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INTRODUCTION 

 The isotopic compositions of natural materials are determined by their parent 

reservoirs, on the one hand, and by fractionation mechanisms, on the other hand. Under 

the right conditions, fractionation represents isotope partitioning at thermodynamic 

equilibrium. In this case, the isotopic equilibrium constant depends on temperature, and 

reflects the slight change of free energy between two phases when they contain different 

isotopes of the same chemical element. The practical foundation of the theory of mass-

dependent stable isotope fractionation dates back to the mid-twentieth century, when 

Bigeleisen and Mayer (1947) and Urey (1947) proposed a formalism that takes advantage 

of the Teller-Redlich product rule (Redlich 1935) to simplify the estimation of 

equilibrium isotope fractionations. In this chapter, we first give a brief introduction to 

this isotope fractionation theory. We see in particular how the various expressions of the 

fractionation factors are derived from the thermodynamic properties of harmonically 

vibrating molecules, a surprisingly effective mathematical approximation to real 

molecular behavior. The central input data of these expressions are vibrational 

frequencies, but an approximate formula that requires only force constants acting on the 

element of interest can be applied to many non-traditional isotopic systems, especially at 

elevated temperatures. This force-constant based approach can be particularly convenient 

to use in concert with first-principles electronic structure models of vibrating crystal 

structures and aqueous solutions. Collectively, these expressions allow us to discuss the 

crystal chemical parameters governing the equilibrium stable isotope fractionation. 

Since the previous volume of Reviews in Mineralogy and Geochemistry 

dedicated to non-traditional stable isotopes, the number of first-principles molecular 

modeling studies applied to geosciences in general and to isotopic fractionation in 

particular, has significantly increased. After a concise introduction to computational 

methods based on quantum mechanics, we will focus on the modeling of isotopic 

properties in liquids, which represents a bigger methodological challenge than small 

molecules in gas phase, or even minerals. Our ability to produce reliable theoretical 

mineral-solution isotopic fractionation factors is essential for many geosciences 

problems. The main modeling approaches used in recent studies of fractionation in 
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liquids are molecular cluster models and molecular dynamics with periodic boundary 

conditions. Their relative advantages and drawbacks will be discussed. So far, the vast 

majority of theoretical studies applied to isotopic fractionation have been based on the 

harmonic approximation; in most cases anharmonic effects will be smaller than 

uncertainties associated with other imperfections in the models (especially in calculated 

vibrational frequencies), but in some cases (e.g., liquid phases with light elements) it will 

be important to be able to go beyond the harmonic approximation. More sophisticated 

methods, such as thermodynamic integration coupled to path integral molecular 

dynamics, can account for anharmonic effects as well as quantum nuclear effects. We 

will introduce the basic concepts of this technique and will give some examples of their 

application. 

Among the non-traditional isotopes, the iron isotope system has probably 

developed the richest and most methodologically varied theoretical literature. This is 

partly due to the fact that isotope fractionation factors of Mössbauer-active elements 

(including iron, via 
57

Fe) can be independently determined using Mössbauer 

spectroscopy and nuclear resonant inelastic X-ray scattering, which are closely related 

techniques that probe the vibrational properties of the target element. Expressions used to 

derive fractionation factors from these spectroscopic techniques are introduced, the 

accuracy of each method will be discussed, and the results are compared with first-

principles calculations. 

The discovery of mass-independent isotope fractionation of non-traditional stable 

isotope systems including Hg, Tl, and U over the past decade has expanded the scope of 

"stable" isotope geochemistry to include a long-lived radioactive element and almost the 

whole range of naturally occurring atomic numbers. It has also created a need for 

theoretical studies of new fractionation mechanisms. Nuclear field shift effects, first 

proposed to explain laboratory isotope enrichment experiments, including uranium, are 

now thought to play an important role in driving natural fractionation in uranium and 

thallium, and a secondary role in mercury isotope geochemistry. Large photochemically 

induced mass-independent fractionation effects in the mercury isotope system are yet to 

be explained beyond a qualitative level, and remain an important challenge for isotope 

fractionation theory. In light isotope systems (particularly 
16

O-
17

O-
18

O) it is now possible 

to measure variability of mass dependence for different types of fractionation, ranging 

from equilibrium partitioning to kinetic fractionation. The potential for using variations 

in mass dependence to identify the types of fractionation affecting non-traditional 

elements is also a topic of emerging interest for theoretical studies. 

 

THEORETICAL FRAMEWORK 

Equilibrium fractionation theory 

 This section is largely inspired by the articles of Bigeleisen and Mayer (1947), 

and Ishida (2002). 

 Let's consider an isotopic exchange reaction between two molecules A and B, 

involving a single atomic position: 

AX' + BX ! AX + BX'   (1) 

The prime symbol refers to the light isotope of the element X. As with any chemical 

reaction, the equilibrium constant, Keq, can be determined from the free energies of the 



! $!

reactants and products. Isotopic exchange reactions do not, in general, involve significant 

pressure-volume work because the number of molecules on both sides of the reaction is 

the same, and because isotope substitution has a negligible effect on the molar volumes 

of the phases under normal conditions. The above assumption is not true for a complete 

substitution of hydrogen by deuterium, for instance, or for certain solid-gas equilibria 

(e.g., Jancso et al. 1993; Horita et al. 2002). Under these general conditions, the standard 

Gibbs free energy of the exchange reaction can be related to the difference in the 

Helmholtz free energy of the pure isotopomers (AX', AX, BX' and BX): 

! 

"F = F(AX) + F(BX ') # F(AX ') # F(BX) 

The Helmholtz free energy is related to the molecular partition function, Q by: 

F = - NakT ln(Q/Na) 

where k is Boltzmann's constant, Na the Avogadro number, and T is the absolute 

temperature. It is thus possible to express the equilibrium constant of the exchange 

reaction as: 

! 

Keq =
Q(AX) "Q(BX ')

Q(AX ') "Q(BX)
  (2) 

The molecular partition function is given by the following expression: 

! 

Q = exp("E
n
/kT)

n

#
 

where the sum spans all the quantum states of the molecule, referred to by their index n 

and their corresponding energies En. 

 A classical partition function, Qcl can be obtained by integration over continuous 

momenta and position variables that relate to the kinetic energy and potential energy of 

the molecule, respectively. Its expression is also a function of the symmetry number of 

the molecule (i.e. the number of equivalent ways to orient a molecule in space); see 

equation (5) of Bigeleisen and Mayer (1947). Importantly, atomic masses are only 

involved in the definition of the kinetic energy term; whereas the configurational 

integral, obtained from the potential energy of the system, is assumed to be mass-

independent. Considering the ratio of the partition functions of the two isotopically 

substituted molecules, the configurational integrals and the contribution arising for atoms 

other than the exchanged isotopes cancel out, leading to the following expression: 
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where s is the symmetry number and m, the atomic mass of isotopes. By inserting this 

expression into Equation (2), the atomic masses cancel out and one obtains the classical 

value of the equilibrium constant: 

! 

(Keq )cl =
sAX '

sAX

sBX

sBX '
  (3) 

This ratio of symmetry numbers will not lead to an isotopic fractionation as it merely 

represents the relative probabilities of forming symmetric and antisymmetric molecules. 

This corresponds to a perfectly random distribution of isotopes; a situation found at T = 
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!. This demonstrates that isotopic fractionation is a purely quantum effect that cannot be 

explained by classical statistical mechanics. 

 The harmonic quantum molecular partition function of a molecule in gas phase, 

can be written as a product of translational, rotational, vibrational and electronic partition 

functions: 

! 

