it was recently 479 

proposed that the single chlorophyll a (Chl a) molecule present in cyt b6f could act as a redox 480 

sensor and signal transmitter during state transitions (Vladkova, 2016). This Chl a molecule is 481 

evolutionarily conserved and is present in all oxygen-evolving photosynthetic species 482 

(Vladkova, 2016). However, changes in this Chl a were induced by binding of DBMIB or 483 

PQH2 to the Qo site. Thus, based on our results, the involvement of this Chl a molecule in 484 

cyanobacterial state transitions is not likely. 485 

In addition, the characterization of 12 kinase and 9 phosphatase single mutants 486 

demonstrated that no specific protein kinase and/or phosphatase is necessary for 487 

cyanobacterial state transitions. More generally, the use of kinase and phosphatase inhibitors 488 

demonstrated that phosphorylation reactions are not essential for state transitions in 489 

Synechocystis and S. elongatus. Thus, signal transduction from the PQ pool to the antenna and 490 

the photosystems is completely different in cyanobacteria vs. green algae and plants. 491 

While DCMU and DBMIB have opposite effects on cyanobacterial state transitions, 492 

they have the same effect on the transcription of photosynthetic genes (Alfonso et al., 1999; 493 

Alfonso et al., 2000; El Bissati and Kirilovsky, 2001). Both DCMU and DBMIB induced an 494 

increase in psbA transcription and a decrease in psaE transcription when added into 495 

Synechocystis cells under white and orange illumination. These findings strongly suggest that 496 

cyt b6f is involved in the redox transcriptional regulation of photosynthetic genes in 497 

Synechocystis (Alfonso et al., 1999; Alfonso et al., 2000; El Bissati and Kirilovsky, 2001). In 498 
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conclusion, cyt b6f is not involved in cyanobacterial state transitions, but it appears to be 499 

involved in redox transcriptional regulation. 500 

Since it seems that in cyanobacteria, the principal effect of PQ reduction is an increase 501 

in PSII quenching and that cyt b6f is not involved in the signaling pathway, it is tempting to 502 

hypothesize that PSII itself senses the redox state of the PQ pool. Sensing cannot be linked to 503 

QA
- accumulation because both the presence of DCMU and the reduction of the PQ pool504 

increase QA
- concentration, but while DCMU induces the transition to State I, the reduction of505 

the PQ pool induces the transition to State II. DCMU binding and over-reduction of the PQ 506 

pool were previously found to accelerate photoinhibition but through different mechanisms 507 

(Kirilovsky et al., 1994; Fufezan et al., 2005; Fischer et al., 2006). In line with this 508 

observation, the QB site could be modified differently in the presence of DCMU or PQH2, 509 

leading to different effects on QA redox potential, recombination reactions, and the generation 510 

of PSII quenching related to State II. 511 

 The PQ pool redox state could be sensed not only at the level of the QB site but also 512 

by the QC hydrophobic tunnel. The existence of this Qc tunnel formed by cyt b559 and psbJ 513 

was suggested by the X-ray crystallographic structural model of PSII of 514 

Thermosynechococcus elongatus at 2.9 Å resolution (Guskov et al., 2009). The function of 515 

this tunnel as a quinone binding site remains to be confirmed, since later structures at higher 516 

resolution did not contain a quinone in this hydrophobic pocket (Umena et al., 2011). 517 

However, Synechocystis mutants containing mutations around the proposed QC site show 518 

altered state transitions, making this site another interesting target of study (Huang et al., 519 

2016). 520 

In addition of these QB/C sites, there are other ways by which the redox state of the PQ 521 

pool could be sensed; the participation of other known proteins or novel factors in the 522 

signaling pathway cannot be ruled out. Overall, while the PSII-quenching mechanism and the 523 

redox sensor of the PQ pool remain to be elucidated, our results rule out the involvement of 524 

cyt b6f in this process.  525 

526 

METHODS 527 

Culture conditions and replicates 528 

The cyanobacteria Synechocystis PCC 6803 and Synechococcus elongatus (PCC 7942) 529 

strains were grown photo-autotrophically in BG11 medium (Herdman et al., 1973). The cells 530 
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were incubated in a rotary shaker (120 rpm) at 31 °C illuminated by fluorescence white lamps 531 

