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Abstract Principles of regulation of actin network dimensions are fundamentally important for

cell functions, yet remain unclear. Using both in vitro and in silico approaches, we studied the effect

of key parameters, such as actin density, ADF/Cofilin concentration and network width on the

network length. In the presence of ADF/Cofilin, networks reached equilibrium and became

treadmilling. At the trailing edge, the network disintegrated into large fragments. A mathematical

model predicts the network length as a function of width, actin and ADF/Cofilin concentrations.

Local depletion of ADF/Cofilin by binding to actin is significant, leading to wider networks growing

longer. A single rate of breaking network nodes, proportional to ADF/Cofilin density and inversely

proportional to the square of the actin density, can account for the disassembly dynamics. Selective

disassembly of heterogeneous networks by ADF/Cofilin controls steering during motility. Our

results establish general principles on how the dynamic steady state of actin network emerges from

biochemical and structural feedbacks.

DOI: https://doi.org/10.7554/eLife.42413.001

Introduction
Dynamic actin networks play important roles in cell migration (Rottner and Stradal, 2011), morpho-

genesis (Hopmann and Miller, 2003), immune response (Vargas et al., 2016) and intracellular path-

ogen motility (Reed et al., 2014). The architecture and geometry of the actin networks are tightly

controlled in these essential cellular processes, and defects in this control cause pathologies, such as

ageing disorders (Amberg et al., 2011). Here, we focus on the steady state dynamics of branched

filament arrays that are initiated by the Arp2/3 complex (Rotty et al., 2013) and activated by WASP

family proteins (Krause and Gautreau, 2014), which are instrumental in lamellipodial extension

(Krause and Gautreau, 2014), pathogen propulsion (Reed et al., 2014), endo- and exocytosis

(Li et al., 2018).

In many cellular processes, the branched actin networks are polarized and appear in a state of

dynamic equilibrium: at their leading edge, barbed filament ends are oriented forward and polymer-

ize, elongating the network, while throughout the network a net disassembly takes place, gradually

thinning the network out and limiting the network to a finite equilibrium length. As a result, the net-

work exists in a ‘global treadmilling state’ (Borisy and Svitkina, 2000; Pollard and Borisy, 2003;

Carlier and Shekhar, 2017; Koestler et al., 2013) – as opposed to the well-characterized treadmil-

ling of individual filaments. Important examples of such networks are flat lamellipodia at the leading
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edge of cells migrating on flat surfaces (Rottner and Stradal, 2011; Barnhart et al., 2011;

Ofer et al., 2011; Raz-Ben Aroush et al., 2017; Rottner and Schaks, 2019) and in 3D extracellular

matrix (Fritz-Laylin et al., 2017) and cylindrical actin tails propelling intracellular pathogens

(Theriot et al., 1992; Rosenblatt et al., 1997; Lacayo et al., 2012; Reed et al., 2014), endosomes

and lysosomes (Taunton et al., 2000).

In what follows, we call the distance from the leading to trailing edge as network length, and the

characteristic dimension of the leading edge – network width. Both the length and width of the

dynamic network are important physiological parameters (Carlier and Shekhar, 2017) that have to

be regulated. For example, the width of the actin tails is usually approximately equal to the size of

the pathogen or organelle, which is being propelled by the tail, and the length, presumably, has to

be sufficient for the tail to be enmeshed with the host cell cytoskeletal scaffold. The width and

length of lamellipodia probably have to be sufficient to fit into the geometry of the extracellular

matrix and to accommodate other cytoskeletal elements, such as stress fibers.

Assembly and disassembly play central roles in determining actin network length (Theriot et al.,

1992; Ofer et al., 2011). Yet, while assembly is relatively well studied (Rottner and Schaks, 2019),

systems-level understanding of disassembly is lacking. In keratocytes’ cytoplasmic fragments, the

lamellipodial length, L, is simply determined by the time necessary for the disassembly, character-

ized by rate 1=t to largely degrade the lamellipodial network assembled at the leading edge. So, if

the actin network growth rate is V , then L ~Vt (Ofer et al., 2011). Similarly, in Listeria’s actin tail,

the network density decreases exponentially, with a constant rate, and the tail’s length is propor-

tional to the pathogen’s speed (Theriot et al., 1992).

As demonstrated both in vivo and in vitro, proteins of the ADF/Cofilin family play a key role in

the actin disassembly (Bamburg, 1999), debranching the network, severing the filaments

(Blanchoin et al., 2014) and accelerating depolymerization at filaments’ ends (reviewed in

Carlier and Shekhar (2017)). Microscopic details of the ADF/Cofilin-mediated kinetics of actin fila-

ments at the molecular level are being clarified (Wioland et al., 2017), but so far there is little under-

standing about how the net rate of the network disassembly, rather than that of individual filaments,

is determined by the geometry and architecture of the network and by the actin and ADF/Cofilin

concentrations. Furthermore, spatio-temporal dynamics of ADF/Cofilin and its relation to the net-

work disassembly remains obscure. Lastly, actin-network steering, linked to the regulation of net-

work growth at the leading edge (Boujemaa-Paterski et al., 2017), is essential to understanding

directional cell motility. However, how organization and dynamics of the bulk of the actin network

affects the steering is unclear (Krause and Gautreau, 2014). In this study, we investigated how the

geometry, architecture and density of a branched actin network, as well as the ADF/Cofilin concen-

tration, affect the actin network dynamics, and found key parameters controlling the network length

and steering.

In order to do that, we combined in vitro and in silico, approaches. In vitro reconstitution of bac-

teria and plastic beads propulsion (Frischknecht et al., 1999; Loisel et al., 1999; Bernheim-

Groswasser et al., 2002; Akin and Mullins, 2008; Dayel et al., 2009; Achard et al., 2010;

Kawska et al., 2012), and of lamellipodial network growth (Bieling et al., 2016; Boujemaa-

Paterski et al., 2017) brought insights on how a minimal set of just two molecular actions – Arp2/3

complex-driven nucleation and barbed-end capping – can result in the actin leading edge organiza-

tion and growth. In this study, we added ADF/Cofilin to the mixture of actin, Arp2/3 complex and

capping protein in an experimental chamber with the nucleation promoting factor (NPF) Human

WASp-pVCA, localized to micro-printed patterns on the surface. We generated a diversity of pat-

terns and studied the impact of the geometry and actin density on the length of dynamic actin net-

works. We also used quantitative fluorescence imaging to measure the spatial and temporal

behavior of the actin and ADF/Cofilin densities and their relations with the network length. Crucially,

we varied independently three parameters – actin network density, ADF/Cofilin concentration and

network width – and measured their effect on the network length.

Mathematical modeling was very successful in deciphering the data from in vitro experiments on

the actin disassembly (Roland et al., 2008; Berro et al., 2010; Michalski and Carlsson, 2010,

Michalski and Carlsson, 2011; Reymann et al., 2011; Stuhrmann et al., 2011; Tania et al., 2013).

Most theoretical studies either considered the disassembly of individual filaments (Roland et al.,

2008), or a first-order reaction of a continuous network density decrease (Ofer et al., 2011;

Reymann et al., 2011; Stuhrmann et al., 2011), or treated the disassembly as a boundary condition
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(Raz-Ben Aroush et al., 2017). Pioneering theory of Michalski and Carlsson (2010), Michalski and

Carlsson (2011) demonstrated how fragmentation of the network at the trailing edge resulted from

stochastic accumulation of discrete disassembly events in the network. No studies so far quantitatively

connected the dynamics of ADF/Cofilin accumulation in the actin mesh with the effective disassembly

rate and the network length.

An intuitive and expected qualitative finding of our study is that equilibrium network length

increases with actin density, and decreases with ADF/Cofilin concentration. The main insight of the

study is quantitative: we found a novel, simple mathematical relation allowing the prediction of the

actin network length from three parameters – actin network density, ADF/Cofilin concentration and

network width – and measured their effect on the network length. Other novel findings are: 1) ADF/

Cofilin is locally depleted from solution by binding to actin, which has profound effects on actin dis-

assembly; 2) Network length depends on the network width; 3) ADF/Cofilin concentration can regu-

late the steering of heterogeneous actin networks.

Results

ADF/Cofilin action establishes equilibrium length of dynamic actin
networks
We reconstituted branched actin networks (called LMs in the following) that resemble lamellipodia

of motile cells by micro-printing rectangular patterns coated with nucleation-promoting factors

(NPFs) on the ‘bottom’ of the experimental chamber. NPFs activated the Arp2/3 complex, which in

turn generated filament branching, leading to the assembly and growth of the branched actin net-

work at the rectangular network leading edge pattern (Figure 1A, Figure 1—figure supplement

1A). The thickness of the experimental chamber (‘bottom-to-top distance’) is only a few microns, so

the actin networks lift off the NPF pattern, bump into the ‘top’, bend and then grow parallel to the

bottom and top (Figure 1—figure supplement 1B). The networks were flat, similar to the lamellipo-

dial networks: their thickness was but a few microns, an order of magnitude less than the width and

length, on the order of tens of microns. Importantly, there is capping protein in the reaction mixture,

limiting growth of individual actin filaments and keeping the actin networks compact, not extending

laterally from the NPF pattern. With only actin, Arp2/3 complex and capping protein in the reaction

mixture, the networks elongated steadily (Figure 1A). The networks’ elongation speed V was an

increasing function of actin density (Figure 1B–C), in agreement with our previous study Boujemaa-

Paterski et al. (2017). In Figure 1—figure supplement 1D and Figure 1—video 1, we report data

suggesting that the higher NPF density both increases the actin density, and translates polymeriza-

tion into the network elongation more effectively, without changing the rate of filament growth.

Without ADF/Cofilin, the networks elongated steadily and did not disassemble – actin density

along the networks changed only slightly (Figure 1A). Addition of ADF/Cofilin changed the net-

works’ dynamics: rather than growing steadily, the networks, after reaching a certain length, started

to disassemble at the trailing edge, so that a dynamic steady state was reached in which the network

length stayed roughly constant (Figure 2A, Figure 2—figure supplement 1). The equilibrium length

depended on both actin density and ADF/Cofilin concentration. The addition of ADF/Cofilin did not

have a significant effect on the growth rate of the networks, in contrast to the in vivo cases. The rea-

son is that the total amount of actin in the in vitro chamber is vastly greater than the total network

actin, and so the polymerizable actin monomer concentration is unaffected by the actin turnover

related to the networks’ dynamics; in other words, actin does not have to be recycled. This has an

important consequence for the in vitro global treadmill: the rate of the network growth depends on

the conditions at the leading edge (actin density and architecture) but is unaffected by the network

length. Thus, the equilibrium length of the treadmilling network is determined by the length-depen-

dent disassembly only: the longer the network is, the faster is the disassembly at the trailing edge,

and so the treadmilling length is determined by the dynamic stable equilibrium, in which the trailing

edge disassembly rate is equal to the leading-edge growth rate. As the leading-edge growth rate is

unaffected by ADF/Cofilin, our in vitro assay allows investigation of the effect of the ADF/Cofilin-

mediated disassembly on the network length, without complications of feedbacks between disas-

sembly and assembly.
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Our data revealed that the equilibrium network length decreases with the ADF/Cofilin concentra-

tion and increases with the actin density (Figure 2A–B). Qualitatively, these results are very intuitive:

higher ADF/Cofilin concentration increases the disassembly rate, hence the equilibrium between the

leading edge growth and trailing edge disassembly is reached at shorter lengths. If the actin net-

work is denser at the leading edge, it takes a longer time to break such network down; during this

time, the steadily elongating network grows longer until the disassembly rate at the trailing edge

balances the leading edge growth.