Qqm = QT( )
qm
" QR( )

qm
" QV( )

qm
" QE( )

qm  

The electronic structure of a molecule is usually assumed to be isotope-independent, so 

the electronic term is neglected. In some cases, isotope effects will have measurable 

electronic contributions: isotope mass shift, nuclear field shift effect and nuclear spin 

effect (e.g. Bigeleisen 1996). Fractionations caused by the nuclear field shift and spin 

effects will be discussed in a later section. The mass shift arises from the coupling of the 

motion of the nuclei and the electrons. Mass shift can be important in reaction involving 

hydrides, i.e. up to a small percentage of H-D fractionation factors (e.g. Kleinman and 

Wolfsberg 1973), but becomes quickly negligible for heavier atoms since it scales with 

!M/M
2
. Partition functions for translational and rotational motions are formally quantum 

mechanical, and sensitive to isotope substitution, but in practice the quanta for both types 

of motion are so small and closely spaced for most molecules that they do not deviate 

significantly from their classical equivalents at temperatures relevant to geochemistry 

(see Schauble 2004, for additional details). This will hold in all cases except hydrogen, 

where a more sophisticated treatment of rotation may be needed at low temperatures. The 

classical expressions are not given here since most of their parameters will cancel out in 

the next step, but they can be found in literature (e.g., Richet et al. 1977; Schauble 2004; 

Liu et al. 2010). As a result, it is generally the case that only vibrational motions need a 

quantum-mechanical treatment, and it is vibrational energy that plays the central role in 

controlling the distribution of isotopes between two phases in thermodynamic 

equilibrium. The harmonic vibrational partition function is defined by: 

! 

QV( )
qm

=
e
"h# i / 2kT( )

1" e"h# i / kT( )
i=1

3N"6

$  

where h is Planck's constant and !i is the frequency of the vibrational mode i. A molecule 

with N atoms will have 3N-6 vibrational degrees of freedom (in addition to 3 rotational 

and 3 translational degrees of freedom) while a linear molecule will have 3N-5 

vibrational degrees of freedom. 

 As classical contributions to the partition functions only play a bookkeeping role 

in the isotopic fractionation, it is useful to define a reduced partition function by ratioing 

the quantum partition function to its classical counterpart (Qqm/Qcl). The ratio of reduced 

partition function, commonly referred to as ", can be written as: 

! 

"AX =
Qqm (AX) Qcl (AX)

Qqm (AX ') Qcl (AX ')
  (4) 

The equilibrium isotope fractionation factor of the exchange reaction (1), i.e. #AX-BX, can 

thus be expressed as a function of the reduced partition function ratios and is related to 

the equilibrium constant through the following relation (using Equations (2) and (3)): 

! 

"AX #BX =
$AX
$BX

=
Qqm (AX) %Qqm (BX ')

Qqm (AX ') %Qqm (BX)
%
Qcl (AX ') %Qcl (BX)

Qcl (AX) %Qcl (BX ')
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! 

=
(Keq )qm

(Keq )cl
 

! 

=
sAX '

sAX
"
sBX

sBX '
" (Keq )qm  

The above relation shows that, when (Keq)qm is equal to (Keq)cl, there will be no isotopic 

fractionation (i.e. #AX-BX = 1). This situation occurs, for instance, at very high 

temperatures when isotopes are randomly distributed. Conversions between fractionation 

factors and equilibrium constant, written here for the simple isotopic exchange reaction 

(1), can be more complicated, depending on molecular stoichiometry (Schauble 2004; 

Liu et al. 2010). By analogy with the isotopic fractionation factor #, we can also see the 

reduced partition function ratio "AX as the isotopic fractionation factor between the 

substance AX and an ideal atomic gas of X. This formulation is a convenient way to 

tabulate the theoretical fractionations with a simple point of comparison. Fractionations 

are typically very small, on the order of parts per thousand for non-traditional stable 

isotopes, so it is common to use the notation 1000 ln # or 1000 ln " expressing the result 

in permil (‰). The "-factor being the central quantity of theoretical studies, we report 

below the expressions that apply to situations commonly encountered (i.e. molecules or 

condensed phases, complete or site by site isotopic substitution). 

 By inserting the expressions of the quantum and classical partition functions into 

Equation (4), we obtain the following expression for a molecule in gas phase having only 

one exchangeable atom: 
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where M is the mass of molecule AX, M' is the mass of molecule AX', and Ix, I'x, etc. are 

the moments of inertia along each cartesian axis. 

Alternatively, for a molecule having n exchangeable atoms, the "AX can be determined 

from the "i related to a specific atomic site i: 

! 

"AX =
1

n
" i

i=1

n

# =
1

n

Qqm (AX 'n$1 Xi )

Qqm (AX 'n )
%
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2

  (6) 

In this "site by site" approach, Qqm(AX'n-1Xi) corresponds to the partition function of the 

molecule having the atom X' on the site i substituted with X while Qqm(AX'n) represents 

the partition function of the molecule with no substituted atoms. 

If we further use the Teller-Redlich product rule (e.g., Redlich 1935; Wilson et al. 1955): 
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then Equation (5) transforms into a more general expression applicable to any molecule 

in gas phase undergoing a complete isotopic substitution (i.e. all X' atoms are substituted 

with X): 
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This more convenient form involving only the vibrational frequencies before and after 

full isotope substitution, assumes that: (i) the free energy change associated to the 

isotopic substitution of an atom X does not depend on the isotopic nature of the 

surrounding X atoms, and (ii) the "-factor of each atomic site weakly depends on the site. 

These assumptions are generally valid except in some specific cases, like for instance, 

when deuterium is substituted for hydrogen in a water molecule. 

 Crystalline materials differ from gaseous molecules by their spatial extension 

involving the presence of long-range interactions. This implies that their vibrational 

spectra do not exhibit a finite number of vibrational frequencies but rather correspond to 

a continuum. In crystals, a vibrational mode is defined by a frequency of vibration, the 

atomic displacement pattern in a given cell and a wave-vector q that describes the phase 

relation of the atomic displacements in the other cells of the crystal. The wave-vector is 

defined in the reciprocal space and belongs to the first Brillouin zone. The vibrational 

frequency thus depends on the wave-vector. It is possible to build dispersion curves by 

reporting the frequency along specific directions in the reciprocal space, and vibrational 

density of states by integration over the whole Brillouin zone. A more detailed 

description of the crystal vibrational properties applied to isotope fractionation can be 

found in Young et al. (2015). This feature of crystals can be taken into account by 

modifying the partition function. The energy differences associated with translation 

motions cancel at equilibrium and the rotational term disappears in crystals. The partition 

function, in the harmonic approximation, is thus defined by: 

Qqm =
e
!h!q,i / 2kT( )

1! e
!h!q,i / kT( )

q{ }

"
i=1

3N
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#

$
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&

'
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1
Nq

  (8)

 

where !q,i is now the frequency of the vibrational mode i, along the wave-vector q. N 

corresponds to the number of atom in the crystal unit cell. The second product is 

performed on a uniform grid of Nq q-vectors in the Brillouin zone. In practice, the 

number of frequencies used is still finite but beyond a sufficiently large number of q-

vectors, results are properly converged. 

By combining Equations (4) and (8), we obtain the general expression of the 

reduced partition function ratio (i.e. "-factor) for a crystal undergoing a complete 

isotopic substitution (i.e. all n atoms X' of the unit-cell are substituted with X): 
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  (9)

 

Alternatively, Equation (6) for a “site by site” isotopic substitution is still valid for 

crystals. The rotational and translational terms also disappear from the Teller-Redlich 

product rule, yielding the high-temperature product rule of Kieffer (1982): 
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This high-temperature product rule imposes the isotope fractionation to be nil at very 

high-temperatures. If we take advantage of this rule, Equation (9) then becomes: 
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Liquid phases exhibit a higher degree of complexity, in particular because of the 

absence of long-range translational order and because of their dynamical behavior. More 

approximations are needed. The isotopic properties of liquid phases can be determined 

by adopting either the same approach as for crystals (i.e. building a periodic model), or 

the approach developed for gaseous molecules (i.e. building an isolated molecular cluster 

of variable size). The latter method can be justified for dissolved molecules that remain 

more or less intact in solution or for aqueous complexes where intra-complex bonds are 

probably much stronger than interactions with bulk solvent. The additional complexities 

that arise in dealing with liquid phases will be discussed in a later section. 