(50 µmol photons m-2 s-1) under a CO2 enriched atmosphere. The cells were maintained in 532 

their logarithmic phase of growth for all experiments. The kinase and phosphatase mutants 533 

were grown in the presence of kanamycin (40 µg/mL). 534 

A biological replicate is a batch of cells on a particular day. The measurements were 535 

performed several times using the same batch of cells (technical replicates). The mean of each 536 

batch was calculated. The biologically independent experiments were performed on different 537 

days separated by at least a week. Thus, completely different cells were tested. 538 

539 

Construction of kinase and phosphatase mutants 540 

To obtain the kinase mutants (∆spkB, ∆spkD, ∆spkE, ∆spkF, ∆spkG, ∆spkI, ∆spkJ, 541 

∆spkK, ∆spkL) a 500 bp fragment in the upstream region of each kinase gene was cloned into 542 

the pMD T-18 vector (Takara, Japan) and digested with XbaI. The PRL446 plasmid 543 

containing the kanamycin cassette was also digested with XbaI. Both linear fragments were 544 

ligated to generate the plasmid use to transform Synechocystis WT cells in order to obtain the 545 

knockout kinase mutants. The strategy to obtain the ∆spkA and the ∆spkC mutants was similar 546 

with only two minor modifications: 1) the plasmid containing the 500 bp upstream fragment 547 

was digested with SmaI instead of XbaI. 2) To obtain the final construction, the linearized 548 

plasmid was ligated to the kanamycin cassette with blunt ends, and the pPM-kinase-upper-549 

kanamycin was obtained. 550 

In parallel, a 500 bp fragment in the downstream region of each kinase gene was 551 

cloned into the pMD T-18 vector (Takara, Japan) and digested with SalI to generate the 552 

downstream fragment. Blunt ends were generated in the downstream fragment and in the 553 

pPM-kinase-upper-kanamycin linearized using the SacI/SphI enzyme. The resulting blunt-end 554 

DNAs were ligated together. After testing the direction of the inserted downstream fragment 555 

by PCR, the pPM-kinase-upper-kanamycin-down was used to transform WT Synechocystis 556 

cells.  557 

To obtain the phosphatase mutants (∆slr0328, ∆sll1771, ∆slr1860, ∆sll1033, ∆sll0602, 558 

∆slr0114, ∆slr1983, ∆sll1387 and ∆slr0946), a 500 bp fragment upstream of each 559 

phosphatase gene, the kanamycin cassette and a 500 bp fragment downstream of each 560 

phosphatase gene were spliced together using the PCR overlap extension method to obtain the 561 

upper-kanamycin-down DNA fragment for each phosphatase gene. The resulting DNA 562 

fragments were supplemented with a thymine at both termini and inserted into the T-cloning 563 
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vector pMD T-18 (Takara, Japan) to generate the final pPM-phosphatase-upper-kanamycin-564 

down plasmids. 565 

Synechocystis WT cells were transformed with these plasmids to obtain the knockout 566 

kinase and phosphatase mutants. The presence of the kanamycin cassette replacing the kinase 567 

and phosphatase genes and the complete segregation of each mutant were tested by PCR 568 

amplification and sequencing. 569 

The oligonucleotides used in these constructions are described in Supplemental Table 570 

1.571 

The 'spkH Synechocystis mutant was kindly provided by Dr. Anna Zorina (Dimitry 572 

Los laboratory), and its construction is described in (Zorina et al., 2011). 573 

Fluorescence measurements 574 

PAM fluorometer 575 

State transitions were monitored using a pulse amplitude modulated fluorometer 576 

(101/102/103-PAM; Walz, Effeltrich, Germany) in a 1x1 cm square stirred cuvette. All 577 

experiments were carried out at 31°C on dark-adapted (15 min) whole cells at a chlorophyll 578 

concentration of 2.5 μg/mL. State I was induced by treatment with 85 µmol photons m-2 s-1 of 579 

blue-green light (halogen white light filtered by a Corion cut-off 550-nm filter; 400 to 500 580 

nm). State II was induced by treatment with 25 (or 40) µmol photons m-2 s-1 of orange light 581 

(halogen white light filtered by a Melles Griot 03 FIV 046 filter; 600 to 640 nm) or by dark 582 

incubation. Saturating flashes (400 ms x 1200 µmol photons m-2 s-1) were given to probe the 583 

maximum fluorescence level. The fluorescence parameters used in the analysis are the 584 

following: F0, basal fluorescence; Fmd, maximum fluorescence in darkness; Fm’, maximum 585 

fluorescence under illumination; Fmb’, maximum fluorescence under blue-light illumination; 586 