Spatio-temporal ADF/Cofilin dynamics and its local depletion
Initial simple model of the ADF/Cofilin dynamics
We wondered if these observations could be explained by a simple model: ADF/Cofilin binds to

every spot of the growing actin network with a constant rate and does not have an effect on the net-

work until a critical density of the bound ADF/Cofilin is reached, upon which the network disassem-

bles instantly. It is reasonable to assume that ADF/Cofilin binding is a diffusion-limited reaction, and

so its rate is proportional to the product of the ADF/Cofilin concentration in the solution, C0, and of

the constant actin filament density, A. Indeed, when we analyzed the initial rate of binding of ADF/

Cofilin near the leading edge for networks that had just started to grow (using various actin densities

and at various ADF/Cofilin concentrations), we found that this rate is proportional to C0. We also

found a strong correlation between the initial increase in bound ADF/Cofilin and the product C0 � A
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Figure 1. Actin density determines network growth speed. (A) The growth kinetics of reconstituted lamellipodia (LMs) depend on the density of the

grafted NPFs (Human WASp-pVCA). Conditions: 6 mM actin monomers Alexa-568 labeled, 18 mM profilin, 120 nM Arp2/3 complex, 20 nM capping

proteins. LMs of variable actin filament density (low, medium, high) were initiated by bar-shaped patterns of different NPF-spot densities (see

Figure 1—figure supplement 1) and their growth was followed using the fluorescence of the actin networks. Snapshots of the growing lamellipodium

were taken 0, 20 and 60 min after addition of Alexa-568-labeled actin monomers. (B) Denser patterns generate denser actin networks. The network

density was measured across the LMs (for low density networks, n = 25 from three experiments, for medium-density networks, n = 41 from three

experiments and for high-density networks, n = 38 from three experiments). (C) Denser patterns generate longer actin networks. The lengths of the LMs

were measured after 60 min and plotted according to the pattern density.

DOI: https://doi.org/10.7554/eLife.42413.002

The following video and figure supplement are available for figure 1:

Figure supplement 1. Laser micropatterning method and growth rates.

DOI: https://doi.org/10.7554/eLife.42413.003

Figure 1—video 1. Branched actin filaments growing on a laser-patterned surface.

DOI: https://doi.org/10.7554/eLife.42413.004
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Figure 2. Actin network density and width set the equilibrium state of LMs. (A) The growth kinetics of LMs in the presence of ADF/Cofilin. The

experiment conditions are similar to Figure 1A but with addition of variable concentrations of ADF/Cofilin as indicated. Snapshots of the growing

lamellipodium were taken 0, 20 and 60 min after addition of actin monomers. Actin monomers are Alexa-568 labeled (red), ADF/Cofilin is labeled with

Alexa-488 (green). Scale bar is 15 mm. (B) The length of the actin networks as a function of the ADF/Cofilin concentrations were measured after 20 min.

Colored bars (red for low, blue for medium and green for high actin density) at 20 min are averages (± standard deviations). Solid lines with

corresponding colors are the model prediction according to Sec. Equilibrium length of actin network as a function of biochemical and geometric

parameters. The horizontal lines for the model predictions indicate that the networks have not yet reached equilibrium (0 nM ADF/Cofilin, n = 33 for

low, n = 41 for medium, n = 38 for high from three experiments; 125 nM ADF/Cofilin, n = 15 for low, medium and high from three experiments; 250 nM

ADF/Cofilin, n = 26 for low, n = 27 for medium and n = 27 for high from three experiments; 400 nM ADF/Cofilin, n = 19 for low, medium and high from

three experiments). (C) Growth of LMs from patterns of different sizes. Biochemical conditions are identical to Figure 2A and Figure 1A. Top panel,

LMs in the absence of ADF/Cofilin were initiated from pattern of three different sizes (15 � 3, 30 � 3 and 90 � 3 mm2). Snapshots were taken at 36 min

after addition of actin monomers (15 mm n = 50 from three experiments, 30 mm n = 59 from 11 experiments and 90 mm, n = 43 from 10 experiments).

See Figure 2—video 1 for full dynamics. Bottom panel, LMs in presence of 200 nM ADF/Cofilin were initiated from pattern of three different sizes (15

� 3, 30 � 3 and 90 � 3 mm2). Snapshots were taken at 38 min after addition of actin monomers. Scale bar is 15 mm. See Figure 2—video 2 for the full

dynamics. (D) Measured actin network lengths as a function of ADF/Cofilin concentration. Colored bars are the average length (±38 standard deviation)

min after the addition of actin monomers. Lines show the model prediction of Sec. Equilibrium length of actin network as a function of biochemical and

geometric parameters. Horizontal lines for the model predictions indicate that the networks have not yet reached equilibrium.

DOI: https://doi.org/10.7554/eLife.42413.005

The following video and figure supplement are available for figure 2:

Figure supplement 1. Growth of networks of varying widths.

DOI: https://doi.org/10.7554/eLife.42413.006

Figure 2—video 1. Growth of LMs from pattern of different size in absence of ADF/Cofilin.

DOI: https://doi.org/10.7554/eLife.42413.007

Figure 2 continued on next page
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(R ¼ 0:51;P<0:001, see Appendix 1 for details). This confirms that at least at the beginning of net-

work growth, the ADF/Cofilin binding rate is indeed kBC0A, where kB is the binding constant.

If this rate stays constant, then the bound ADF/Cofilin density as a function of time and of dis-

tance y from the network leading edge is the solution of the equation qtCB þ VqyCB ¼ kBC0A, where

V is the rate of actin network growth at the leading edge. Since newly polymerized actin is free of

ADF/Cofilin, we can assume CBðy ¼ 0Þ ¼ 0. In dynamic equilibrium, this equation yields the solution

CBðy; tÞ ¼ kBC0Ay

V
, which can be easily understood: an actin spot takes time y=V to drift a distance y

from the leading edge. As ADF/Cofilin binds with rate kBC0A, by that time the bound ADF/Cofilin

density reaches the value of kBC0Ay

V
. Assuming that the network falls apart when a critical amount of

ADF/Cofilin per actin filament, CB=A ¼ g, is reached, this yields an equilibrium network length of

L� ¼
gV

kBC0

:

This simple model predicts that the equilibrium network length is proportional to the ADF/Cofilin

concentration in the solution, C0, in qualitative agreement with the data (compare Figure 2A–B). In

Figure 2A–B, we also observe a clear correlation between the actin density and the network length.

Since denser networks also grow faster (Figure 1C), our estimate is again in qualitative agreement

with Figure 2A–B, however, it appears that the network growth rate increases only weakly with the

actin density, while the equilibrium network length increases dramatically, when the actin filament

density increases. Lastly, the simple model indicates that the equilibrium network length is indepen-

dent of the network width.

Equilibrium network length increases with the network width
We tested this last prediction experimentally for networks of widths 15, 30 and 90 mm, and the result

shows that this is not the case (Figure 2C–D, Figure 2—video 1, Figure 2—video 2). In fact, we

observed that, while for all network widths their lengths decrease if ADF/Cofilin is added, wider net-

works are affected less. This suggests three potential factors that the simple initial model did not

take into account: (1) ADF/Cofilin is unable to diffuse from the solution to the inner parts of the

wider dense actin network. (2) There is a non-local mechanical effect that leads to an effective pro-

tection of wider networks against degradation. (3) Local depletion of ADF/Cofilin. As previously

reported (Boujemaa-Paterski et al., 2017), actin monomers are locally depleted due to a sink of its

concentration in the vicinity of the growing barbed ends; a similar effect could emerge for ADF/

Cofilin.

To estimate the potential effect of the actin network on the ADF/Cofilin diffusion constant, we

used the theory developed in Novak et al. (2009) and described in Appendix 1 to determine the

effective diffusion constant of ADF/Cofilin inside the actin network. This calculation shows that the

effect of even a dense actin network on the ADF/Cofilin diffusion coefficient is a reduction by a few

percent only, that is the diffusion constant will be virtually unaffected by the actin network, ruling

out the first factor. The second factor, a global mechanical structure of the network, is unlikely, since

the average actin filaments are of sub-micron size, two orders of magnitude shorter than the net-

work width, and long actin bundles are absent. Thus, we decided to investigate the third factor, local

depletion of ADF/Cofilin.

Rate of ADF/Cofilin binding decreases with time
According to the simple initial model, the rate of ADF/Cofilin binding to an actin spot, kBC0A, should

be constant, not changing with time. If we focus on such a spot drifting from the leading edge, we

should measure a linear increase of the ADF/Cofilin density with the slope that does not depend on

the time when the spot originates. We examined such an increase of the ADF/Cofilin density near

the leading edge by making measurements at different starting times. We indeed found that the

Figure 2 continued

Figure 2—video 2. Growth of LMs from pattern of different size in presence of ADF/Cofilin.

DOI: https://doi.org/10.7554/eLife.42413.008
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increase of the ADF/Cofilin density is linear with time; however, the rate of the increase decreased

with starting time (Figure 3A–B), rather than remaining constant.

ADF/Cofilin is locally depleted by binding to the growing actin network
To confirm that the observed decrease of the ADF/Cofilin binding rate with time is due to the local

ADF/Cofilin depletion, we analyzed the simplest model of the spatial-temporal ADF/Cofilin dynamics

compatible with our observation. In the model, the densities of free ADF/Cofilin molecules diffusing

in the solute and of ADF/Cofilin molecules bound to the network are CFðx; y; tÞ and CBðx; y; tÞ,
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Figure 3. ADF/Cofilin dynamics. (A) Measurement procedure. Left: Example kymograph of the bound ADF/Cofilin density as a function of space and

time. Colored lines show three example paths in time and space along which the amount of bound ADF/Cofilin was measured. Inset: Schematic of the

growing network at different time points, Right: The measurements of the bound ADF/Cofilin density along the paths shown on the left. Dotted lines

show initial increase. (B) Normalized (to have mean one) values of the initial increase as a function of starting time for all networks. Colors represent

different starting times, compare red, green and blue paths in the example network in Figure 3A. Inset: Predictions for local depletion and no local

depletion of free ADF/Cofilin. (C) Simulation of (1 - 2). Snapshot at time t = 40 min showing the concentration of free ADF/Cofilin. Parameters:

V = 1.16 mm/min, rB ¼ 0:5=min/mM, rU ¼ 0:31=min, A = 50 mM, C0 ¼ 125nM. Inset left: Concentration of free ADF/Cofilin along the dotted line. Inset

right: Zoom around the network. Colors represent concentration of free ADF/Cofilin. (D) Time snapshots of the same simulation showing the

concentration of free ADF/Cofilin, colors as in Figure 3C. Below: Average amount of free ADF/Cofilin in the area covered by the network (black

rectangle in Figure 3D).

DOI: https://doi.org/10.7554/eLife.42413.009

The following figure supplement is available for figure 3:

Figure supplement 1. Comparing simulated and measured amounts of bound ADF/Cofilin.

DOI: https://doi.org/10.7554/eLife.42413.010
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respectively. Since the experimental chamber’s depth in z-direction is much smaller than all charac-

teristic dimensions in x- and y-directions, we use a 2D setting for modeling. In the simulations, an

actin network of width W and length LðtÞ ¼ V � t is positioned in the middle of the experimental

chamber. The model consists of the following equations:

qtCB ¼�VqyCBþ rBACF � rUCB; (1)

qtCF ¼DDCF � rBACF þ rUCB: (2)

Here Equations (1) and (2) describe the drift of bound and diffusion of free ADF/Cofilin mole-

cules, respectively, and the reactions of ADF/Cofilin binding to and slow unbinding from actin fila-

ments. Boundary and initial conditions, potential actin saturation effects and the numerical

procedure for solving the model equations are discussed in Appendix 1.

The model does not describe actin disassembly, as we model the effect of ADF/Cofilin on actin

filaments below in the next section. Thus, we either assume the actin density to be constant for

rough estimates (the measurements show that the actin density changes relatively little along the

network before plunging at the trailing edge, see Figure 3—figure supplement 1A), or equal to the

measured function of the y-coordinate to compare with the data.

We can use Equation (2), with constant actin filament density A, to estimate roughly the local

concentration of free ADF/Cofilin near the actin network and the rate of ADF/Cofilin binding at the

leading edge (details in Appendix 1):

CF »
C0DþWLCBru

DþAW LrB
; _CB »

rBAC0D

DþAW LrB
: (3)

When the network grows, its length L increases, and hence, as shown by these formulas, the local

concentration of free ADF/Cofilin near the actin network decreases with time, and so does the rate

of ADF/Cofilin binding at the leading edge, in agreement with the measurements (Figure 3B). This

provides a demonstration of the local depletion of ADF/Cofilin due to the diffusion and binding to

the network. Note that these calculations are but a rough order-of-magnitude estimate; to be more

precise, we simulated the full 2D model (1) - (2) using parameters estimated from our data and taken

from the literature (details in Appendix 1) and find a significant depletion effect near the network

where the free ADF/Cofilin concentration drops by as much as 50% (Figure 3D).