 

Approximate formula based on force constants 

 The above equations relate conveniently the isotopic fractionation factor to the 

vibrational frequencies but Bigeleisen and Mayer (1947) also derived a series of 

approximate formulae that are useful when all vibrational frequencies are not available 

and also for improving our understanding of the parameters that control equilibrium 

isotopic fractionation between two phases. Thus, if the frequency shift associated with 

the isotopic substitution is small and if the reduced energy is small (i.e. h!/kT ! 2) then 

Equations (7) or (10) become: 
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Treating the vibrations as harmonic, squared vibrational frequencies can be related to the 

force constants and masses. By doing so, the reduced partition function ratio can be 

expressed as a function of the force constants acting on the element of interest: 
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F is the sum of force constants in three orthogonal directions opposing displacement of 

the atom X from its equilibrium position. If atoms X are located in more than one 

crystallographic site, the force constant for all sites must be averaged. The full derivation 

of the approximate formula (11) from Equations (7) or (10) can be found for instance in 

Young et al. (2015). This expression is a valid approximation for Equation (10): (i) at 

relatively high temperature (h!/kT < 2 implies, for instance, a temperature higher than 

360 K if the vibrations involving atom X in phase A have wavenumbers, $=!/c, smaller 

than 500 cm
-1 

(1 cm
–1

 is equivalent to 30.0 GHz), or a temperature higher than 720 K if 

the relevant vibrations extend up to 1000 cm
-1

), (ii) when the difference in mass between 

the two isotopes is sufficiently small relative to the average atomic mass (this assumption 
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excludes the very light elements such as hydrogen), (iii) assuming isotope-independent 

force constants; it is also worth noting that Equation (11) still assumes a harmonic 

vibrational partition function. 

 The expression (11) clearly shows that, under the conditions of validity just 

mentioned, equilibrium isotopic fractionation varies proportionally to the reciprocal of 

the square of the temperature. When the reduced energy h!/kT becomes much higher 

than 2 (i.e. at low temperature or for high-frequency vibrations), it can be shown that the 

temperature dependence of fractionation factor weakens and tends to a 1/T behavior. This 

leads to a concave-down curvature of "-factors when plotted against 1/T
2
 and this 

curvature is more pronounced as one moves away from the conditions of validity of 

Equation (11). The mass-dependence of the same equation indicates that isotopic 

fractionations become smaller for heavy elements. Equation (11) also predicts that, at 

equilibrium, the heavy isotopes of an element will concentrate in the phase where the 

force constants are the greatest, i.e. in the phase where the element of interest involves 

the stiffest bonds (e.g., element in higher oxidation state, with lower coordination 

number). The two first points, i.e. temperature dependence and mass dependence, are 

well illustrated by the iron and oxygen "-factors of the goethite (Fig. 1). In this iron 

oxyhydroxide, vibrations involving iron atoms correspond to wavenumbers smaller than 

600 cm
-1

, which dictates that Equation (11) is valid above ~ 400 K. Even at lower 

temperatures (i.e. in the stability field of goethite), Figure 1 shows that the departure of 

this approximate formula from Equation (10) is smaller than 0.5 ‰. Because oxygen is 

much lighter that iron, the equilibrium isotope fractionation factors are much larger (i.e. 

oxygen "-factor is ~6 times larger than iron "-factor). In goethite, half oxygen atoms are 

hydroxylated. The bending and stretching vibrational modes of these OH groups 

(observed at ~ 800 cm
-1

 and above 3000 cm
-1

, respectively) contribute to the oxygen "-

factor. This explains why, in the case of the hydroxylated oxygen atoms, Equation (11) is 

not a valid approximation and meets the "correct" "-factor curve only at very high 

temperature whereas the approximation still holds for the other oxygen atoms. 

 

Figure 1. Temperature dependence of the iron (left) and oxygen (right) "-factors of goethite ("-

FeOOH). Results obtained using the approximate formula (11) based on force constants (dashed 
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lines, unpublished data) are compared with the results given by Equation (10) using all 

vibrational frequencies (solid lines, Blanchard et al. 2015). 

 In first-principles calculations based on quantum-mechanics, the determination of 

"-factors using Equations (7) or (10) requires computing all vibrational frequencies, 

which is computationally expensive, whereas only electronic energy calculations 

performed for a limited number of positions of the atom of interest in the vicinity of its 

equilibrium position are needed to apply the approximate formula (11). When the 

conditions of validity stated above are met, the use of Equation (11) allows consideration 

of more phases, and phases with greater structural complexity. This includes liquids and 

crystal defects, which may require large model systems (i.e. more than a hundred of 

atoms). This approach has been applied for discussing the Cr isotope fractionation in 

conditions relevant to the differentiation of the Earth’s core (Moynier et al. 2011), the Li 

isotope fractionation between minerals and aqueous solutions at high pressure and 

temperature (Kowalski and Jahn 2011), and the S isotope fractionation of sulfate groups 

incorporated in major calcium carbonates (Balan et al. 2014). Without performing first-

principles calculations, a qualitative estimation of the fractionation factors between 

phases where the element of interest involves contrasted bonding schemes, can be 

obtained by determining the force constants from an ionic model. In this model based on 

Pauling’s rules, the force constant is assessed mainly from the valences and ionic radii of 

the central element and its first neighbors. A description and application of the method 

for non-traditional isotopes is presented in Young et al. (2015). This ionic model derives 

from earlier studies that demonstrated and used the correlation existing between bond 

types and oxygen isotope fractionation in silicate minerals (e.g., Taylor and Epstein 

1962; Garlick 1966; Smyth and Clayton 1988; Schütze 1980; Richter and Hoernes 1988). 

Even if this type of ionic model does not show a great accuracy, it highlights the basic 

crystal chemical parameters that govern the equilibrium stable isotope fractionation, by 

affecting the stiffness of interatomic bonds. 

 

MODELING APPROACHES 

Quantum-mechanical molecular modeling 

 As shown in the previous section, the determination of the equilibrium isotope 

fractionation factors can be related to the change of vibrational frequencies associated to 

the isotopic substitution. These vibrational frequencies can be calculated from empirical 

force fields built using experimental measurements like structural parameters, elastic 

properties or known vibrational frequencies. A review of these methods can be found in 

Schauble (2004). The alternative approach that spread out during the last decade thanks 

to the advances in processor speed and memory size, consists in using quantum-

mechanical molecular modeling. We will give here only a short introduction aiming at 

helping experimental geochemists to approach these theoretical tools but many general or 

specialized publications are available elsewhere, like for instance in previous Reviews in 

Mineralogy and Geochemistry volumes (Cygan and Kubicki 2001; Perdew and 

Ruzsinszky 2010). 

 The properties of any material can in principle be obtained from the laws of 

Quantum Mechanics by solving the equations describing the interactions between nuclei 

and electrons. In practice, a number of approximations are needed to address this 

complex problem. The first is the Born-Oppenheimer approximation, which considers 



! "+!

that the rapid motion of electrons is decoupled from the slower motion of nuclei. 