Fmo’, maximum fluorescence under orange light illumination; Fv = variable fluorescence = Fm-587 

F0; Fvd, variable fluorescence in darkness; Fvb, variable fluorescence under blue-light 588 

illumination. 589 

State transitions in the 'spkH mutant was measured in Turku (Finland) with a dual-590 

PAM and compared to its own WT. State I was induced by treatment with 50 µmol photons 591 

m-2 s-1 of blue-light (460 nm) and then State II by treatment with 50 µmol photons m-2 s-1 of592 

orange light (635 nm). The measuring light was at 620 nm. 593 

When mentioned, 2,6-dimethoxy-1,4-benzoquinone (DMBQ, 250 µM) and/or 2,5-594 

dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB, 2.5 to 20 µM), methyl viologen (2 595 
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mM or 3 mM) or N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD, 7.5 or 10 µM) were596 

added to the stirred cuvette. 597 

When mentioned, staurosporine (21 µM), K252a (1.07 µM), NaF (50 or 100 mM) or 598 

Na3VO4 (1 mM) were added to dark-adapted cells. The kinase inhibitors were incubated for 599 

90 min and the phosphatase inhibitors for 1 hour. Longer incubations gave the same results. 600 

State transitions were then measured. 601 

602 

PQ pool redox state estimations 603 

The PQ pool redox state was estimated by measuring fluorescence induction curves in 604 

the presence and absence of DCMU in a PSI fluorometer (PSI Instruments, Brno, Czech 605 

Republic). Whole cells (Chl concentration 2.5 μg/mL) were dark-adapted for 15 min at 31°C, 606 

and illuminated (orange light 180 µmol photons m-2 s-1, λ = 630 nm) in the 1-ms to 1-s time 607 

range with or without 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU, 10 μM). The 608 

measuring light for these experiments was blue (λ = 460 nm), and detection was in the far-red 609 

region (≥ 695 nm). The fluorescence induction curves were followed in each case, and the 610 

area between them was considered to be proportional to the oxidation state of the PQ pool. In 611 

addition, measurements in the presence of DMBQ (250 µM) and/or DBMIB (5 or 10 µM), 612 

with or without DCMU (10 μM) were performed. 613 

614 
Fluorescence emission spectra 615 

77 K Fluorescence emission spectra were monitored in a CARY Eclipse 616 

spectrophotometer (Varian, Santa Clara, USA). In all cases, whole cells (Chl concentration 617 

5.0 μg/mL) were dark-adapted for 15 min before the measurements. Then, spectra were 618 

recorded corresponding to State II. For State I spectra, cells were illuminated for 5 min with 619 

85 µmol photons m-2 s-1 of blue-green light (halogen white light filtered by a Corion cut-off 620 

550-nm filter; 400 to 500 nm). Samples were collected in RMN tubes and frozen by621 

immersion in liquid nitrogen. Excitation was made at 430 nm or 590 nm, and emission was 622 

scanned from 620 nm to 800 nm. All the spectra were normalized by the signal intensity at 623 

800 nm. When Rhodamine B (0.4 µM) was added as an internal standard, excitation was 624 

made at 430 nm and emission was scanned from 550 nm to 800 nm. In these cases, the spectra 625 

were normalized to the Rhodamine B peak at 568 nm. 626 



21 

To address the effects of high osmotic buffers in state transitions, betaine (1 M), 627 

sucrose (1 M) or K2HPO4/KH2PO4 buffer (0.5 M, pH 7.5) was added to cells pre-adapted to 628 

State I or State II. The cells were incubated with the different buffers for 5 min, before State II 629 

or I was induced by darkness or blue-light illumination (5 min), respectively. Samples were 630 

taken before and after 5 min incubation with the chemicals and at the end of the light/dark 631 

treatment. Excitation was at 430 nm or 590 nm, and emission was scanned from 620 nm to 632 

800 nm. All of the spectra were normalized by the signal intensity at 800 nm. 633 