To further test the model, we used the measurements of the actin density along the networks giv-

ing us functions AðyÞ for tens of the networks of various densities at a certain time after the actin

growth was initiated, and simulated (1) - (2) with these functions. This allowed direct comparison of

measured and predicted ADF/Cofilin concentrations along the network. Figure 3—figure supple-

ment 1A–B shows that the model recapitulates the distance-dependent concentrations and relative

amounts of bound ADF/Cofilin very well.

Equilibrium length of actin network as a function of biochemical and
geometric parameters
Actin network fragmentation at the trailing edge
When one observes the time lapse data of actin network dynamics at the trailing edge, it becomes

apparent that the network does not disassemble continuously, but rather small, micron-size, pieces

of the network break off (Figure 4A). Thus, the network disassembles by macroscopic fragmenta-

tion. To capture this dynamics, we followed the theory introduced in Michalski and Carlsson (2010),

Michalski and Carlsson (2011) and modeled the network as a 2D ensemble of edges connected by

nodes. We emphasize that this representation is highly idealized, and the that the edges do not

stand for individual filaments, but rather represent actin filaments arrays; similarly, nodes are not

individual physical Arp2/3 complexes, but are abstracted crosslinking and/or branching points. We

model the disassembling effect of ADF/Cofilin by removing the nodes with certain rate, P. Once a

piece of the network becomes disconnected from the main body of the network due to this edge

removal, we assume that this piece diffuses away and we delete it. Figure 4C illustrates how the

model works.
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The key to the model behavior is setting rules that describe how the rate of breakage per node

varies spatially. It is natural to assume that this rate is a function of local densities of filamentous actin

and bound ADF/Cofilin. We also assume, for simplicity, that we can neglect a potentially complex

effect of sequential biochemical reactions preceding the breakage events. Considering that both

modeling and data shows that the bound ADF/Cofilin density changes little compared to actin near

the trailing edge, we assume that the rate of breakage is a function of a spatially constant-bound

ADF/Cofilin density. Thus, in the model, the rate of breakage (node disappearance) varies locally

due to spatial variation of the local density of the actin network (we calculate the local density of the

discrete network as a weighted average of the number of the network edges in the vicinity of a given

node; details in Appendix 1). It is reasonable to assume that the node breakage rate would be a

decreasing function of the actin filament density, as greater density of the actin filaments means also

a greater density of the branching/crosslinking points, and effectively a number of such points per

unit volume constitute a node.

Thus, we used the relation P / C
b

B

Aa , where CB is the spatially constant concentration of bound ADF/

Cofilin, A is the local density of the discrete network, and a and b are positive exponents that we

varied in the simulations. We found that for many values of these exponents, the model was able to
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Figure 4. Network fragmentation. (A) Snapshots of experimental measurements of actin density (red) at three consecutive time points. The yellow arrow

shows a hole in the network, the dotted outline and blue arrow the breakage of a large piece of network. The network width is 90 mm, the ADF/Cofilin

concentration 200 nM, the bar is 10 mm. See Figure 4—video 1, right for the full time dynamics. (B) Simulation snapshots for three consecutive time

steps. Colors and arrows as in Figure 4A, dotted lines show the shifted outline of the network in the previous time step. The same network width and

speed and initial actin concentration as those measured for the network shown in Figure 4A, were used as model parameters in the simulation. See

Figure 4—video 1, left for the full time dynamics. (C) Shown is the simulation setup. Effective nodes (branching and crosslinking points) are the vertices

of the square lattice, while actin filaments are the edges of the square lattice. At every time step, the network is shifted in the growth direction. At each

node, the breakage rate is a function of the local actin and global bound cofilin densities. The three circles show three different breakage events and

their effects. (D) Comparison between the simulated equilibrium length and the analytical prediction using Equation (4) for different values of the initial

actin density and exponent a. Inset: The fluctuating network lengths as functions of time for various values of initial actin density for a ¼ 2. (E)

Comparison between the actin density in the stochastic fragmentation simulation (thin lines) and the analytical approximation (thick black line). (F) Fit of

the predicted quadratic dependence of the network equilibrium length on the actin density to the measurements of the equilibrium network length (L)

normalized by the network speed (V) and the average concentration of bound cofilin (CB). B, D, E: For details and parameters see Appendix 1.

DOI: https://doi.org/10.7554/eLife.42413.011

The following video is available for figure 4:

Figure 4—video 1. Video comparing fragmentation in the measurements (right) and the discrete network model (left) corresponding to Figure 4A,B.

DOI: https://doi.org/10.7554/eLife.42413.012
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recapitulate several key features of the observed actin network disassembly (Figure 4B, Figure 4—

video 1). Specifically, the modeled dynamic networks were fragmenting at the trailing edge and

forming holes near the edge. Analogously to the observations, we found that the modeled networks,

after an initial period of growth, reached an equilibrium length, around which the network length

fluctuated stochastically (Figure 4D inset). The model also predicted correctly the relatively small

variation of the actin density along the network length, with a sharp drop at the trailing edge

(Figure 4E).

For comparison with data, it is useful to derive an analytical approximation of the discrete, sto-

chastic model. In Appendix 1, we introduce continuous deterministic densities of actin filaments and

of broken nodes in the network, derive differential equations for these densities and solve these

equations. This continuous deterministic model allows deriving analytical expression for the equilib-

rium network length L as the function of three parameters, average bound ADF/Cofilin density, CB,

initial actin network density, A0, and rate of the network growth at the leading edge, V :

L/ V
Aa
0

C
b
B

: (4)

Figure 4D shows excellent agreement between the analytical approximation (4) and the corre-

sponding network simulations.

To determine the values of the exponents a and b, we examined all networks in the experiments

that have reached equilibrium, measured the values of parameters L, V , A0 and CB (for CB we used

the average across the network) for each network, and compared the actual equilibrium lengths to

the ones predicted by Equation (4) based on the measured values of parameters V , A0 and CB. We

found that for any a 2 ½1; 3� and b 2 ½0:5; 1:2�, we had R2-values of over 0.7, and p<10�7. In the follow-

ing we use b ¼ 1;a ¼ 2 (R2 ¼ 0:72, p<10�8). Figure 4F shows the quadratic dependence of the equi-

librium network length on the initial actin density. This fit suggests that rate of disassembly of the

effective network nodes is proportional to the bound ADF/Cofilin density and inversely proportional

to the square of the local actin density. We discuss implications of this finding below.

Balance between accumulation of ADF/Cofilin in longer networks and
accumulation of network-breaking events predicts equilibrium network
length
We can now combine the results from two models – for ADF/Cofilin binding and for network disas-

sembly – to understand how the ADF/Cofilin dynamics and network fragmentation determine the

equilibrium network length. In light of the relation

L/ V
A2

0

CB

; (5)

all that remains is to use the model from the previous section to estimate the average density of

bound ADF/Cofilin CB and substitute the value into Equation (5). In Appendix 1, we derived the fol-

lowing analytical estimate, based on the analysis of Equations (3) and (1):

CB /
rBA0C0L

V
� D

rBA0WLþD
; (6)

which provides an explicit formula for the average density of bound ADF/Cofilin as a function of the

leading edge actin density, rate of the network growth at the leading edge, the network dimensions

and initial ADF/Cofilin concentration. This estimate has a simple interpretation: The first factor gives

the average amount of the bound ADF/Cofilin in the absence of depletion. This amount is propor-

tional to the actin density, initial ADF/Cofilin concentration and network length because the ADF/

Cofilin binding rate is proportional to the actin density and the initial ADF/Cofilin concentration. The

factor L=V gives the characteristic time scale for ADF/Cofilin binding, that is longer/slower networks

allow more time for ADF/Cofilin binding than shorter/faster networks. The second factor in Equa-

tion (6) represents a depletion factor, between 0 and 1, which shows by which fraction the local free

ADF/Cofilin concentration near the network is decreased relative to the initial concentration C0. The
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larger the network (width W or length L or both are large), or the denser the network (A0 is large),

the more ADF/Cofilin is depleted. Finally, faster diffusion reduces the effect of depletion.

Note that the estimated amount of bound ADF/Cofilin in Equation (6) depends on the equilib-

rium length L itself. Thus, the network equilibrium length is determined by the balance between two

feedbacks (Figure 5A): the network length is shortened by higher ADF/Cofilin density, while the

bound ADF/Cofilin density is increased by the network length. Mathematically, the first feedback is

expressed by Equation (5) and effectively gives the bound ADF/Cofilin density as the decreasing

function of the network length, while the second feedback is expressed by Equation (6) that gives

the bound ADF/Cofilin density as the increasing function of the network length (Figure 5A).

Together, these two equations constitute an algebraic system of equations for two variables – L and

CB – that has a unique solution for each value of four parameters, A0;C0;V ;W, given graphically by

the intersection of two curves for the relations CBðLÞ given by Equation (6) and Equation (5), as

shown in Figure 5A. In particular, since these two curves will always intersect, the network will reach

some equilibrium length for any parameter combination. The effect of varying individual factors can

now easily be understood (Figure 5B–D) and allows us to elucidate the experimental observations

from Figure 2: Increasing the ADF/Cofilin concentration leads to more bound ADF/Cofilin and

thereby shorter networks (Figure 5B). Increasing network density leads to less disassembly, and also

to more depletion, and denser networks grow longer (Figure 5D). Figure 2B shows very good

agreement between the model and the measurements. In the second experiment in Figure 2C–D,

wider networks were less affected by ADF/Cofilin. The model suggests that this is because wider

networks lead to more depletion and hence longer networks (Figure 5C), again in quantitative

agreement with the measured lengths (Figure 2D).
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ADF/Cofilin regulates steering of heterogeneous networks
In Boujemaa-Paterski et al. (2017) we found that network heterogeneity – varying actin filament

density along the network leading edge – induces network steering, in the sense that the heteroge-

neous network grows curved. We explained this effect by the observation that the denser part of

the network grows faster than the less dense part. Since these two parts of the network are intercon-

nected, the only way for two network parts of different lengths to stay connected is if they grow

along the arc of a circle. Then the faster part with the long axis further from the circle’s center can

grow longer, while advancing along the same arc length as the slower part (Figure 6D, left). This

argument was purely geometric and implicitly assumed that the networks are plastic, bending freely.

In fact, the networks are likely elastic or viscoelastic (Gardel et al., 2004a), which affects their bend-

ing behavior.

To simulate the steering heterogeneous network, we modeled the two networks as two elastic

beams growing side-by-side. The networks had different densities and different growth speeds; we

took the values of those parameters from the data (Figure 6D). We used the result from

Gardel et al. (2004a) for random and isotropic actin network indicating that the network elasticity E

scales with actin density A as E / At; t » 2:5. Note though that model predictions are not very sensiti-

vecto the exact value of the exponent t, and that a few different values of parameter t were
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DOI: https://doi.org/10.7554/eLife.42413.014

The following video is available for figure 6:

Figure 6—video 1. Selective disassembly of heterogeneous networks by ADF/Cofilin induces steering.

DOI: https://doi.org/10.7554/eLife.42413.015
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reported, including t » 0:5 (Bieling et al., 2016) for branched actin networks, which are neither ran-

dom nor isotropic (discussed in further detail in Appendix 1). We modeled the networks as two

attached beams of width W, growing at speeds V1 and V2, with elastic moduli E1 and E2. In the

absence of ADF/Cofilin we can assume that the densities and hence elasticities stay constant along

the network. In Appendix 1 we demonstrated, that in mechanical equilibrium, the heterogeneous

network forms a bent shape with constant radius of curvature R (Figure 6A–C):

R¼W
V1þV2

V1�V2

þðs� 1Þ V1s�V2

4sðV1�V2Þ

� �

; (7)

growing with speed:

Vh ¼
V1þV2

2
� ðV1�V2ÞðV2

1
s2�V2

2
Þ

2 V2

1
s2þ 6V1V2sþV2

2

� � (8)

Here s¼ E2=E1 is the ratio of the elastic moduli. The dependencies of the curvature and hetero-

geneous network speed on parameter s are depicted in Figure 6B and C, respectively. Note that if

both networks have the same elastic properties, that is s¼ 1, the heterogeneous network elongates

with the average speed slightly less than ðV1þV2Þ=2, and the radius of curvature has the much sim-

pler form R¼WðV1þV2Þ=ðV1�V2Þ, an approximation that has been used in Boujemaa-

Paterski et al. (2017). The steering direction (right or left) is solely determined by which part of the

network grows faster – the heterogeneous network always steers towards the slower sub-network.