Electronic wavefunctions are obtained by solving the Schrödinger equation for a system 

to which the positions of the nuclei are fixed external parameters. The energy of the 

system is then a function of the nuclei positions and the nuclei dynamics can be 

described by considering their motions on a potential energy surface. In comparison, 

empirical force fields use analytic functions to approximately describe the potential 

energy surface in terms of interatomic distance, oxidation state, effective ionic charge, 

and similar parameters that can be fitted by detailed examination of either experimental 

data or theoretical calculations. This parameterization of the potential energy surface may 

be assumed to be transferable, meaning that interatomic interactions in a group of related 

structures can be calculated using parameters fit to data from only one, or a subset of 

them. The reliability of empirical force fields will then be highly dependent on the 

quality of data available for parameter fitting, on the correct choice of structural variables 

to fit, the correct choice of suitable analytic functional forms, and on the consistency of 

electronic structure in the group of substances to which the force field is applied. 

Because of this chain of assumptions, and the use of empirical data, it can be difficult to 

assess the suitability of an empirical force field for calculating isotope fractionation 

factors. In addition, spectroscopic-quality force fields are not always available for 

substances of interest, especially for compounds and molecules containing heavy 

elements, unusual structures, or less common oxidation states. For these reasons, the 

information obtained using first-principles calculations is often more straightforward to 

generate, and easier to test against known vibrational and structural properties, than the 

outputs of analytic potentials. Against this caution, however, it should be noted that 

typical force-field parameterizations are much more mathematically efficient than 

electronic structure calculations, making it possible to probe systems with large numbers 

of atoms and/or dynamical disorder (such as liquids or trace-element substituted crystals) 

with relatively modest computational effort. 

 In the quantum mechanical treatment, the Schrödinger equation of a multiple-

electron system is most often solved using one of two different schemes. The Hartree-

Fock (HF) method (Roothaan 1951) aims at determining the best multi-electronic 

wavefunction by combining mono-electronic wavefunctions (the so-called orbitals). The 

multi-electronic wavefunction exactly obeys the Pauli exclusion principle, whereas 

Coulombic interactions between different electrons are treated in a mean field 

approximation. It can be shown that the exact system energy is always lower than the 

Hartree-Fock energy, the difference being often referred to as the correlation energy. 

Instead of focusing on wavefunctions, density functional theory (DFT) (Hohenberg and 

Kohn 1964) is based a theorem requiring that all the ground state properties of a system 

of electrons moving under the influence of an external potential are uniquely determined 

by its electron density. Therefore, the ground state energy is a functional of the electronic 

density. Hohenberg and Kohn (1964) also demonstrated that the ground state energy can 

be obtained variationally because only the exact ground-state density minimizes this 

functional. Kohn and Sham (1965) proposed a practical scheme to build this functional 

by showing that a system of N interacting electrons can be treated as a fictitious system 

of N electrons that do not interact with each other but operate in an effective external 

potential taking into account an exchange-correlation term. The corresponding mono-

electronic equations, called Kohn-Sham equations, can be solved via an iterative and 

self-consistent procedure starting from an arbitrary electron density. This procedure 

should lead to the density that minimizes the energy (i.e. the exact ground state electronic 
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density).  Unfortunately, the exact expression of the exchange-correlation potential is 

unknown and approximate expressions have to be used. Two commonly used 

approximations are the local density approximation (LDA, based for example on a 

homogeneous electron gas) and the generalized gradient approximation (GGA) taking 

partial account of non-homogeneous effects. DFT is popular in part because it provides a 

description of the electronic ground state of many systems that is more accurate than 

standard HF methods, at a similar computational cost (for molecules). In this way, DFT 

makes it possible to efficiently model the static or dynamic properties of relatively 

complex systems, such as periodic systems containing up to few hundred atoms per unit 

cell. Unlike HF-based methods, however, there is not (or at least not yet) a well-defined 

hierarchy of post-GGA theories that can be used to systematically improve the accuracy 

of DFT models. Partial corrections for some known shortcomings in standard DFT 

functionals are well established and effective, such as the "DFT+U" technique for 

improving DFT models of transition-element oxides (Anisimov et al. 1991; Cococcioni 

and de Gironcoli 2005) or the various methods for including the dispersion interactions 

into DFT (e.g. Grimme 2011), however. 

 In practice, electronic wavefunctions are represented using a finite set of fixed 

functions. These functions can be localized on the atomic positions (as are the atomic 

orbitals) or can consist of plane waves (which correspond to solutions of the Schrödinger 

equation for a free particle). Although not a stringent rule, localized basis sets are well 

suited for isolated molecules or clusters of molecules; whereas plane-waves are more 

appropriate to treat extended and periodic systems, such as crystalline solids. Localized 

basis sets make it possible to use hybrid DFT-HF methods such as the Becke three 

parameter Lee-Yang-Parr (B3LYP) method (Lee et al. 1988; Becke 1993), designed to 

emphasize the best features of each both theories. Hybrid methods are most commonly 

used to model the structure and vibrational frequencies of molecules. In order to reduce 

the computation cost without losing accuracy, it is also possible to restrict the explicit 

electronic structure calculations to the valence electrons because chemical properties 

mostly involve changes in the distribution of valence electrons. In this simplified 

treatment, the potential created by the atomic nucleus and core electrons is replaced by a 

pseudopotential. Pseudopotentials are most commonly used in conjunction with plane-

wave basis sets for elements with Z , 2, or in localized basis function calculations 

involving elements with Z " 20. Many different types of pseudopotentials have been 

developed, and high-quality public libraries of basis sets and pseudopotentials for almost 

all naturally occurring elements are now available online (e.g., GBRV, 

http://www.physics.rutgers.edu/gbrv/, Garrity et al. 2014; SSSP, 

http://materialscloud.org/sssp/; EMSL Basis Set Exchange, bse.pnl.gov/bse/portal, 

Schuchardt et al. 2007). These theoretical methods are implemented in numerous 

commercial and open-source software packages such as ABINIT (Gonze et al. 2002), 

CASTEP (Clark et al. 2005), CRYSTAL (Dovesi et al. 2014), GAMESS (Schmidt et al. 

1993), Gaussian (Frisch et al. 2009), NWChem (Valiev et al. 2010), Quantum 

ESPRESSO (Giannozzi et al. 2009), or VASP (Kresse and Furthmüller 1996). 

 There are typically three steps in first-principles calculations for obtaining the 

vibrational frequencies needed for the determination of isotope fractionation factors. In 

the first step, the minimum-energy static structure is determined via geometric relaxation. 

From an initial guess geometry, often the experimentally determined structure, the forces 

on each atom and the stress over the cell are calculated, and a refined guess structure is 

determined. This procedure continues iteratively until the residual forces and stress are 
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sufficiently small. Once the minimum-energy configuration has been calculated, the 

second step is the determination of force constants for displacements of the atomic nuclei 

from their equilibrium positions. Finally, vibrational frequencies are determined by a 

calculation with model force constants and appropriate isotopic masses (Baroni et al. 

2001). Isotope substitution is expected to have a negligible effect on electronic structure, 

so a matrix of force constants for the common isotope in a molecule or a crystal can be 

recycled to estimate vibrational frequencies of uncommon isotope-substituted species. 

This means that frequencies corresponding to isotopically substituted species can be 

calculated very rapidly (i.e., in a few seconds on a personal computer), even for very 

complex substances, once the force constant matrix has been determined. 