634 

EPR measurements 635 

To assess the PSI/PSII ratio in the cyanobacterial strains, reduced FA/FB Fe-S centers 636 

and TyrD+ were measured as an estimation of PSI and PSII levels, respectively. First, 300 mL 637 

of cells (OD800 = 1.0) were harvested and washed with 50 mL of washing buffer (50 mM 638 

HEPES pH 8.0, 5 mM MgCl2). The cells were then centrifuged at 6000 rpm for 10 min at 20 639 

°C and washed again with 25 mL of washing buffer. This step was repeated and the cells were 640 

washed with 2 mL of buffer. Finally, the cells were centrifuged at 3500 rpm for 10 min at 20 641 

°C and re-suspended in 500 µL of buffer. 642 

Calibrated EPR tubes were prepared with 150 µL of concentrated cells and 20 µL of 643 

200 mM potassium ferricyanide. The tubes were illuminated for 30 sec and incubated in 644 

darkness for 5 sec before freezing. This treatment elicited full oxidation of TyrD+ with no or 645 

very little P700+ (a few percent). In case some P700+ was present, its contribution was 646 

substracted in order to obtain a pure TyrD+ line shape before spin quantitation. The spectra 647 

were recorded at 20 K with an ESR300D X-band spectrometer (Bruker, Rheinstetten, 648 

Germany), using a TE102 resonator equipped with a front grid for sample illumination within 649 

the cavity. Illumination was performed using a halogen lamp (250 W). The temperature was 650 

controlled with a helium cryostat (Oxford Instruments, UK). Samples were first measured in 651 

darkness for TyrD+ spectra and FA/FB baseline, and then, after 2 min illumination at 20 K, for 652 

the singly reduced FA/FB spectra. The FA/FB difference light-induced spectrum was used for 653 

quantitation after suppressing the P700+ signal. Isolated PSI was used to check that charge 654 

separation was 100% efficient at 20 K by comparing the dithionite-reduced (FA
-/FB

-) spectrum 655 

(2 spins per P700) to the light-induced singly reduced FA/FB difference spectrum (1 spin per 656 

PSI). The following EPR parameters were used: for TyrD+, modulation amplitude: 2 G, 657 

microwave power: 2 µW, number of scans: 8. For FA/FB spectra, modulation amplitude: 10 G, 658 

microwave power: 0.8 mW, number of scans: 2. These microwave powers were found to be 659 

non-saturating at 20 K. The singly reduced (FA/FB) and TyrD+ relative spin amounts were 660 
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calculated by double integration of the EPR signals, with correction for differences in 661 

microwave power and modulation amplitude. 662 

663 

Determining the effects of kinase inhibitors by Phos-tagTM gel SDS-PAGE 664 

S. elongatus cells were pre-grown in fresh BG11 medium. When the cells were at 0.8665 

OD800, they were harvested and washed with nitrogen-free BG11 medium (BG11-N). The 666 

pellet was re-suspended in BG11 medium containing 5 mM NH4Cl (BG11NH4) as the nitrogen 667 

source and incubated for 2 hours. The culture was then separated into four samples. One 668 

sample was kept in the same BG11NH4 medium to obtain a completely dephosphorylated PII 669 

protein. 670 

A second sample was washed and transferred to BG11-N medium for two hours to 671 

obtain a fully phosphorylated PII. The other two samples (after the two-hour incubation in the 672 

presence of NH4Cl) were supplemented with a final concentration of 21 µM staurosporine and 673 

1.07 µM K252a, respectively, and incubated for an additional hour. Finally, both samples 674 

were washed and transferred into new BG11-N medium in the presence of inhibitors and 675 

incubated for two more hours. The cells of all the samples were washed quickly with pre-676 

chilled 50 mM Tris-HCl (pH 6.8) and harvested by centrifugation at 4 °C. 677 

The cell-free extracts were prepared as follows: the cells were resuspended in 500 µL 678 

of 50 mM Tris-HCl (pH 6.8) with protease (1 mM caproic acid, 1 mM phenylmethylsulfonyl 679 

fluoride, 1 mM benzamidine) and phosphatase inhibitors and broken via 5 cycles of vortexing 680 

(1 min) in the presence of glass beads. Unbroken cells were removed by centrifugation and 681 

the supernatant was recovered. The phosphorylation state of PII was tested by loading the 682 

samples onto a normal 15% SDS-PAGE gel with or without 50 µM Zn-Phos-tag (Kinoshita 683 

and Kinoshita-Kikuta, 2011). The gels were washed with 10 mM EDTA for 3×15 min, 684 

followed by a 10 min washing with Phos-tag gel running buffer. The gels were then blotted 685 

onto polyvinylidene difluoride membranes using a Trans-blot Turbo system (Bio-Rad 686 