Differences in elasticity, however, can influence the amount of steering in a complex way.

Figure 6A–C shows that if one of the networks is very sparse (and hence weak elastically), the het-

erogeneous network becomes almost straight. There is a maximal steering curvature achieved for a

certain elasticity ratio depending on the ratio of the speeds of the sub-network growth.

To asses the effect of ADF/Cofilin on heterogeneous networks, we used the model from the previ-

ous sections to calculate the equilibrium lengths of the two sub-networks and simulate the heteroge-

neous networks. Since the two sub-networks compete for the same pool of ADF/Cofilin, we need to

adjust the depletion factor in Equation (6). As described in Appendix 1 we can determine two equilib-

rium lengths L1 and L2 of the sub-networks. Effectively both networks will reach longer lengths

together than in isolation, since there is more local depletion of ADF/Cofilin in the combined network.

In addition, the sparser network is affected more by the depletion, as the denser networks ‘uses up’

disproportionately more ADF/Cofilin. Also, the network densities are not constant along the sub-net-

works, thereby leading to varying elasticities along the network. In terms of the model, this means that

the parameter s becomes a function of the distance from the leading edge. Finally, the sparser sub-

network has a trailing edge much closer to the leading edge than the dense one. Altogether, these

factors mean that in the presence of ADF/Cofilin, the heterogeneous network will initially (closer to the

leading edge) have the same curvature as without ADF/Cofilin. Further away the curvature decreases

until the shorter sub-network fully disassembled, after which the longer sub-network is the only one

remaining, and it continues to grow straight. Figure 6E shows that numerical simulations confirm these

arguments and generate predictions for various ADF/Cofilin concentrations.

We imaged the curving heterogeneous networks (Figure 6D) and found that indeed increased

ADF/Cofilin concentration straightens the combined network (Figure 6F) due to selective disassem-

bly of the sparser sub-network and relieving the elastic constraint on the denser sub-network. The

imaged network shapes appear qualitatively like the predicted shapes, and the measurements of the

average curvatures give values similar to those predicted by the model (Figure 6F). Note, that the

curvature changes very little on average when ADF/Cofilin concentration is increased from 250 to

500 nM because in both cases the sparser sub-network is almost completely disassembled.

An illustration that the effect of ADF/Cofilin can not only straighten, but also induce steering in

heterogeneous networks, which grow straight in the absence of ADF/Cofilin, is given by the assay

shown in Figure 6G and Figure 6—video 1. In this assay, the sparse sub-network was in the middle;

two denser networks were at the sides of this central sub-network, and two more sparse sub-net-

works flanked the denser ones at the edges. Without ADF/Cofilin, such a combined network grew

straight due to its mirror symmetry. Upon addition of ADF/Cofilin, the sparse sub-network in the

middle was selectively disassembled, isolating the right and left heterogeneous networks from each

other, which led to their steering away from each other.
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Discussion

Summary of the results
We found that addition of ADF/Cofilin switched the actin networks’ steady length increase to a

‘global treadmilling’ regime, in which the networks, after an initial growth stage, reach a dynamic

equilibrium, with the network growing at the leading edge and falling apart at the trailing edge, and

its length fluctuating around a constant. We observed that at the trailing edge, the network was sto-

chastically fragmented into little pieces, rather than depolymerizing microscopically. Experiments

showed that the equilibrium network length decreases with ADF/Cofilin concentration, and increases

with the actin density and growing speed. The novel and counter-intuitive observation that the equi-

librium network length increases with network width motivated the formulation of a computational

model for ADF/Cofilin dynamics and subsequent comparison between simulated and measured spa-

tio-temporal distributions of ADF/Cofilin and actin filament density. This led to a new insight: ADF/

Cofilin is locally depleted from the solution by binding to actin filaments, which has a profound effect

on actin disassembly, explaining why wider treadmilling networks are longer. While the effect of

local depletion of actin monomers due to binding to actin filaments was recently reported both in

vitro (Boujemaa-Paterski et al., 2017) and in vivo (Dimchev et al., 2017), the effect of local deple-

tion of an actin accessory protein is reported here for the first time, to the best of our knowledge.

This points to the possibility that similar depletion effects of other actin-binding proteins could be

important for actin network dynamics.

We find that a single rate of disassembly, proportional to the local bound ADF/Cofilin density

and inversely proportional to the square of local actin network density, can reproduce all experimen-

tal results. As a result, we were able to describe the dynamic equilibrium of actin networks with a

simple formula enabling us to predict the length of the actin network as a function of its width, actin

filament density, ADF/Cofilin concentration and growth rate. Finally, we made the observation that

the radius of curvature of heterogeneous networks increases with the ADF/Cofilin concentration. A

model suggests that ADF/Cofilin mediated disassembly effectively changes the elasticity of the net-

works in a spatially graded way, which affects the network curvature of heterogeneous growing net-

works. Thus, ADF/Cofilin can locally regulate the steering of heterogeneous networks.

Relation to previous studies
Our observations and modeling results are in agreement with previous studies: ADF/Cofilin was

observed to be distributed roughly uniformly across keratocyte’s and fibroblast’s lamellipodia, with a

narrow ADF/Cofilin-free zone at the leading edge (Svitkina and Borisy, 1999). Similarly, in in vitro

actin tails, the ADF/Cofilin density increased sub-linearly along the tail away from the leading edge,

with the small ADF/Cofilin-free gap near that edge (Reymann et al., 2011). Just like our model, the

theory inMichalski and Carlsson (2010) predicted an initial slow actin filament density decay followed

by an abrupt decay at the edge of the tail. Such actin density behavior in lamellipodia of motile kerato-

cytes was reported in Barnhart et al., 2011; Raz-Ben Aroush et al. (2017) and other experimental

studies. The reason for this density behavior is the cooperative nature of network fragmentation, which

accelerates non-linearly at low actin filament densities and leads to an abrupt falling apart of the net-

work at the trailing edge (Michalski and Carlsson, 2010,Michalski and Carlsson, 2011).

Our model predicts that effective node-breaking events in the network take place on the scale of

one per hundred seconds per micron. This is in agreement with measured severing times in vitro per

micron of a filament of hundreds of seconds for 150 nM of ADF/Cofilin and tens of seconds for 1000

nM of ADF/Cofilin (Chin et al., 2016). The predicted proportionality of this rate to the ADF/Cofilin

density is in agreement with the observation of the linear proportionality of the debranching to the

ADF/Cofilin concentration at low concentrations (Blanchoin et al., 2000). Similar to Michalski and

Carlsson (2010), we found that, remarkably, the properties of the actin networks with actin subunits

switching between many chemical and physical states can be described by a single effective disas-

sembly rate, proportional to a certain mean of the chemical transition, severing and debranching

rates. Note that the explanation for the abrupt disassembly at the trailing edge is not the abrupt

increase of the rate of the node removal beyond a threshold of the cofilin decoration, but rather

two-stage nature of the disassembly. First, node removal ‘primes’ the network for the disassembly;
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second, the disassembly has an ‘avalanche’ character due to the positive feedback between the actin

drop and node disappearance.

Just as Michalski and Carlsson (2011), our model predicts that the network’s width remains con-

stant along the length, which we also observed. In vivo, this property of the lamellipodial networks is

most clearly apparent in keratocytes’ lamellipodial fragments (Ofer et al., 2011). Actin comet tails

of intracellular pathogens also sometimes appear to have a constant width (Akin and Mullins,

2008), while under other conditions the tails taper as they decay (Carlier et al., 1997). We have to

note that most of the previous measurements showed more gradual decrease of the actin density in

the actin tails (Lacayo et al., 2012; Cameron et al., 1999; Rosenblatt et al., 1997). Yet, a few in

vitro reconstitutions (Loisel et al., 1999; Reymann et al., 2011) revealed the abrupt actin density

drop at the trailing edge. Also, abrupt actin density decrease at the rear of the lamellipodia in kera-

tocyte cells and fragments (Barnhart et al., 2011; Ofer et al., 2011) was observed.

Directly, the ‘macroscopic’ fragmentation into micron-sized pieces was only observed in in vitro

reconstitution experiments (Reymann et al., 2011). Indeed, it would be hard to imagine breakage

of the microns-size fragments from a few micron-long lamellipodia. However, it is not out of question

that such fragmentation could take place at the trailing edge of longer, » 10 mm long, lamellipodia.

Imaging such a process is a challenging problem for the future. Note also that some of the images

of the actin comet tails (for example, see Figure 1 in Cameron et al., 1999) show patchy tail density

at the trailing edge, which could be interpreted as the disassembly through fragmentation. Our

results also are relevant to the ‘microscopic’ fragmentation through breaking actin filaments into

small oligomers inferred from in vivo data in Berro et al. (2010); Raz-Ben Aroush et al. (2017).

Previous modeling showed that the length of the treadmilling network is (i) proportional to the

polymerization velocity, (ii) is inversely proportional to the ADF/Cofilin density, (iii) and scales linearly

with actin concentration (Michalski and Carlsson, 2010). Fitting our theoretical predictions to our

data agrees with these previous predictions, with the exception that the network length is propor-

tional to the square of the actin filament density at the leading edge. The reason for the difference,

most likely, is that in Michalski and Carlsson (2010), the network node breaking rate was propor-

tional to the ADF/Cofilin density, and the node density scaled with the actin density. We suggest,

similarly, that the network node (effectively, cross-linking and entanglement) density does scale with

the actin density; however, the breaking (debranching and severing) rate is proportional to the ratio

of the ADF/Cofilin to actin density, which is effectively the length density of ADF/Cofilin along actin

filaments. Then, the ratio of the node density to the breaking rate per node, proportional to the

square of the actin density divided by the ADF/Cofilin density, determines the network length.

Addition of ADF/Cofilin was shown to shorten Listeria actin tails (Carlier et al., 1997;

Rosenblatt et al., 1997); proportionality of the Listeria actin tails’ lengths to the polymerization rate

at the leading edge was demonstrated in Theriot et al. (1992), and proportionality of the lamellipo-

dial length in motile keratocytes’ fragments to the actin growth rate at the leading edge was

reported in Ofer et al. (2011). Interestingly, network length as a function of width was predicted to

be linearly increasing and then saturating, but saturation happens when the width is on the order of

20 mesh sizes, on the micron scale (Michalski and Carlsson, 2011), and so this is unrelated to the

effect that we report in this study.

Novelty of our findings and relevance to in vivo networks
We established a simple formula that allows estimating the network length, L, as a function of a

wide range of geometric and biochemical parameters: Actin filament density at the leading edge,

A0, speed of actin growth at the leading edge, V , width of the network, W , and initial ADF/Cofilin

concentration, C0 (Figure 5, Figure 7):

L¼ k1
A2

0
V

CB

; CB ¼ k2
rBA0C0L

V
� 1

1þ rBA0WL
D

;

Here, CB is the density of ADF/Cofilin bound to the network, D is the ADF/Cofilin diffusion coeffi-

cient in the solute, rB is the ADF/Cofilin binding coefficient, k1 »1s=mM is a parameter determining the

magnitude of the effective debranching and/or severing rate, and k2 »1=2 is a non-dimensional

parameter.
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Figure 7. Phase diagram. (A) Depicted are the predicted equilibrium networks lengths, if ADF/Cofilin concentration and actin density are varied. Gray

colors represent regions of similar equilibrium network length. Shadings of red show actin density (black = high, yellow = low). The network shapes

were calculated using the fragmentation model. (B) Depicted are the predicted equilibrium networks lengths, if network width and actin density are

varied. Gray colors in the background represent regions of similar equilibrium network length. Colored insets show the simulated amount of free ADF/

Figure 7 continued on next page
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One consequence of these results is that there are different ways for a cell to achieve the same

network length. For example, if the actin density drops and hence the network becomes shorter,

there are two ways to re-establish the original network length (Figure 7A–D): either the ADF/Cofilin

concentration has to be decreased, or the network has to become wider. In both cases, the proce-

dure is as follows (compare arrows in Figure 7C–D): 1. The drop in actin density leads to a new,

shorter equilibrium length, 2. Through intersection with the constant-network length-level curves an

alternative parameter combination can be identified, which gives the original network length. 3. This

gives the new (lower) ADF/Cofilin concentration in solution or new (higher) network width necessary

to maintain the original network length. This dynamic equilibrium underlies the network’s ability to

adapt to external changes. Indeed, cycles between low and high loads generate branched actin net-

works with different densities (Bieling et al., 2016). Our model explains how the system will respond

to adjust its dimension according to these changes. Similarly, membrane tension affects the lamelli-

podium’s actin filament density (Mueller et al., 2017). The dynamic equilibrium model predicts how

tension sensing will be counterbalanced to preserve the dimension of the growing network.