 In first-principles methods, uncertainty in calculated frequencies is typically the 

main factor limiting the accuracy of calculated fractionation factors. As mentioned 

above, isotope effects on vibrational frequencies can be calculated self-consistently, 

using a single set of force constants for each system. The errors on the vibrational 

frequencies are expected to be highly systematic and largely cancel when calculating 

isotope frequency shifts. Méheut et al. (2009) showed that a systematic correction of n% 

on the frequencies induces a relative systematic correction on the logarithmic "-factors 

(ln ") varying between n% (at low temperatures) to 2n% (at high temperatures). The 

commonly used generalized gradient approximation is for instance associated with a 

systematic underestimation of ~5% of the harmonic vibrational frequencies. This would 

lead to a relative uncertainty of ~0.5‰ on a "-factor of 10‰. Two approaches are 

sometimes adopted for correcting this systematic frequency error. In some studies, 

calculated frequencies are rescaled to experimental ones in order to improve the accuracy 

of the calculated fractionation factors (e.g., Schauble et al. 2006; Black et al. 2007; 

Blanchard et al. 2009; Li et al. 2009; Méheut et al. 2009). We must however keep in 

mind that calculated frequencies are harmonic, as they should be when using equations 

based on the harmonic approximation (e.g., Equations (5) to (10)), while experimental 

frequencies are influenced by anharmonicity (Liu et al. 2010). In addition, the value of 

the scaling parameters may be associated with significant uncertainty, depending on the 

quality and precision of spectroscopic data available for the compound of interest. Some 

studies that focus on crystals choose to correct the theoretical results by fixing the unit 

cell parameters to the experimental values and by optimizing only the atomic positions 

(e.g., Kowalski and Jahn 2011; Blanchard et al. 2015; Pinilla et al. 2015), but this 

procedure will usually not completely correct systematic errors in the electronic structure 

method, and it will of course not be applicable in materials where unit cell parameters are 

not known a priori. 

 

Theoretical studies of non-traditional stable isotope fractionation 

 A big advantage to quantum-mechanical molecular modeling is the ability to 

derive a wide range of electronic, structural, energetic, vibrational properties from the 

same model. These properties can often be directly compared with observations to test 

the accuracy of the model. First-principles calculations also represent efficient tools to 

tackle crystal chemical parameters and mechanisms controlling isotopic fractionations. 

Over the past decade or so DFT studies have been applied to theoretical studies of stable 

isotope fractionation spanning most of the non-traditional stable isotopes systems 

represented in this volume. The results of these theoretical studies might best be 

discussed within the perspective of each system, considering isotopic measurements on 
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natural and synthetic samples as well, and this will be done in the following chapters. 

Here we present a brief annotated bibliography in order of increasing atomic mass, 

highlighting some of these works: 

- Lithium: Theoretical studies focused on the equilibrium fractionation of lithium 

isotopes in aqueous solution (Yamaji et al. 2001) and between aqueous fluids and various 

Li-bearing minerals such as staurolite, spodumene and mica (Jahn and Wunder 2009; 

Kowalski and Jahn 2011). Isotopic results were discussed in light of the speciation 

change of the aqueous lithium at high temperature and pressure. 

- Boron: Most of the first-principles studies investigated the equilibrium distribution of 
10

B and 
11

B isotopes between boric acid and borate in aqueous solution at ambient 

conditions, motivated by the application of boron isotope composition of marine 

carbonates as paleo-pH proxy (Zeebe 2005; Liu and Tossel 2005; Rustad and Bylaska 

2007; Rustad et al. 2010). Tossel (2006) studied the isotopic fractionation associated with 

the boric acid adsorption on humic acids, and more recently Kowalski et al. (2013) 

investigated the B isotope fractionation between minerals, such as tourmaline and micas, 

and boron aqueous species at high pressure and temperature. 

- Magnesium: Black et al. (2007) studied the equilibrium Mg isotope fractionation in 

chlorophylls. This and several later studies made efforts to improve methods to 

determine isotopic fractionation in liquids, with a particular focus on the fractionation 

between aqueous Mg
2+

 and Mg-bearing carbonate minerals (Rustad et al. 2010; Schauble 

2011; Pinilla et al. 2015, Schott et al. 2016). Mg isotopes in mantle silicates were treated 

in Schauble (2011), Huang et al. (2013) and Wu et al. (2015). 

- Silicon: Méheut et al. (2007, 2009, 2014) computed the equilibrium Si isotope 

fractionation factors in various silicate minerals, including phyllosilicates. Their data 

analysis enabled to identify the key structural and chemical parameters controlling the 

isotopic signatures. Huang et al. (2014) and Wu et al. (2015) applied the DFT method to 

silicate minerals of the Earth's mantle. Some DFT calculations coupled with isotopic 

measurements on meteorite and terrestrial samples focused on Si isotope fractionation 

between metal and silicates, in order to discuss the composition of the Earth's core and 

the Earth formation (e.g., Georg et al. 2007; Ziegler et al. 2010). The equilibrium 

fractionation in silicic acid and its potential application as proxies for paleo-pH were 

investigated in Dupuis et al. (2015) and Fujii et al. (2015). He and Liu (2015), He et al. 

(2016) complemented equilibrium Si isotope fractionation factors among minerals, 

organic molecules and the H4SiO4 solution. Javoy et al. (2012) determined the Si isotope 

properties of small gaseous molecules and crystalline compounds in the cosmochemical 

context of the solar nebula. 

- Calcium: Theoretical Ca isotope fractionation factors between minerals and solution are 

presented in Rustad et al. (2010), in Colla et al. (2013), and among pyroxenes in Feng et 

al. (2014). Griffith et al. (2008) estimated fractionation factors between barite and calcite. 

- Vanadium: Wu et al. (2015) explored how V isotope fractionation depends on crystal-

chemical parameters such as valence, bond length and coordination number. They 

considered several inorganic V aqueous species and the adsorption of V
5+

 to goethite, by 

adopting a cluster model with explicit solvation shells. 

- Chromium: Schauble et al. (2004), and Ottonello and Zuccolini (2005) computed the 

equilibrium Cr isotope fractionation factors of some molecules in the system Cr-H-O-Cl 

as well as in magnesiochromite (Ottonello et al. 2007). Moynier et al. (2011) extended 
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these theoretical predictions to additional Cr-bearing minerals. These latter data 

associated with isotopic measurements on a range of meteorites suggest that Cr depletion 

in the bulk silicate Earth relative to chondrites results from its partitioning into Earth's 

core. 

- Iron: Several DFT studies focused on isotopic fractionation among Fe species in 

aqueous solution (Anbar et al. 2005; Domagal-Goldman and Kubicki 2008; Hill and 

Schauble 2008; Ottonello and Zuccolini 2008, 2009; Hill et al. 2010; Fujii et al. 2014), 

others looked at iron-bearing minerals such as hematite, goethite, pyrite and siderite 

(Blanchard et al. 2009, 2010, 2015). Rustad and Yin (2009) investigated the isotopic 

properties of ferropericlase and ferroperovskite in lower-mantle conditions to discuss the 

Earth accretion and differentiation. Fe isotope fractionation between mineral and aqueous 

solution was the object of the studies by Rustad and collaborators (Rustad and Dixon 

2009; Rustad et al. 2010). Moynier et al. (2013) estimated the magnitude of the isotopic 

fractionation between different Fe species relevant to the transport and storage of Fe in 

higher plants. In addition to all these first-principles calculations, Mössbauer 

spectroscopy (e.g., Polyakov 1997, 2000) and nuclear resonant inelastic X-ray scattering, 

NRIXS (e.g., Polyakov et al. 2005; Dauphas et al. 2012) represent alternative techniques 

for obtaining Fe reduced partition function ratios. 

- Copper: Seo et al. (2007) determined the equilibrium isotope fractionation of Cu
+
 

complexes relevant of hydrothermal ore-forming fluids. Sherman (2013) modeled Cu-

bearing minerals and various aqueous Cu
+
 and Cu

2+
 complexes!to predict the equilibrium 

isotopic fractionation of Cu resulting from oxidation of Cu
+
 to Cu

2+
 and by complexation 

of dissolved Cu. Additional Cu complexes were considered in Fujii et al. (2013, 2014). 