Laboratories, Hercules, CA). The PII band was revealed by immunoblotting with an anti-PII 687 

antibody (dilution 1:2500, kindly provided by Prof. Karl Forchhammer) using a chemo-688 

luminescent detection system (Pierce). 689 

690 

Accession numbers 691 

Sequence data from this article can be found in the GenBank/EMBL libraries under the 692 

following accession numbers: spkA (sll1575), AB046597; spkB (slr1697), AB046598; spkC693 
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(slr0599), AB046599; spkD (sll0776), AB046600; spkE (slr1443), AB046602; spkF694 

(slr1225), AB046601; spkG (slr0152), BAA18552; spkH (sll0005), BAA10206; spkI695 

(sll1770), BAA17672; spkJ (slr0889), BAA17617; spkK (slr1919), BAA17147; spkL696 

(sll0095), BAA10646; slr0328, BAA10030; sll1771, BAA17671; slr1860, X75568; sll1033, 697 

BAA16771; sll0602, BAA10367; slr0114, BAA10651; slr1983, BAA18225; sll1387, 698 

BAA18237; slr0946, ALJ68053. 699 

700 

701 

Supplemental Data 702 

Supplemental Figure 1. Gaussian decomposition of the 77 K fluorescence emission spectra 703 
of S. elongatus WT strains.704 

Supplemental Figure 2. Gaussian decomposition of the 77 K fluorescence emission spectra 705 
of Synechocystis strains. 706 

Supplemental Figure 3. 77 K fluorescence emission spectra of WT S. elongatus cells treated 707 
with sucrose or phosphate buffer.708 

Supplemental Figure 4. Fluorescence changes induced by TMPD in the presence or absence 709 

of MV. 710 

Supplemental Figure 5. State transitions in Synechocystis kinase and phosphatase mutants. 711 