We found that diffusion of ADF/Cofilin in the solution and binding to the growing actin network

can locally deplete the cytoplasmic ADF/Cofilin, which makes wider and denser actin networks grow

longer (Figure 7B). Quantitatively, whether the depletion is significant or not, is determined by the

magnitude of the non-dimensional quantity rBA0WL
D

: if this factor is smaller than 1 (e.g. when the net-

work width and length are small enough), there is no significant depletion; otherwise, there is.

So, is the ADF/Cofilin depletion relevant in vivo? The following estimates give a clear positive

answer. Using rB » 0:01=ðs mM) (Tania et al., 2013), we estimated that rBA0 » 1� 10=s (F-actin density

is in the range of hundreds of �M for observed branched networks (Koestler et al., 2009;

Urban et al., 2010), and D » 10 mm2/s (Tania et al., 2013). Thus, for actin tails propelling intracellular

pathogens and organelles, for which W » 1 mm and L» 3 mm, we have: rBA0WL
D

» 0:3� 3, and the deple-

tion of ADF/Cofilin is moderate but present. This effect is even more pronounced for the branched

networks in cells. For example, the characteristic dimensions of the lamellipodial network in fish kera-

tocyte cell is W »L » 10m, so rBA0WL
D

» 10� 100, and there is very significant depletion effect for ADF/

Cofilin. Even for shorter lamellipodia in many other cells, with L» 1� 4m, W » 10m, rBA0WL
D

» 1� 40,

and the depletion effect is not negligible.

In the limit when the depletion is in effect, we predict that CB » k2
DC0

VW
, and the length of the actin

networks can be estimated by the simple formula:

L»
k1

k2

A2

0
V2W

DC0

:

The following parameter values then allow to estimate the length: For the rapidly growing actin

comet tail and lamellipodial networks, V »0:1 mm/s (Theriot et al., 1992; Barnhart et al., 2011). The

ADF/Cofilin concentration in many animal cells is on the order of tens of mM (Pollard et al., 2000).

Then, for the actin comet tail (for which W »1 mm), we predict the length L»10� 20 mm. Note that in

two previous in vitro reconstitution studies (Loisel et al., 1999; Reymann et al., 2011), the observed

tail length, when ADF/Cofilin was the only depolymerization factor, was on the order of 20 mm, in

line with our estimate. For the actin tails observed in cells and in cell extracts, the length is a few-

fold lower – on the order of a few microns – which is in agreement with a few-fold disassembly accel-

eration effect generated by molecular cofactors of ADF/Cofilin (see discussion below). Similarly, for

the lamellipodial networks (for which W »10 mm), we predict the length L»100 mm, which is an order

of magnitude longer than observed. This is a clear indication that the action of ADF/Cofilin molecu-

lar cofactors, in addition to possible nonlinear scaling of the ADF/Cofilin concentration effect must

be in effect.

Figure 7 continued

Cofilin (blue = low, red = high). (C-D) Depiction of how different combinations of control variables can lead to the same network length. See text for

details.

DOI: https://doi.org/10.7554/eLife.42413.016

Manhart et al. eLife 2019;8:e42413. DOI: https://doi.org/10.7554/eLife.42413 17 of 37

Research article Cell Biology

https://doi.org/10.7554/eLife.42413.016
https://doi.org/10.7554/eLife.42413


The clear in vivo relevance of the branched network steering is illustrated by recent observations

that flat Arp2/3-governed sheets of branched actin regulate pathfinding of cells in 3D ECM (Fritz-

Laylin et al., 2017). The question of how motile cells turn is attracting growing attention. A number

of turning mechanisms were elucidated. As expected, chemotaxis-related biochemical pathways

upstream of the actin network mechanics can regulate lamellipodial steering (Yang et al., 2016).

However, mechanics, architecture and turnover of the network at the leading edge can lead to steer-

ing even in the absence of the upstream control. Examples of such mechanisms include Rac-Arpin

nonlinear feedbacks regulating of the Arp2/3-branching activity (Dang et al., 2013), spatially graded

thymosin b4 mediated control of the lamellipodial turning (Roy et al., 2001) and monomer-diffusion

mediated steering of heterogeneous actin networks (Boujemaa-Paterski et al., 2017). Steering of

intracellular pathogens by curving their actin tails depends on harnessing viscoelastic deformations

of the actin tails and polymerization forces on the curved pathogen surface to generate actin growth

asymmetries (Lacayo et al., 2012). Motile cell turning can also rely on alternating types of actin net-

works (Diz-Muñoz et al., 2016) and on crosstalk between actin and microtubule dynamics (Buck and

Zheng, 2002). Lastly, cells also can steer from the rear of the networks, by actin-myosin contraction

asymmetry mechanism (Nickaeen et al., 2017). Our findings add important additional control mech-

anism of tuning curvatures of the heterogeneous networks by ADF/Cofilin-mediated changes to net-

work elasticity.

Model limitations and outstanding questions
Our experiments and modeling do not address the microscopic mechanism for the biological func-

tion of ADF/Cofilin, which is still debated. Our model is not explicitly microscopic and does not dis-

tinguish between ADF/Cofilin-mediated severing, acceleration of disassembly at filament ends and

debranching (Chan et al., 2009) (reviewed in Blanchoin et al., 2014). Similarly, the model took into

account neither ATP hydrolysis on actin subunits and preferential binding of ADF/Cofilin to ADP-

actin (Blanchoin and Pollard, 1999), nor cooperativity of ADF/Cofilin binding (Hayakawa et al.,

2014), nor ADF/Cofilin-induced structural change and destabilization of filaments

(Pfaendtner et al., 2010; Suarez et al., 2011; Wioland et al., 2017). Due to technical limitations,

we did not explore very high ADF/Cofilin concentrations, at which over-decoration by ADF/Cofilin

can lead to filament stabilization (Andrianantoandro and Pollard, 2006), and rate of debranching

can become a nonlinear function of ADF/Cofilin concentration (Chan et al., 2009). Thus, we

observed neither non-monotonic dependence of the severing activity on ADF/Cofilin concentration

(Andrianantoandro and Pollard, 2006; Pavlov et al., 2007), nor independence of the lengths of Lis-

teria actin comet tails on high ADF/Cofilin concentrations (Rosenblatt et al., 1997). Even though

our model did not account for all this microscopic complexity, the model predictions are remarkably

efficient, pointing out two important factors: Hydrolysis is fast enough so that only a micron- or sub-

micron-size region near the very leading edge is affected by the hydrolysis state of the actin net-

work, which is negligible when we deal with networks longer than a few microns. Also, as we note

above, on the more macroscopic scale of the whole network, the microscopic complexity can be

effectively combined into one overall disassembly rate.

We also did not address the emerging molecular complexity of the disassembly process: in vivo,

ADF/Cofilin often acts in synergy with the ADF cofactor actin-interacting protein 1 (AIP1), twinfilin,

coronin and Srv2/adenylyl cyclase-associated protein (Kueh et al., 2008; Johnston et al., 2015).

One of the obvious effects of the disassembly cofactors is acceleration of the disassembly process.

Concerted action of Twinfilin, Coronin and Aip1, when added to cofilin, was demonstrated to accel-

erate the disassembly by a few-fold, up to an order of magnitude (Johnston et al., 2015;

Chin et al., 2016). This would bring down the estimates of the actin networks’ lengths above to the

observed values. One example of the extremely fast disassembly is actin patches in yeast, which are

so small (micron scale) and have such a rapid dynamics (on the order of seconds) (Berro et al.,

2010) that fast microscopic mechanisms employing additional molecular machinery, not accounted

for in our study are likely involved. How the disassembly cofactors change the fragmentation sce-

nario is also a great question for the future. One possibility is that these cofactors make the disas-

sembly smoother: it was demonstrated that concerted action of Cofilin, Aip1 and Coronin first

breaks filaments into small fragments, and then disassembles the fragments into monomers at such

speed that effectively the disassembly is continuous (Johnston et al., 2015).
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In addition, there are ADF/Cofilin-independent disassembly mechanisms, that is myosin-powered

grinding of the actin network at the cell rear (Wilson et al., 2010). This synergy, added to complex

nonlinear feedbacks between the branching, assembly and disassembly processes (Tania et al.,

2013) and complex transport and partitioning of actin monomers and filaments in the cell

(Vitriol et al., 2015; Raz-Ben Aroush et al., 2017) cause ADF/Cofilin to affect not only the disas-

sembly, but also polymerization rate and network density. For example, higher ADF/Cofilin concen-

tration can accelerate growth speed (Aizawa et al., 1996; Carlier et al., 1997). In the future, the in

vitro and in silico studies will have to address these systems-level actin network dynamics. Last, but

not least, cell actin networks integrate architectures other than Arp2/3-controlled branched lamelli-

podia and comet tails, and there is a delicate, incompletely understood dynamic balance between

branched, bundled and other networks (Blanchoin et al., 2014). Dependence of the disassembly on

network architecture was recently discovered (Gressin et al., 2015). Future models and experiments

will have to investigate quantitative rules of the integrated global actin network dynamics.

Conclusion
Our study leads to the important general conclusion that the cell is able to control the dynamic actin

network length by adjusting either geometric, structural, or biochemical parameters, as needed. For

example, if the network’s width is dictated by the environment around the cell, then network’s

length can be regulated by tuning ADF/Cofilin concentration (Figure 7A–D). On the other hand, if

the ADF/Cofilin concentration has to be tuned for timely disassembly of other actin structures, then

the branched network’s density or width can be changed in order to achieve necessary length

(Figure 7A–D). In other words, there are multiple ways to set the dynamic balance of the biochemi-

cal and transport pathways regulating the global actin treadmill. This gives the cell sufficient flexibil-

ity in the control of the cytoskeletal geometry, without compromising requirements for mechanical

and biochemical parameters to control multiple cytoskeletal functions.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source Identifiers

Additional
information

Biol. sample
(Bovine)

Bovine Thymus Slaughterhouse,
SAINT EGREVE

Biol. sample
(Rabbit)

Rabbit Muscle
Acetone Powder

Pel-Freez
Biologicals

Cat# 41995–2

Strain, strain
background (E coli)

BL21(DE3)
p Lys S

Merck Cat# 69451

Strain, strain
background (E coli)

Rosettas 2 (DE3)
p Lys S

Merck Cat# 71403

Peptide, recomb.
protein

Mouse Capping
proteins

Uniprot a & b subunits,
P47754 and
P47757

Peptide, recomb.
protein

Human Profilin 1 Uniprot P07737

Peptide, recomb.
protein

Yeast cofilin Uniprot Q03048

Peptide, recomb.
protein

Human WASp
pWA

Uniprot P42768 seq. 150–502 aa

Chem. compound,
drug

mPEG-Silane,
MW 30 k

Creative
PEGWorks

Cat# PSB-2014

Chem. compound,
drug

Alexa Fluor 488 C5
Maleimide

ThermoFisher
Scientific

Cat# A10254

Chem. compound,
drug

Alexa Fluor
568 NHS Ester

ThermoFisher
Scientific

Cat# A20003

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source Identifiers

Additional
information

Commercial
assay or kit

Glutathione
Sepharose 4B

GE Healthcare Life
Sciences

Cat# 17075605

Commercial
assay or kit

Ni Sepharose High
Performance

GE Healthcare Life
Sciences

Cat# 17526802

Software,
algorithm

Matlab code for a
standard numerical
algorithm to solve
the reaction-diffusion
equations

This paper;
Source code 1

Protein production and labeling
Actin was purified from rabbit skeletal-muscle acetone powder (Spudich and Watt, 1971). Actin was

labeled on lysines with Alexa-568 (Isambert et al., 1995). Labeling was done on lysines by incubat-

ing actin filaments with Alexa-568 succimidyl ester (Molecular Probes). All experiments were carried

out with 5% labeled actin. The Arp2/3 complex was purified from bovine thymus (Egile et al., 1999).