- Zinc: Several theoretical works studied the isotope fractionation of Zn between various 

aqueous zinc complexes including aqueous sulfide, chloride, and carbonate species 

relevant to hydrothermal conditions (Black et al. 2011; Fujii et al. 2010, 2011, 2014). 

Other complexes were modeled to discuss the Zn isotope fractionation in roots and 

leaves of plants (Fujii and Albarède 2012). 

- Germanium: Li et al. (2009) determined equilibrium fractionation factors for a range of 

Ge-bearing compounds (aqueous species and minerals) simulated using cluster models. 

Li and Liu (2010) investigated the fractionation associated with Ge adsorption onto 

Fe(III)-oxyhydroxide surfaces. A cluster model was used to model the adsorption 

complex. Such adsorption processes occur in many environments, and thus may 

influence significantly the Ge isotope global budged. 

- Selenium: Equilibrium Se isotope fractionation factors of inorganic and organic Se-

bearing species in gaseous, aqueous and condensed phases were computed (Li and Liu 

2011). 

- Strontium: A combined theoretical and experimental study focused on the Sr isotope 

fractionation during inorganic precipitation of barite, where several strontium-bearing 

minerals and crystalline strontium hydrates were modeled (Widanagamage et al. 2014). 

This work was preceded by the determination of the isotopic fractionation between SrO2 

and a Sr
2+

 aqueous species (Fujii et al. 2008). 

- Molybdenum: Mo isotope fractionation factors were determined using a cluster 

approach, for many aqueous species including several forms of molybdic acid and 

polymolybdate complexes (Tossel 2005; Weeks et al. 2007, 2008; Wasylenki et al. 2008, 

2011). These results confronted with experimental data aim at identifying the molecular 
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mechanisms responsible to the Mo isotope fractionation during adsorption to manganese 

oxyhydroxides, which is a primary control on the global ocean Mo isotope budget. 

- Cadmium: Yang et al. (2015) computed using DFT the equilibrium isotopic 

fractionation factors for Cd species relevant to hydrothermal fluids. 

- Rhenium: Theoretical Re isotope fractionation has recently been investigated by Miller 

et al. (2015). They especially assessed the magnitude of nuclear volume fractionation 

with respect to mass dependent fractionation. 

- Mercury and Thallium: Schauble (2007) performed first-principles calculations on these 

very heavy elements and could show that isotopic variation in nuclear volume is the 

dominant cause of equilibrium fractionation, exceeding mass-dependent fractionations. 

This is supported by two more recent works by Fujii et al. (2013) and Yang and Liu 

(2015). Wiederhold et al. (2010) performed additional theoretical calculations, 

quantifying the relationship between ionic bonding and equilibrium mercury isotope 

fractionation. 

- Uranium: Abe and his collaborators (Abe et al. 2008a, 2008b, 2010, 2014) investigated 

the uranium isotope fractionations caused by nuclear volume effects. 

 

Modeling isotopic properties of liquid phases 

 Many natural processes involve the participation of fluids. Isotopic signatures of 

minerals are very often related to fluid-rock interactions. Understanding the isotope 

fractionation processes between minerals and fluids is then of great importance. This 

understanding will include our ability to produce reliable theoretical mineral-solution 

isotopic fractionation factors. However calculations of fractionation properties of liquids 

and solvated elements under thermodynamic equilibrium represent a bigger challenge 

than for gaseous molecules or minerals. In an aqueous solution, an ion or molecule 

dissolved in water will interact with water molecules and other dissolved species in a 

continuously changing arrangement of hydrogen bonds and ion pairs. This disordered 

and dynamic character complicates significantly the problem. Determining the 

vibrational frequencies of such systems from first-principles calculations has a 

computation cost far greater than for minerals. Additional approximations are needed and 

can include the use of molecular clusters of finite size or the use of relaxed 

configurations from molecular dynamics simulations. 

 Most of the theoretical predictions of isotope fractionation in aqueous species are 

based on the cluster approximation (e.g., Yamaji et al. 2001; Anbar et al. 2005; Black et 

al. 2007, 2011; Seo et al. 2007; Domagal-Goldman and Kubicki 2008; Hill and Schauble 

2008; Ottonello and Zuccolini 2009; Fujii et al. 2010, 2014, 2015; Li and Liu 2010; 

Rustad et al. 2010; Sherman 2013). In this case, the ion or molecular complex of interest 

is surrounded by water molecules forming a solvation shell and the whole is sometimes 

immersed in a continuum approximating the dielectric properties of the solvent. The 

stable structure of this isolated nanodroplet is obtained at T = 0 K by minimizing the 

forces acting on the atoms and the reduced partition function ratio ("-factor) is computed 

from the vibrational frequencies obtained in the harmonic approximation. The inclusion 

of the first solvation shell around the considered species is a first step towards the 

consideration of the solvation effect, i.e. effect explaining that most gases exhibit 

measurable isotopic fractionations between the vapor phase and solution. This approach 
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is however hindered by several difficulties, such as the number of water molecules that 

must be included, the symmetry of the cluster, and the consistency between different 

aqueous species or between the aqueous species and the mineral. Let’s take the example 

of iron isotopes. First-principles calculations performed on small clusters give 

equilibrium isotopic fractionation between Fe(H2O)6
3+

 and Fe(H2O)6
2+

 of 2.5-3‰ at 

22°C for the isotopic ratio 
56

Fe/
54

Fe (Anbar et al. 2005; Domagal-Goldman and Kubicki 

2008; Hill and Schauble 2008). These values are in good agreement with the 

experimental value of 3.00±0.23‰ (Welch et al. 2003), even if the theoretical value 

depends on the cluster symmetry chosen. Here the two iron species only differ from the 

charge and are treated in a consistent way, which allows a cancellation of errors. 

However when the same theoretical data are combined with mineral "-factors (Polyakov 

and Mineev 2000; Polyakov et al. 2007; Blanchard et al. 2009), the calculated 

fractionations for Fe
3+

-hematite and Fe
2+

-siderite are in disagreement with experimental 

data. Preceded by few theoretical works emphasizing the importance of explicitly 

treating secondary solvation shells (e.g., Schauble et al. 2004; Liu and Tossell 2005), 

Rustad et al. (2010) could show that the "-factors can be reliably computed from systems 

as small as M(H2O)6
2+

 but when they are embedded in a set of fixed atoms representing 

at least the second solvation shell (Fig. 2). Furthermore their results suggest that the 

aqueous cluster is much more sensitive to improvements in the basis set than the 

calculations on the mineral systems. By applying these results, Rustad et al. (2010) 

obtained more accurate "-factors for aqueous Fe
2+

 and Fe
3+ 

and could reconcile theory 

and experiment for the mineral-solution fractionations (Fig. 2). Obviously, an observed 

disagreement between theory and experiment may have other reasons, such as kinetic 

effects during nucleation and crystal growth that could make the equilibrium assumption 

invalid. For example, if minerals form via oligomers or clusters as an intermediate step 

between the aqueous species and the mineral, then using a model of the bulk aqueous 

species will never reproduce the observed fractionation (e.g. Domagal-Goldman et al. 