Supplemental Figure 6. Oxygen evolving activity in the presence of NaF. 712 

Supplemental Table 1. Oligonucleotides used for the construction of the kinase and 713 
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Figure 1. Absorption spectra of S. elongatus (A) and Synechocystis (B) cells. The spectra were 
recorded at a Chl concentration of 2.5 μg/mL. The curves shown are the average of 3 independent biological 
replicates (as described in the Methods).  
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Figure 2. State transitions in S. elongatus and Synechocystis. 77 K fluorescence emission spectra of dark 
(black, State II) and blue-light (red, 85 µmol photons m-2 s-1, State I) adapted S. elongatus (A and C) and 
Synechocystis (B and D) cells. The excitation was done at 430 nm (A and B) and 590 nm (C and D). 
Normalization was done at 800 nm, and the spectra are the average of at least 3 independent biological 
replicates. 
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Figure 3. 77 K fluorescence emission spectra of WT S. elongatus (A) and Synechocystis (B) cells using 
Rhodamine B as an internal standard. Cells were dark adapted for 15 min before the measurements (dark 
lines) or incubated under blue light illumination for 5 min (red lines) before the addition of Rhodamine B (0.4 
µM). The excitation was done at 430 nm. Normalization was done at the peak of Rhodamine B at 568 nm, and 
the spectra are the average of at least 3 independent biological replicates.  
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Figure 4. 77 K fluorescence emission spectra of S. elongatus cells treated with betaine. Cells were dark 
adapted for 15 min (A and C) or incubated under blue-light illumination (85 µmol photons m-2 s-1) for 5 min (B 
and D). 77 K spectra were measured (dashed lines). Then, samples were taken after 5 min incubation with 
betaine (1 M) and measured (blue lines). Finally, State I (A and C) or State II (B and D) was tentatively induced 
by blue light illumination (85 µmol photons m-2 s-1) or darkness, respectively, for 5 min more (red lines). The 
excitation was done at 430 nm (A and B) or 590 nm (C and D). Normalization was done at 800 nm, and the 
spectra are the average of at least 3 independent biological replicates.  
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Figure 5. State transitions in S. elongatus (A) and Synechocystis (B). The fluorescence changes were 
followed with a PAM fluorometer. Dark-adapted cells (Chl concentration 2.5 μg/mL) were successively illuminated 
with blue light (85 µmol photons m-2 s-1) and orange light (20 µmol photons m-2 s-1). Saturating pulses (400 ms x 
1200 µmol photons m-2 s-1) were applied every 90 sec.  
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Figure 6. Schematic model of the effects of different chemicals on the intersystem electron transport chain
in cyanobacteria. The arrows indicate the direction of electron transport between different protein
complexes/chemical compounds. The size of each arrow is proportional to the quantity of electrons transfer under
different conditions. Orange and blue arrows indicate electron transfer under orange or blue light illumination,
respectively. Black solid arrows indicate electron transfer occurring under dark and light conditions. Dashed arrows
indicate electrons taken/given by the added chemicals. Red lines indicate the inhibition of the different complexes by
the given chemicals. Protein complexes: PSII, photosystem II; PSI, photosystem I; PQ, plastoquinone pool; Cyt b6f,
cytochrome b6f; NDH-1, NAD(P)H dehydrogenase type 1; SDH, succinate dehydrogenase; Cyd, cytochrome bd-type
quinol oxidase; Cox, cytochrome c oxidase. Chemical compounds: DCMU; 3-(3,4-dichlorophenyl)-1,1-dimethylurea;
DMBQ, 2,6-dimethoxy-1,4-benzoquinone; DBMIB, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone; TMPD,
N,N,N′,N′-tetramethyl-p-phenylenediamine; MV, methyl viologen; CN, cyanide.
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Figure 7. Fluorescence induction in the absence and presence of NaCN in S. elongatus and
Synechocystis cells. Whole cells (Chl concentration 2.5 μg/mL) were dark adapted for 15 min at 31°C before
illumination with orange light (180 µmol photons m-2 s-1). (A and B) Fluorescence induction in the absence of
NaCN. (C and D) Fluorescence induction after 3 min incubation in the presence of NaCN (80 µM). Black lines:
fluorescence induction in the presence of DCMU (10 µM). Red lines: fluorescence induction in the absence of
DCMU. The detection wavelength was ≥ 695 nm (far-red). The curves are the average of at least 3 independent
biological replicates. The percentages shown are the area between the curves relative to the area under the curve
with DCMU. The errors bars correspond to the standard deviation of the data shown.
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Figure 8. Fluorescence changes induced by chemicals. S. elongatus cells were dark adapted (15 min) before 
the successive addition of DMBQ (250 µM) and DBMIB (20 µM) (A) or the simultaneous addition of DMBQ (250 
µM) and DBMIB (20 µM) (B). The measurements were done using a PAM fluorometer (measuring light 650 nm). 
Saturating pulses (400 ms x 1200 µmol photons m-2 s-1) were applied every 30 sec. Typical experiments are 
shown. (C) Variable fluorescence (Fv) traces of different concentrations of DBMIB, added at time 0, when State I 
was induced by blue light (red lines, 85 µmol photons m-2 s-1) or by DMBQ (250 µM) in darkness (dark lines). The 
values were normalized to the variable fluorescence of state I (induced by light or DMBQ, respectively). (D) Fv 
traces of different concentrations of DBMIB when State I was induced by DMBQ (250 µM) in darkness, and the 
cells were then illuminated with blue light (85 µmol photons m-2 s-1). The values were normalized to the variable 
fluorescence of state I induced by DMBQ. The averages of at least 3 independent biological replicates are shown. 
The errors bars correspond to the standard deviation of the data shown. (●) 2.5 µM DBMIB; (▲) 5 µM DBMIB; (■) 
10 µM DBMIB; (▼) 15 µM DBMIB; (♦) 20 µM DBMIB. 
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Figure 9. Estimation of the PQ pool redox state. Fluorescence induction in the presence (dark lines) or 
absence (red lines) of DCMU (10 µM) in dark-adapted S. elongatus cells. Whole cells (Chl concentration 2.5 
μg/mL) were dark adapted for 15 min (at 31°C) before illumination with orange light (180 µmol photons m-2 s-1). 
(A) cells were incubated for 3 min with DMBQ (250 µM); (B and C) cells were incubated first with DMBQ (250 µM)
for 3 min and then with DBMIB (5 µM) for 1 min or 3 min, respectively; (D and E) cells were incubated first with
DMBQ (250 µM) for 3 min and then with DBMIB (10 µM) for 1 min or 3 min, respectively. Black lines: fluorescence
induction in the presence of DCMU. Red lines: fluorescence induction in the absence of DCMU. The detection
wavelength was ≥ 695 nm (far-red). The curves are the average of at least 3 independent biological replicates.
The percentages shown are the area between the curves relative to the area under the curve with DCMU. The
errors bars correspond to the standard deviation of the data shown.
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Figure 10. Fluorescence changes induced by TMPD in the presence of MV and DBMIB. S. elongatus (A) and 
Synechocystis (B) cells were dark adapted (15 min) before the transition to State I by blue light illumination (85 
µmol photons m-2 s-1) in the presence of MV (2 mM or 3 mM, respectively). DBMIB (10 µM for S. elongatus or 7.5 
µM for Synechocystis) was then added. After reaching a steady State II, TMPD (10 µM) was added. Saturating 
pulses were applied every 30 sec. (C and D) Graphs show the percentage of variable fluorescence (Fv %) for S.
elongatus and Synechocystis, respectively, after blue light illumination (State I); after the addition of DBMIB; 
DBMIB and then TMPD or when both chemicals were added at the same time. The mean and standard deviation of 
4 independent biological replicates are shown. Columns without common letters differ significantly (Tukey test, p < 
0.05).  
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Figure 11. State transitions in Synechocystis kinase and phosphatase mutants. The fluorescence changes 
were followed with a PAM fluorometer. Dark-adapted cells (Chl concentration 2.5 μg/mL) were successively 
illuminated with blue light (85 µmol photons m-2 s-1) and orange light (40 µmol photons m-2 s-1). Typical 
experiments are shown for Synechocystis WT (A), ΔspkG (B) and Δslr1860 (C) cells. Saturating pulses (400 ms 
x 1200 µmol photons m-2 s-1) were applied every 70 sec. (D and E) Fv (%) decrease induced by orange 
illumination of blue-light adapted cells (State I to State II transition) of kinase and phosphatase mutants, 
respectively. The values were normalized, with the Fv of State I equal to 100% and the Fv of State II equal to 0%. 
(D) The values for WT and ΔspkC, ΔspkE, ΔspkG, ΔspkK and ΔspkL mutants are shown. (F) The values for WT
and Δsll1983, Δsll1771, Δslr0946 and Δslr1860 mutants are shown. The averages of at least 3 independent
biological replicates are shown. The errors bars correspond to the standard deviation of the data shown.
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Figure 12. Effects of kinase inhibitors on state transitions and PII phosphorylation. S. elongatus (A-C) and
Synechocystis (D-F) cells were incubated in the absence and presence of kinase inhibitors for 90 min in darkness.
Then, the cells (Chl concentration 2.5 μg/mL) were successively illuminated with blue light (85 µmol photons m-2