Human WASp-pVCA (GST-WASp-pVCA) is expressed in Rosettas 2 (DE3) pLysS and purified accord-

ing to Boujemaa-Paterski et al. (2017). Human profilin is expressed in BL21 DE3 pLys S Echerichia

coli cells and purified according to Almo et al. (1994). Mouse capping protein is purified according

to Falck et al. (2004).

Laser patterning
20 � 20 mm2 coverslips and cover glasses (Agar Scientific) were extensively cleaned, oxidized with

oxygen plasma (3 mn at 30 W, Harrick Plasma, Ithaca, NY) and incubated with 1 mg ml�1 of Silane-

PEG overnight. Patterns of the desired density and area were printed on Silane-PEG-coated surfaces

using a pulsed, passively Q-switched laser (STV-E, TeamPhotonics) that delivers 300 ps pulses at 355

nm. The laser power is controlled with a polarizer (iLasPulse device, Roper Scientific). Following laser

patterning, patterned coverslips were coated with a solution of NPF at a concentration of 500 to

1000 nM for 15 min. The excess of NPFs was washed out with G-buffer (5 mM Tris-HCl [pH 8.0], 0.2

mM ATP, 0.1 mM CaCl2 and 0.5 mM dithiothreitol (DTT)), and the surface was carefully dried.

Reconstituted LMs
Assembly of reconstituted LMs was initiated in polymerization chambers of 20 � 20 mm2 x 4.5 mm

height by addition of the actin polymerization mix contained 6 mM actin monomers (containing 3%

Alexa568-labeled actin), 18 mM profilin, 120 nM Arp2/3, 25 nM CP, in X buffer (10 mM HEPES [pH

7], 0.1 M KCl, 1 mM MgCl2, 1 mM ATP, and 0.1 mM CaCl2) and was supplemented with 1% BSA,

0.2% methylcellulose, 3 mM DTT, 0.13 mM 1,4-diazabicyclo[2.2.2]octane (DABCO), 1.8 mM ATP

(Boujemaa-Paterski et al., 2017). When needed, the polymerization mix also included yeast cofilin

purified according to Suarez et al. (2011) at a concentration of 125, 250, or 500 nM. We normalized

the actin network fluorescence between assays using 0.2 mm TetraSpeck fluorescent beads (Molecu-

lar Probes).

Image acquisition
Image acquisition was performed using an upright Axioimager M2 Zeiss microscope equipped with

an EC Plan-Neofluar dry objective (x20, NA 0.75), a computer controlled fluorescence microscope

light source X-Cite 120PC Q (Lumen Dynamics), a motorized XY stage (Marzhauser) and an ORCA-

ER camera (Hamamatsu). The station was driven by MetaMorph software (Universal Imaging Corpo-

ration). The growth rates were calculated using ImageJ software.

Mathematical modeling
Details about the mathematical modeling, analysis and simulation can be found in Appendix 1.
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draft, Writing—review and editing; Téa Aleksandra Icheva, Christophe Guerin, Tobbias Klar, Rajaa

Boujemaa-Paterski, Data aquisition, Formal analysis; Manuel Thery, Conceptualization, supervision;

Laurent Blanchoin, Alex Mogilner, Conceptualization, Supervision, Writing—original draft, Writing—

review and editing

Author ORCIDs
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Appendix 1

DOI: https://doi.org/10.7554/eLife.42413.019

Effective diffusion coefficient of ADF/Cofilin in the
branched actin network
Here, we test the hypothesis whether wider networks are less affected by ADF/Cofilin because

dense actin networks hinder diffusion, and this does not allow enough time for ADF/Cofilin to

access the middle of a network. To do so, we used the theory developed in Novak et al.

(2009), which examines how the presence of obstacles affects the effective diffusion constant

of a particle. According to Novak et al. (2009), the ratio between the ADF/Cofilin diffusion

constant in the cytosol, D, and the effective diffusion constant of ADF/Cofilin in the branched

actin network, Deff , can be estimated as:

Deff

D
¼ ð1�f=fcÞ�

1�f
:

In the theory derived in Novak et al. (2009), the actin network is represented as a

collection of long cylindrical obstacles/filaments, through which ADF/Cofilin molecules diffuse.

This theory estimates the ratio of the diffusion coefficients as the function of three parameters:

f, fc and �. Exponent � ¼ 1:58 was estimated in Novak et al. (2009) based on characteristic

dimensions of the cylindrical obstacles. Parameter f reflects the effect of the actin volume

fraction on diminishing the diffusion coefficient and is given as f ¼ 1� expð�VÞ, where
parameter V depends on the sum of volumes of individual obstacles per unit volume, and is

determined by the number of filaments per unit area, f , the average orientation angle of the

filaments, a ¼ 35
�, and the radii of actin filaments, rA = 3.5 nm, and of ADF/Cofilin molecules,

rC = 1.58 nm, as follows:

V ¼ f ðrAþ rCÞ2p
sina

: (9)

Finally, parameter fc ¼ 0:942 characterizes the critically dense network, which completely

obstructs the diffusion. A conservative estimate can be made by assuming a dense actin

network with f ¼ 300=�m2. This gives estimates of V ¼ 0:042 and Deff ¼ 0:97D. Thus, the effect

of even a dense actin network on the ADF/Cofilin diffusion coefficient is but a few per cent

and can be neglected.

Determining initial ADF/Cofilin binding rate
To determine the ADF/Cofilin binding rate (see Sec. Spatio-temporal ADF/Cofilin dynamics

and its local depletion in the main text), we used the experimentally measured concentrations

of ADF/Cofilin and actin. We focused on the changes of bound ADF/Cofilin concentration at

the beginning the network growth, since in this early stage we can neglect both ADF/Cofilin

unbinding and depletion of free ADF/Cofilin. This means that we can assume that:

qtCBþVqyCB »bðA;C0Þ;

where bðA;C0Þ is the binding rate we would like to determine. Since we know the network

growth speed, we can measure the increase of bound ADF/Cofilin _CB in moving patches of

actin, that is we can directly measure bðA;C0Þ. First, we examined networks with similar actin

densities A, and found a strong correlation (R ¼ 0:69, p<10�3) between the binding rate _CB and

initial concentration of ADF/Cofilin C0 (Appendix 1—figure 1A). Next, we examined networks

in the experiments with similar initial ADF/Cofilin concentrations C0, but with varying actin

densities A, and found a strong correlation between _CB and the actin density A (R ¼ 0:69,

p<10�5) (Appendix 1—figure 1B). Finally, we examined networks with varying values of

parameters C0 and A, and found that indeed the binding rate _CB / AC0 (R ¼ 0:51, p<10�5,
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Appendix 1—figure 1C), justifying the use of the proposed mathematical form for the binding

rate bðA;C0Þ ¼ rBAC0 at the beginning of the network growth. In the main text, we show, by

comparison with the data, that in fact the form bðA;C0Þ ¼ rBACF, that is the rate of binding

being limited by the local, not initial, concentration of free ADF/Cofilin, CF, leads to the model

predictions that fit the data very well.
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Appendix 1—figure 1. Scaling of ADF/Cofilin binding rate. (A) Correlation of _CB and C0 using

only networks with an actin density between 120 and 180 (a.u.). (B) Correlation of _CB and A

using only networks with an initial ADF/Cofilin concentration between 200 and 250 nM. (C)

Correlation of _CB and C0A using networks of varying initial ADF/Cofilin concentration and actin

density.

DOI: https://doi.org/10.7554/eLife.42413.020

Spatio-temporal ADF/Cofilin model: details and
simulation

Model
In this section, we provide details for the model of the ADF/Cofilin dynamics. All model

parameters are gathered in Appendix 1—table 1 below. We simulate the model in 2D with

ðx; yÞ 2 ½�B=2;B=2� � ½�B=2;B=2� � R2, where B> 0 is the size of the square-shaped domain.

The density of free ADF/Cofilin molecules diffusing in the solute is denoted by CFðx; y; tÞ, those
bound to the actin network by CBðx; y; tÞ. In the simulations, an actin network of width W and

length LðtÞ ¼ V � t is positioned at N ¼ ½�W=2;W=2� � ½0; LðtÞ�. The model consists of the

following equations:

qtCB ¼�VqyCBþ rBACF � rUCB; (10)

qtCF ¼DDCF � rBACF þ rUCB; (11)

with the initial conditions CFðx; y; 0Þ ¼ C0, CBðx; y; 0Þ ¼ 0, and the boundary conditions:

CFðx;y; tÞ ¼C0 x¼�B=2 or y¼�B=2

CBðx;0; tÞ ¼ 0:

Appendix 1—table 1. Simulation parameters of ADF/Cofilin binding/unbinding model.
Variables & parameters

Name Meaning Value Comment

CF
diffusing ADF/Cofilin in mM simulated

CB
bound ADF/Cofilin in mM simulated

V network growth speed » 1-2 mm/min measured

Appendix 1—table 1 continued on next page
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Appendix 1—table 1 continued

Variables & parameters

Name Meaning Value Comment

D ADF/Cofilin diffusion constant 600 mm2/min from Tania et al. (2013)

rB ADF/Cofilin binding rate 0.5/min/mM from Reymann et al. (2011)

rU ADF/Cofilin unbinding rate 0.31/min from Reymann et al. (2011)

A actin density 25-400 mM estimated in Boujemaa-Paterski et al. (2017)

C0
initial ADF/Cofilin concentration 125-500 nM experimental set-up

W network width 15-90 mm experimental set-up

B domain length 1 mm reflects experimental set-up

Dt time step for transport operator 1.5 min

DOI: https://doi.org/10.7554/eLife.42413.021

In the experiment, networks grow in a large, several square millimeter sized chambers, so

that the total amount of ADF/Cofilin is not limiting, and moreover, over the time of the

experiment, about 60 min, diffusion is not fast enough to diminish the ADF/Cofilin

concentration in the solute farther than a few hundred microns from the growing network

(for relevant estimates, see Boujemaa-Paterski et al. (2017). For this reason, we performed

the simulations in the area one millimeter in size, smaller that the size of the whole

experimental chamber, but large enough so that the concentration of free ADF/Cofilin at its

boundary is almost identical to the initial ADF/Cofilin solute concentration. This justifies using

Dirichlet boundary conditions also for CF , rather than no flux boundary conditions. For the

actin density, we assume Aðx; y; tÞ � 0 whenever ðx; yÞ =2N. Within the network, we use two

scenarios: The actin density is constant, or the actin density is a function of y only, that is

Aðx; y; tÞ ¼ AðyÞ, where we use the measured actin density along the network, averaged over

its width and fitted using a smoothing spline. The smoothing avoids potential numerical

problems when solving partial differential equations due to the roughness of the measured

data. Finally, note that the macroscopic model does not account for an ATP-F-actin band, for

which ADF/Cofilin has a much lower affinity. The reason is that such an ATP-F-actin band is

very narrow (see Discussion for details).

We can roughly estimate the free ADF/Cofilin near the network and the rate of ADF/

Cofilin binding to the network near the leading edge as follows. The flux of the free ADF/

Cofilin to the network by diffusion, ðC0 � CFÞD, has to balance the "consumption" of the free

ADF/Cofilin by binding to the network, that is

ðC0�CFÞD»WLðrBCFA� rUCBÞ;

which leads to the first formula in Equation (3). The unbinding of ADF/Cofilin is very slow;

besides, near the leading edge, CB » 0, and so we arrive at the second formula in

Equation (3).

We note that ADF/Cofilin unbinding predicted by the model is slow; omitting the effect of

ADF/Cofilin unbinding (i.e. setting rU ¼ 0 in the model) makes the fits to the data less

perfect, however, the estimates of the overall amount of bound ADF/Cofilin changes little.