2009). More generally this cluster approach can be justified for dissolved molecules that 

remain more or less intact in solution (e.g., [ClO4]
–
, B(OH)3 and CCl4) or for aqueous 

complexes where intra-complex bonds are probably much stronger than interactions with 

bulk solvent (e.g., [Cr(H2O)6]
3+

, [FeCl4]
–
, and Mg

2+
 in chlorophyll). On the other hand, 

this method has the disadvantage of neglecting the constant exchange of particles within 

the solvation shells and other effects, such as the formation of chemical bonds and 

structural rearrangements as a function of temperature and pressure considered to be 

important for the calculation of the isotope fractionation. 
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Figure 2. Left: Example of molecular cluster used by Rustad et al. (2010) to model aqueous Fe2+ 

and Fe3+. Right: Calculated (curves) and measured (circles) fractionations for the pairs Fe3+(aq)- 

Fe2+(aq), Fe3+(aq)-hematite and Fe2+(aq)-siderite. Theoretical  "-factors are from Rustad et al. 

(2010) for aqueous ions, from Polyakov and Mineev (2000) for siderite, and from Polyakov et al. 

(2007) for hematite. These two latter Mössbauer-derived  "-factors are consistent with DFT 

results (Blanchard et al. 2009). Experimental data are from Skulan et al. (2002), Welch et al. 

(2003) and Wiesli et al. (2004). 

 To account for these dynamical phenomena, i.e. frequent particle exchange in the 

hydration shell and structural evolution of the fluid with pressure and temperature like it 

is for instance the case in Li aqueous solution (Jahn and Wunder 2009) one can go 

beyond the static calculations on molecular clusters by employing molecular dynamic 

simulations. In this case, a first-principles molecular dynamics is run at finite temperature 

where the condensed phase of the fluid is described through periodic boundary 

conditions. The equilibrated trajectory thus provides a representative distribution of the 

configurational environments of the species of interest in the fluid. The average 

fractionation factor is then estimated from the harmonic vibrational frequencies 

computed on a set of uncorrelated snapshots taken from the molecular dynamic 

trajectory. Vibrational frequencies can be computed directly from each snapshot without 

relaxing the atomic positions but this raises a problem because the dynamic structures are 

often statically unstable, meaning that some calculated frequencies are imaginary 

numbers. It is not clear how to make reliable thermodynamic calculations of fractionation 

factors when imaginary frequencies are encountered. A way around this problem is to 

further process each snapshot structure by allowing atomic positions to relax into the 

nearest local energy minimum by performing geometry optimization at T = 0 K (giving 

the so-called inherent structures, Stillinger and Weber 1983) before computing 

vibrational frequencies. This approach is more satisfactory for determining the 

fractionation properties from the equations based on the harmonic approximation, but on 

the other hand this approach erases some of the desired dynamical sampling, evident for 

instance in the more homogeneous bond lengths found after snapshot relaxations. An 
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alternative approach was proposed by Kowalski and Jahn (2011) and consists in relaxing 

only the position of the element of interest before determining the fractionation 

properties from the high-temperature approximation based on force constants. When this 

approximation is valid, it reduces significantly the computational cost, which is the major 

drawback of the molecular dynamics method. In order to keep the calculations as 

tractable as possible, all parameters must be chosen carefully, including the size of the 

simulation cell and the snapshot sampling. The simulation cell should be large enough to 

avoid significant interaction between atoms and their periodic images. The first studies of 

this kind used simulation cells containing typically 32 or 64 water molecules (Rustad and 

Bylaska 2007; Kowalski and Jahn 2011; Pinilla et al. 2014, 2015; Dupuis et al. 2015). 

However Kowalski and Jahn (2011) have shown that for a dissolved Li
+
 ion a cell 

containing only 8 water molecules is enough to get a converged result within the 

accuracy of the calculations. This highlights the local character of fractionation 

properties, i.e. isotopic fractionation is mainly controlled by the bonds formed with the 

first atomic neighbors. The snapshot sampling should be large enough to get a 

representative distribution of the fluid configurations but small enough to keep the 

computation time under reasonable limits. Dupuis et al. (2015) tested thoroughly this 

sampling by considering a random, periodic or selected extraction of the snapshots. 

Results suggested that the extraction of only 10 snapshots is statistically representative of 

the whole solution, and that this number can even be decreased by taking advantage of 

the correlation between the fractionation value and the mean bond length (in cases where 

such correlation is evidenced). 

 The first study taking into account dynamical effects on isotope fractionation 

factors for non-traditional elements is by Rustad and Bylaska (2007). They calculated 

first the velocities correlation of exchanging isotopes and through its Fourier transform 

found the vibrational density of states to predict the boron isotope fractionation between 

B(OH)3 and B(OH)4
-
 in aqueous solution. This led to a discrepancy between the 

calculated fractionation factor and the experimental one (Byrne et al. 2006; Klochko et 

al. 2006), which was solved after computing the harmonic frequencies of inherent 

structures taken from the molecular dynamics trajectory. Kowalski and coworkers took 

advantage of computing partial vibrational properties to investigate the lithium and boron 

isotope fractionation between aqueous fluids and minerals at high pressure and 

temperature (Kowalski and Jahn 2011; Kowalski et al. 2013). More recently, Pinilla et al. 

(2015) studied the equilibrium isotope fractionation between aqueous Mg
2+

 and 

carbonate minerals, and Dupuis et al. (2015) focused on silicon isotope fractionation in 

dissolved silicic acid. In conclusion, first-principles molecular dynamics simulations 

represent an efficient way to take into account the dynamical aspect of the fluid and their 

compressibility. By employing periodic boundary conditions, this approach also allows 

to treat minerals and fluids in a consistent manner; a prerequisite for reliable isotope 

fractionation factors between mineral and solution. All methods mentioned so far are 

based on the harmonic approximation. For many substances, uncertainties associated 

with calculated vibrational frequencies are likely to be larger than anharmonic effects. In 

liquids, anharmonicity effects are expected to have stronger impacts on fractionation 

properties. Generally anharmonicity will tend to decrease the vibrational frequencies and 

consequently the reduced partition function ratios (e.g., Richet et al. 1977; Méheut et al. 

2007; Balan et al. 2007). To go beyond the harmonic approximation, more sophisticated 

techniques exist and are presented in the next section. 
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Beyond harmonic approximation: Path integral molecular dynamics 

 As already pointed out, isotopic fractionation is a quantum effect. Nuclear 

quantum effects (e.g., zero-point energy, quantum tunneling) whose relative contribution 

increases with decreasing temperature, influence significantly the properties of many 

systems, especially those containing lighter elements. Moreover it is also known that 

anharmonicity can be substantial especially for light elements and for liquid phases. A 

method of choice to include quantum nuclear effects without using the harmonic 

approximation is the method of thermodynamic integration coupled to path integral 

molecular dynamics (PIMD). 

The reduced partition function ratio can be written using the Helmholtz free 

energy instead of the partition function: 
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where F(AX) and F(AX') are the free energy of a single molecule of the two 

isotopologues AX and AX', and the subscript cl refers as before to quantities calculated 

using classical mechanics. Unfortunately, the absolute value of the free energy is not a 

quantity that can be directly obtained for any arbitrary system. Relating the free energy to 

another physical property, such as the kinetic energy, can circumvent this problem. On 

this line, it can be shown that the free energy of an isotopic species depends on its kinetic 

energy and mass (Landau and Lifshitz 1980): 
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m   (13) 

where #$ represents a thermodynamic average in the canonical ensemble (i.e. 

thermodynamic ensemble NVT corresponding to a system in thermal equilibrium: the 

number of particles, the volume and the temperature of the system are fixed). Inserting 