s-1) and orange light (40 µmol photons m-2 s-1) and the fluorescence changes were followed using a PAM
fluorometer. (A and D) Control cells containing DMSO (0.1% v/v). (B and E) Cells treated with Stausporine (21
µM). (C and F) Cells treated with K252a (1.07 µM). Saturating pulses (400 ms x 1200 µmol photons m-2 s-1) were
applied every 60 sec. (G) Gel electrophoresis containing phostag to detect phosphorylated proteins and
immunoblot using an anti-PII protein. (1) BG11 medium; (2) nitrogen depleted BG11 medium; (3), nitrogen
depleted BG11 medium supplemented with K252a (1.07 µM); (4), nitrogen depleted BG11 medium supplemented
with staurosporine (21 µm).
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Figure 13. Effect of phosphatase inhibitors on state transitions. S. elongatus (A-C) and Synechocystis (D-F) 
cells were incubated in the absence and presence of phosphatase inhibitors for 90 min in darkness. Then, the 
cells (Chl concentration 2.5 μg/mL) were successively illuminated with blue light (85 µmol photons m-2 s-1) and 
orange light (40 µmol photons m-2 s-1) and the fluorescence changes were followed using a PAM fluorometer. (A 
and D) Control cells; (B and E) cells treated Na3VO4 (1 mM); (C and F) cells treated with NaF (50 mM). Saturating 
pulses (400 ms x 1200 µmol photons m-2 s-1) were applied every 60 sec. 
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