Actin saturation
In Equations (10)-(11) we asume that the binding rate is proportional to the actin density,

irrespective of how much ADF/Cofilin is already bound within the network. A more accurate

model would involve defining AF ¼ A� AD, where AD is the concentration of actin decorated

with ADF/Cofilin, which is no longer available for further ADF/Cofilin molecules to bind, and

AF is the F-actin density free of ADF/Cofilin. The new set of equations would then read
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qtCBþVqyCB ¼ rBðA�ADÞCF � rUCB;

qtCF ¼DDCF � rBðA�ADÞCF þ rUCB;

qtADþVqyAD ¼ rBðA�ADÞCF � rUCB

In the equations we used the known stoichiometry of one ADF/Cofilin molecule binding to

one actin subunit (Kuhn and Bamburg, 2008). Furthermore, decorated actin follows the

same transport dynamics and has the same boundary conditions as bound cofilin. Hence, we

can conclude that in fact AD ¼ CB. If we now look at the relative order of magnitudes of the

three reaction terms (stripping away the physical-chemical dimensions), we find that

rB � A� CF » 0:5� 100� 0:1 ¼ 5, rB � CB � CF » 0:5� 10� 0:1 ¼ 0:5 and rU � CB » 0:3� 10 ¼ 3.

Here we use the estimate CB » 10 mM as shown in Figure 3—figure supplement 1A. We see

that the term rB � CB � CF, which is responsible for the correction of term A by term A� AD

is an order of magnitude smaller than the other terms, which means that the saturation effect

introduces but a small correction to the approximate simpler model. This correction can be,

in principle, calculated by using regular perturbation theory, but respective biophysical

insight from such exercise would be limited. We note, however, that such correction would

have a significant effect for significantly higher concentrations of free ADF/Cofilin than those

used in our experiments.

Quantitative estimates in Mogilner and Edelstein-Keshet (2002) show that in the case

when profilin concentration is higher than both G-actin and ADF/Cofilin concentrations (in

our case, there are 18 mM of profilin, 6 mM of G-actin, and less than 1 mM of ADF/Cofilin), a

major part of G-actin is associated with ATP, while ADF/Cofilin has a very low affinity to ATP-

G-actin. More specifically, at these concentrations, there is a sub-mM concentration of ADP-

G-actin, only a few per cent of which is associated with ADF/Cofilin (most of the rest is

associated with profilin), and so the order of magnitude of ADF/Cofilin concentration bound

to G-actin is » 10 nM, which is less than 10% of the total ADF/Cofilin concentration. Thus,

binding of ADF/Cofilin to G-actin can be neglected.

Simulation
Parameters are summarized in Appendix 1—Table 1 To solve Equations (10), (11)

numerically, we used a splitting scheme: At each timestep tn, we first solved the equations

qtCB ¼ rBACF � rUCB;

qtCF ¼DDCF � rBACF þ rUCB;

on the interval ½tn; tn þ Dt� using a Finite Element Method (FEM) as implemented by the

parabolic solver of Matlab’s PDE toolbox. Since large density gradients can be expected only

near the network, we used a triangular FEM-mesh that is much finer on and near the network

than far away from it. Overall, the number of mesh triangles was between 2000 and 5000 for

each simulation. The mesh itself was time-independent, avoiding having to re-mesh at each

time step. Next, we employed a forward-Euler finite-difference scheme for the transport

term qtCB þ VqyCB, with shifting the calculated values of CB and subsequent interpolation

onto the elements of the mesh.

Stochastic fragmentation model: details and simulation
In our discrete network model, we describe the network as a collection of nodes and edges

in 2D. Each edge represents an array of actin filaments, each note represents cross-linking or

branching points. Our discrete network model follows ideas presented in Carlsson (2007);

Michalski and Carlsson (2010), Michalski and Carlsson (2011), however we allow our

breakage rate to depend on local actin density and present a new analytical approximation

(see Section Stochastic fragmentation model: details and simulation). At its fully connected
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state each inner node is connected to four edges. We represent the whole network as a

graph, that is for each node, we track the nodes to which this given node is connected to.

During each time step, the discrete network model is updated in four steps:

1. Remove individual nodes. Given an actin density A for a given node (step four below),

we determine a breakage rate per node and time P ¼ p

Aa, where parameter p is a constant.

The node breakage follows a Poisson process with rate P, and we determine the probability

of breakage at each time step as 1� e�PDt.

2. Remove edges and network pieces. There are two ways edges can be removed:

Individually - this happens if both nodes an edge is connected to are removed. On the other

hand, a larger network piece could become disconnected as a consequence of step 1. We

considered network segments to be disconnected if they have no connection to the leading

edge (i.e. there is no path of edges connecting the given piece to the leading edge) and

assume disconnected network pieces diffuse away quickly.

3. Grow network. This step simply adds rows of nodes and edges at the leading edge

proportional to the network growth speed V .

4. Calculate local actin densities. In our model, the local actin density depends on the

number of edges present, not the number of nodes, that is if a node is removed within an

otherwise fully connected patch, the actin density would not be affected. To calculate the

local actin density at a node, we count the number of missing edges within a square patch

around the node with a of rnod ¼ 2 (in units of the edge length), that is we are considering

the 24 nodes or 40 edges around the given node. Finally, the determined fraction of the

unbroken edges was multiplied by the model parameter A0, the initial actin density.

Implementation and parameters
We performed numerical tests and found that as long as the node number along the leading

edge, K, is larger than » 20, the equilibrium length is barely affected by the choice of K (as

noted also in Carlsson (2007). We therefore decided to use K ¼ 30, 60 and 180 for 15�m,

30�m and 90�m networks, respectively. We used the time step of Dt ¼ 1 min. For Figure 4D

we varied the initial actin density A0 and the exponent a. For illustration purposes, we also

changed the parameter p and used p ¼ 0:25, 2.5, 25 and 250 for a ¼ 0:5, 1, 1.5 and 2,

respectively (otherwise the obtained network lengths would differ by orders of magnitudes,

making the visualization less clear). For the simulation in main Figure 4B we used

width = 90 mm, a ¼ 2, A0 ¼ 100 mM, p ¼ 194 mM2=min, V ¼ 0:8 mm/min, for the comparison

shown for the network in Figure 4E we used width = 15 mm, a ¼ 2, A0 ¼ 400 mM,

p ¼ 250 mM2/min, V ¼ 1:5 mm/min.

We represented the network as an undirected graph using Matlab routines, allowing to

quickly determine connected components, which can be a time-consuming step. Edges that

are connected to only one node can be represented as a loop, that is we formally connect

both edge ends to the same node. Finally, if a node has two or three edges that are

connected to only this node, this can be accounted for by assigning a weight of two or three

to that edge. This is necessary to keep edges unique in the graph-based description. For

example, a weight of two means that this edge counts twice when determining actin

densities.

Derivation of analytical model of network fragmentation
In this section, we describe an analytical approximation of the network length and actin

density along the network of the discrete network model of Sec. Stochastic fragmentation

model: details and simulation. In the discrete network model, we describe the whole network

as a collection of nodes and edges, representing branches and connecting actin filaments,

respectively. At its fully connected state each (inner) node is connected to four edges. Each

nodes is being broken with a probability P per node and time, that will depend on local

properties of the network. An edge (i.e. actin filament segment) is removed only if either

both of the nodes it is connected to are broken, or, if it is removed as part of a larger patch

that is being disconnected.
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Main result
The analytical results can be summarized as follows: If the breakage rate per node is P ¼ c

C
b

B

Aa ,

where CB is the (constant) concentration of bound ADF/Cofilin in the network, AðyÞ is the
actin density, V is the network growth speed and c is a dimensional constant proportionality

coefficient, then the equilibrium network length is given by:

L¼ V

c

Aa
0

C
b
B

Z

1

0

ð1� r2Þa

ð1� rÞ 1þ r

ð1�rÞ2
� � dr:

Note that this integral is finite for any choice of a. If A0 is the initial actin density, then the

actin density along the network in equilibrium is given by

AðyÞ ¼ A0ð1� rðyÞ2Þ;

where rðyÞ, the fraction of broken nodes along the network, is the solution of the ordinary

differential equation:

Vr0 ¼ c
C
b
B

Aa
0

1� r

ð1� r2Þa 1þ r

ð1� rÞ2

 !

; rð0Þ ¼ 1:

Derivation
Let N0 be the initial number of the network nodes per area, R - the number of the broken

nodes per area, and E - the number of the network edges per area. If initially each node was

connected to four edges, then E0 ¼ 2N0. Two factors contribute to the edge removal:

A The current connectedness of the network;

B The number of nodes that are being removed locally.

A: In the absence of removal of larger pieces of the network, the deletion of a node will

only affect edges that are connected to this very node, and only if those edges are

unconnected at the other ends. The expected number of such edges for an unbroken node

is:

no:of edgespernode �prob: thatthenodeattheotherendisbroken ¼ 4
R

N0

:

We model continuous densities R and E using the following equations:

_R¼ PðN0�RÞ 1þ R=N0

ð1�R=N0Þ2

 !

; (12)

_E¼�4 R

N0

_R:

The second equation is simply stating that the rate of edge removal is equal to the rate of

the node removal times the expected number of edges connected to the node being

removed. In the first equation, expression PðN0 � RÞ accounts for the node breakage with

rate P. Factor 1þ R=N0

ð1�R=N0Þ2
� �

in this equation accounts for the factor B: if the network

connectedness is low, then per each removed node, more nodes could be removed. This

factor is equal to one for very low density of broken nodes, and has to be an increasing

function of the variable R=N0. Rather than using theoretical arguments to try to find this

function, we simply used a few tens of simulations of the discrete stochastic model to

estimate numerically the average number of the nodes removed for each randomly removed

node at any given density of the broken nodes. The function 1þ R=N0

ð1�R=N0Þ2
� �

approximated the

numerical data well for 0<R=N0<0:7. For larger R=N0 the network is already largely falling
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apart. We found that using more complicated functions to approximate the behavior hardly

affects the predictions of network length and density.

Adding transport effects
We introduce the space and time dependent fraction of broken nodes r ¼ R=N0 and the

rescaled actin density a ¼ A=A0. Note that values of A and E are connected by the relation

A ¼ E=
ffiffiffiffiffiffi

N0

p
, where 1=

ffiffiffiffiffiffi

N0

p
is the approximate edge length in 2D. Since both edges and

nodes are being transported within the network at speed V , we can replace Equation (12)

by the following PDE system for densities aðy; tÞ and rðy; tÞ, where y is the distance along the

network:

qtrþVqyr¼ Pð1� rÞ 1þ r

ð1� rÞ2

 !

¼: P�ðrÞ; (13)

qtaþVqya¼�2r�ðrÞP;

with the boundary conditions að0; tÞ ¼ 1, rð0; tÞ ¼ 0.

Explicitly calculating the network equilibrium length
In equilibrium, system (Equation (13)) takes the form:

Vr0 ¼ Pð1� rÞ 1þ r

ð1� rÞ2

 !

¼: P�ðrÞ; (14)

Va0 ¼�2r�ðrÞP: (15)

Rewriting Equation (15) as a0 ¼ �ðr2Þ0 shows that:

aðyÞ ¼ 1� rðyÞ2: (16)

Using the separations of variables, we can rewrite Equation (14) and find the following

equation for the equilibrium length L:

V

Z rðyÞ

0

1

P�ð~rÞ d~r¼ yV

Z

1

0

1

P�ðrÞ dr¼ L: (17)

The final result depends on the choice of how the breakage rate P depends on the actin

density A and the average amount of bound ADF/Cofilin CB. We assume CB to be constant

and use the breakage rate in the form:

P¼ c
C
b
B

Aa
¼ c

C
b
B

ðA0aÞa
¼ c

C
b
B

Aa
0

1

ð1� r2Þa ;

where c is the proportionality constant. This implies that the equilibrium length is given by:

L¼ V

c

Aa
0

C
b
B

Z

1

0

ð1� r2Þa
�ðrÞ dr:

The integral can be evaluated exactly:

L¼ V

c

1

C
b
B

A0

2
a=1

A2

0

27�4
ffiffi

3
p

p
12

a=2

(

This is the formula used to compare the simulated equilibrium length to the calculated

one in the main Figure 4D. Note that, given P, there are no free parameters, that is the
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lengths are determined exactly. As described in the main text, we used the measured

equilibrium lengths, actin densities and amounts of bound ADF/Cofilin to determine

exponents a and b, and found good agreement for a ¼ 2, b ¼ 1. This lead to main

Equation (5) and is one of the ingredients used to calculate the equilibrium length below in

Sec. Equilibrium lengths of homogeneous and heterogeneous networks.

Equilibrium lengths of homogeneous and heterogeneous
networks

Homogeneous networks
First, we estimate the average amount of bound ADF/Cofilin CB in a network of a given

length L. We use the estimate for the density of ADF/Cofilin in the solute in the vicinity of

the network, derived in the main text (Equation (3)),

CF »
C0DþWLCBrU

DþAW LrB
:

Substitution of this expression into the equation for bound ADF/Cofilin (Equation (10))

yields:

qtCBþVqyCB ¼ �ðLÞrBAC0��ðLÞrUCB;

CBðy¼ 0Þ ¼ 0;

where we define the depletion factor �ðLÞ as:

�ðLÞ ¼ D

Dþ rBA0LW
:

For a fixed network length L, this equation can be solved for any y � Vt:

CBðx;y; tÞ ¼
rBAC0

rU
1� e�

rU�ðLÞy
V

� �

:

In our case, rU » 0:3=min, V » 1:5 mm/min, L » 30 mm, D » 600 mm2/min, A » 100 mM, rB » 0:5 /

min/mM, and so �» 10�2. Hence we approximate the amount of bound ADF/Cofilin by the

limit rU ! 0, yielding:

CBðx;y; tÞ ¼
rBAC0�ðLÞy

V
:

The average amount of bound ADF/Cofilin, calculated as 1

L

R L

0
CBðx; y; tÞdy, is therefore

given in Equation (6):

CB ¼
rBA0C0L

2V
�ðLÞ: (18)

From the network fragmentation model (see Sec. Stochastic fragmentation model: details

and simulation) and the data, we found that for a given amount of bound ADF/Cofilin CB, the

network length is given by:

L¼ kSV
ðrBA0Þ2
CB

; (19)

where kS ¼ 0:067 min3 � mM is the proportionality constant found by fitting to the data.

Solving Equations (18)-(19) for L and CB gives the equilibrium length L�:
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L� ¼ V

C0D
VWkSðrBA0Þ2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VWkSðrBA0Þ2
h i2

þ2D2kSrBA0C0

r

 !

:

This is the formula used for all equilibrium length predictions for Figure 2. Note that since

the expression under the square root is always positive, the model predicts that the networks

always reach an equilibrium length. Before the equilibrium length is reached, the length is

simply given by L ¼ V t, which explains the plateaus in Figure 2B and Figure 2D: According

to the model, the networks had not yet reached equilibrium length at t ¼ 20 min and t ¼ 38

min.

Heterogeneous networks
For heterogeneous networks we need to determine both equilibrium lengths L1, L2 for two

sub-networks, that is we need to formulate Equations (18) and (19) separately for each sub-

network. We denote by A0;1 and A0;2 the initial actin densities at the leading edge and by V1

and V2 the sub-network growth speeds. Since the networks are competing for the same pool

of diffusing ADF/Cofilin, we assume that there is a common depletion factor, which we

denote by �hðL1; L2Þ and model by the expression:

�hðL1;L2Þ ¼
D

Dþ rBWðA0;1L1þA0;2L2Þ
;

which takes into account the different densities and network lengths. Now we replace

Equation (18) by:

CB;1 ¼
rBA0;1C0L1

2V1

�hðL1;L2Þ; CB;2 ¼
rBA0;2C0L2

2V2

�hðL1;L2Þ; (20)

and Equation (19) by:

L1 ¼ kSV1

ðrBA0;1Þ2
CB;1

; L2 ¼ kSV2

ðrBA0;2Þ2
CB;2

: (21)

All that remains is to solve the four Equations (20)-(21) for L1, L2, CB;1 and CB;2. We find

the relation

L1

V1

ffiffiffiffiffiffiffiffi

A0;1

p ¼ L2

V2

ffiffiffiffiffiffiffiffi

A0;2

p ;

which helps to simplify the equations. The final result can be written as:

L�
1
¼ V1

C0D
V1WkSðrB~A12Þ2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V1WkSðrB~A12Þ2
h i2

þ2D2kSrBA0;1C0

r

 !

;

L�
2
¼ V2

C0D
V2WkSðrB~A21Þ2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2WkSðrB~A21Þ2
h i2

þ2D2kSrBA0;2C0

r

 !

;

where we have defined the terms ~Aij as:

~A2

ij ¼ A2

0;iþ
Vj

Vi

A0;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A0;iA0;j

p

:

The expressions for the equilibrium lengths are very similar to the homogeneous network

case - in fact if V1 ¼ V2 and A0;1 ¼ A0;2, they simplify to the case of one single network with

width 2W.
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Modeling the shape of heterogeneous networks

Modeling
In this section, we model the shape of a network consisting of two sub-networks having

different actin densities and/or growth speeds. We start by assuming that their material

properties are constant along the network. We denote by V1>V2 the growth speeds of sub-

networks 1 and 2, respectively. As the network assembles, two sub-networks are effectively

‘glued’ together. In our simple model, we assume the sub-networks to be elastic. We model

each sub-network segment by two springs, placed at a distance W (the network width) from

each other (Appendix 1—figure 2 ). The springs at the interface G between the sub-

networks are connected and forced to have the same length (representing

the ‘glued’ together condition). The differences in sub-network growth speeds lead to

different resting lengths l1 and l2, proportional to the respective speeds. To account for

elastic effects, we assume that the differences in density lead to different elastic moduli E1

and E2, and hence to different spring constants k1 / E1=l1 and k2 / E2=l2. We call the length

of the outermost and innermost spring L1 and L2 respectively; the length of the two springs

at the interface therefore has to be ðL1 þ L2Þ=2.

L1

L2

W network 1

network 2

restlength l1

spring constant k1

restlength l2

spring constant k2W

A B

Appendix 1—figure 2. Modeling of heterogeneous, elastic networks. (A) Schematic of the

experimental set-up. Different shading is used for the two sub-networks. The curve G

represents their interface. (B) Spring-based model of one network segment.

DOI: https://doi.org/10.7554/eLife.42413.022

Results
To obtain the equilibrium lengths of the sub-networks, we minimize the elastic energy of

each segment, which is given by adding the potential energies for each of the four springs:

Epot ¼
k1

2
ðL1� l1Þ2þ

L1þL2

2
� l1

� �2
" #

þ k2

2
ðL2� l2Þ2þ

L1þL2

2
� l2

� �2
" #

:

Minimization with respect to L1 and L2 gives:

L1 ¼ l1þ
k2ðk1� k2Þ

d
ðl1� l2Þ; L2 ¼ l2þ

k1ðk1� k2Þ
d

ðl1� l2Þ;

where d ¼ k2
1
þ 6k1k2 þ k2

2
. Using the basic proportionality theorem of elementary geometry

of triangles, we find that the radius of curvature R of the interface curve G has to be:

R¼W
L1þL2

L1�L2
¼W

l1þ l2

l1� l2
þðk1� k2Þðk1l1� k2l2Þ

4k1k2ðl1� l2Þ

� �

:

To simplify interpretation, we denote by s ¼ E2=E1 the ratio of the elastic moduli and we

use expressions: l1 ¼ V1Dt, l2 ¼ V2Dt, where Dt is the time step. This gives:

Manhart et al. eLife 2019;8:e42413. DOI: https://doi.org/10.7554/eLife.42413 35 of 37

Research article Cell Biology

https://doi.org/10.7554/eLife.42413.022
https://doi.org/10.7554/eLife.42413


R¼W
V1þV2

V1�V2

þðs� 1Þ V1s�V2

4sðV1�V2Þ

� �

:

The speed of the interface is given by:

Vh ¼
L1þL2

2Dt
¼ V1þV2

2
� ðV1�V2ÞðV2

1
s2�V2

2
Þ

2 V2

1
s2þ 6V1V2sþV2

2

� � :

These are the formulas used to calculate the curves shown in Figure 6B,C in the main

text. Note that:

¥  s!0

R !s!¥¥

V1  
s!0

vh !
s!¥

V2:

In other words, if one of the sub-networks is much stiffer that the other one, the

heterogeneous network will become straight and grow with the speed of the stiffer sub-

network.

The density-elasticity scaling
In the formula for the curvature radius (Equation (7)) derived above, one needs to know the

ratio of network elasticities s ¼ E2=E1. In the literature, scaling laws between elasticity E and

density A of the form E / At have been proposed with exponents varying from

t ¼ 0:5 (Bieling et al., 2016) to t ¼ 1:4 (Hinner et al., 1998) to t ¼ 2:2 (Gardel et al., 2004b)

to t ¼ 2:5 (Gardel et al., 2004a). We measured the actin network densities for the

heterogeneous networks without ADF/Cofilin in Figure 6D and found an average density

ratio of 0:78� 0:04 (mean�std) shown in Appendix 1—figure 3A-B and a curvature radius of

R ¼ 75:3� 17:9 (mean� Figure 6F. Using these numbers in Equation (7) we can express the

network speed ratio V2=V1 as a function of the exponent t, the resulting curve is shown in

Appendix 1—figure 3C. We found that the speed ratio depends only mildly on t and is

roughly V2=V1 ¼ 2=3. While we cannot measure the sub-network speed directly, we expect

the ratio to be similar to the ratio of speeds of individually growing networks of

corresponding patterns. Indeed, using the measurements from Figure 1C for low and high

density patterns we find a ratio of » 0:56, which is in the correct range. In all simulations

shown in Figure 6 we used t ¼ 2:5.
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Appendix 1—figure 3. Density-elasticity scaling. (A) Variation of the actin density in

heterogeneous patterns in Figure 6D, control. (B) Actin density ratio in heterogeneous

patterns generated by the low and high density patterns in Figure 6D, control. (C) Showing

the calculated ratio of sub-network speeds V2=V1 as function of the scaling exponent t. The

relation is obtained from Equation (7) using an actin density ratio of 0.78 as measured in B

as well as a curvature radius of 75 mm as measured in Figure 6F.
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Sub-network shapes
Since our discussion so far concerned local properties of the sub-networks, we can account

for changes in density along the combined network simply by making the elasticity ratio s,

and hence the curvature k, a function of arc length along the network s. Then, curve GðsÞ at
the interface of the two sub-networks can be parametrized as s 7!GðsÞ ¼ ðG1ðsÞ;G2ðsÞÞ
(Appendix 1—figure 2), where:

G1ðsÞ ¼
Z y

0

sin

Z z

0

kðwÞdw
� �

dz; G2ðsÞ ¼
Z y

0

cos

Z z

0

kðwÞdw
� �

dz:

In case of constant material properties along each sub-network (as shown in Figure 6A in

the main text), these expressions simplify to:

G1ðsÞ ¼
1� cosðksÞ

k
; G2ðsÞ ¼

sinðksÞ
k

:

If actin densities vary along the sub-network, we can use the analytical approximation of

the discrete model for network fragmentation described in Sec. Stochastic fragmentation

model: details and simulation. In particular, we have to solve Equation (14) to obtain the

density of broken nodes, after which we can use Equation (16) to obtain a formula for the

actin density along the sub-network. To simplify the results, we use the following

approximation of Equation (14):

Vr0 ¼ c
CB

A2

0

1

ð1� rÞ2
: (22)

Using the notation introduced above in Sec. Equilibrium lengths of homogeneous and

heterogeneous networks and the calculated equilibrium lengths L�
1
and L�

2
, we obtain:

r1ðsÞ ¼ 1�ð1� s=L�
1
Þ1=3; A1ðsÞ ¼ A0;1ð1� r2

1
ðsÞÞ; s<L�

1

r2ðsÞ ¼ 1�ð1� s=L�
2
Þ1=3; A2ðsÞ ¼ A0;2ð1� r2

2
ðsÞÞ; s<L�

2
:

Since L�
1
>L�

2
, we can approximate the elasticity ratio of the two sub-networks as:

sðsÞ ¼
A2ðsÞ
A1ðsÞ

� �2:5
y2[0,L2*],

¥ elsewise.

(

(23)

These are the formulas used to calculate the network shapes shown in Figure 6E in the

main text. As parameters, we used the density measurements from the ADF/Cofilin free case

shown in Appendix 1—figure 3A for A0;1 and A0;2 and the speeds V1 ¼ 2 mm/min and

V2 ¼ 1:33 mm/min. Note that in the figure, networks have been rotated to match the

experimental set-up.
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