Eq. (13) into Eq. (12) and taking into account that in the classical limit the kinetic energy 

of an atom is #K$ = 3kT/2, the "-factor is then given by: 
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where #K(µ)$ is the average kinetic energy of the atom X of mass µ in phase AX. In this 

expression, the "-factor is thus obtained by thermodynamic integration from mass m' to 

mass m. Here, we stress that the kinetic energy used in the thermodynamic integration is 

that of the quantum system. It differs from the kinetic energy determined using standard 

molecular dynamic methods. These latter methods solve the classical equation of atomic 

motions in a force field, which can be defined either empirically or using ab initio 

electronic structure calculations. In the present case, the determination of the kinetic 

energy has to take into account the fact that, in a quantum system, the atomic trajectories 

are not defined. The atoms display some degree of delocalization (i.e. some uncertainty 

on their position); which is inversely related to their mass. Path integral methods enable 

the treatment of such effect by replacing the standard classical system by a larger number 

of replicated classical systems (Fig. 3). The replicated systems interact through harmonic 

springs connecting a given atom to its counterpart in adjacent replicas. Based on the 

exact isomorphism between a quantum particle and a classical ring polymer, the quantum 
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thermodynamic averages can be calculated exactly for any force field using path integral 

methods. PIMD methods are implemented in several codes such as the freely available 

program CP2K, CPMD (Marx and Hutter 2000), i-PI (Ceriotti et al. 2014) or PINY_MD 

(Tuckerman et al. 2000). A description of the PIMD methods and their implementations 

is out of the scope of this chapter but can be found elsewhere (Feynman and Hibbs 1965; 

Ceperley 1995; Tuckerman 2010). The drawback of PIMD methods is the computational 

cost that is almost prohibitive for treating at the ab initio level most of the systems 

relevant in geosciences. To address this issue, several studies report new developments 

that improve the efficiency of the methods concerning isotopic applications (e.g., Ceriotti 

and Markland 2013; Cheng and Ceriotti 2014; Marsalek et al. 2014). 

 
Figure 3. Schematic representations of a water molecule in standard molecular dynamics and 

path integral molecular dynamics. The straight lines joining the replicas (also called “beads”) 

with the same number represent the interatomic interactions that can be modeled using either 

empirical or ab initio force fields. Replicas belonging to the same atom interact through harmonic 

springs. Only three replicas are represented here for clarity reasons but a large number of replicas 

(several tens) are actually needed to capture the quantum behavior of the system. 

 Regarding the investigation of isotopic effects, many studies focused on small 

molecules or molecular clusters, including water molecule and ions, hydrated chloride 

ions, carbon dioxide, organic molecules (e.g., Tachikawa and Shiga 2005; Vanicek and 

Miller 2007; Suzuki et al. 2008; Mielke and Truhlar 2009; Pérez and von Lilienfeld 

2011; Webb et al. 2014). Other studies have modeled condensed phases, like for instance 

Chialvo and Horita (2009), Ramírez and Herrero (2010), Markland and Berne (2012), 

Zeidler et al. (2012), and Pinilla et al. (2014) for the water system. Among these studies, 

Pinilla et al. (2014) determined the H and O isotope equilibrium fractionation between 

water ice, liquid and vapor, and compared the exact result obtained from PIMD with 

those of the more common modeling strategies, which involve the use of the harmonic 

approximation. The same approach was then applied to the aqueous Mg
2+

 (Pinilla et al. 

2015). Results show the importance of including configurational disorder for the 

estimation of isotope fractionation in liquid phases, by using molecular dynamics 

simulations. In the case of D/H fractionation, neglecting the anharmonic effects leads to 

an overestimation of the fractionation factor. In other words, the harmonic approximation 

will overestimate the concentration of heavy isotopes in the aqueous phase. For heavier 
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atoms, like magnesium and to some extent oxygen, methods based on the harmonic 

approximation give reliable results and in the same time reduce significantly the 

computational cost. 

 

MÖSSBAUER AND NRIXS SPECTROSCOPY 

 In addition to the equilibrium fractionation factors derived experimentally by 

isotopic composition measurements, we have seen that these equilibrium constants can 

also be determined theoretically from the computation of the vibrational properties. An 

additional approach for Mössbauer-active elements (like iron, which is the most 

commonly studied element) consists in using Mössbauer spectroscopy (e.g., Polyakov 

1997, 2000) and nuclear resonant inelastic X-ray scattering, NRIXS (e.g., Polyakov et al. 

2005; Dauphas et al. 2012). These two latter techniques probe the vibrational properties 

of the target element and are thus ideally suited to study complex materials. Let’s start 

again from an expression relating the reduced partition function ratio ("-factor) to the 

kinetic energy. Using the first-order thermodynamic perturbation theory (Landau and 

Lifshits 1980), Equation (14) becomes: 
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In Mössbauer spectroscopy, the kinetic energy K of the active isotope (e.g. 
57

Fe) is 

related to the second-order Doppler shift, S(T): 
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where c is the light velocity. Substituting S(T) for K(T) into Equation (15) leads to: 
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The second-order Doppler shift S(T) can be determined experimentally from the 

temperature dependence of the isomer shift because both quantities only differ by a 

constant value that reflects the fact that the isomer shift is measured relative to a 

reference spectrum of metallic iron at room temperature. Experimental data are 

conveniently fitted using a Debye function: 
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where m is the mass of the resonant isotope (
57

Fe), and %M is a characteristic Mössbauer 

temperature. However, the SOD shift is not the only factor controlling the temperature 

shift in the Mössbauer spectra, so model assumptions about the temperature dependence 

of the Mössbauer isomeric shift are needed. In practice, the prediction of Mössbauer-

derived fractionation factors involves an extensive data processing and requires high 

quality data to achieve a reasonable accuracy. This explains the few cases of conflicting 

results and revised data reported in the literature (e.g., Polyakov et al. 2007; Rustad et al. 

2010; Blanchard et al. 2012). 



! ##!

 In the NRIXS method, kinetic energy is calculated from the measured vibrational 

density of state of the element of interest using the following expression. The vibrational 

density of state can also be obtained by ab initio calculations. 

K =
3

2
E e kT( )

0

emax

! g e( ) de
  (16) 

where g(e) is the vibrational density of state of 
57

Fe, for instance, normalized to unity, 

and E(e/kT) is the Einstein function for the vibrational energy of a single harmonic 

oscillator at frequency ! = e/h. emax correspond to the maximal energy of the vibrational 

spectrum and the Einstein function is given by: 
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Equations (16) and (17) are valid in the harmonic approximation and Equation (16) takes 

into account the virial harmonic relation K = Evib/2, where Evib is the vibrational energy 

of the harmonic oscillator. For a given system, the "-factor calculated from the 

vibrational density of state (Equations 15 and 16) is identical to the "-factor calculated 

directly from the vibrational frequencies (Equation 10). When the highest energy of the 

vibrational density of state is smaller than 2%kT, another expression can be used, based 

on a Bernoulli expansion of the "-factor (Dauphas et al. 2012): 
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where mi

g
 is the ith moment of the vibrational density of state g(e), given by: 
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Dauphas et al. (2012) have also shown that the even moments of g(e) can be obtained 

directly from the moments of the NRIXS spectrum S(e) and Equation (18) can be 

rewritten as: 
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where ER is the free recoil energy and R
i

S
 is the ith moment of S(e) centered on ER, given 

by: 
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The NRIXS-based method probing directly the vibrational properties of the target 

element is expected to provide better accuracy for the "-factors than that based on 

Mössbauer spectroscopy. However NRIXS spectra have only recently been measured 

specifically for applications to isotope geochemistry (Dauphas et al. 2012). A difficulty 

that had been unappreciated before, was encountered concerning the baseline at low and 

high energies (the details of the spectrum at the low- and high-energy ends heavily 

influence the treatment of experimental data and therefore the value of the "-factor). To 
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address this issue, Dauphas and collaborators have developed a software (SciPhon) that 

reliably corrects for non-constant baseline (Dauphas et al. 2014; Blanchard et al. 2015; 

Roskosz et al. 2015). 

 
Figure 4. Comparison of iron "-factors derived from first-principles calculations (DFT), NRIXS 

and Mössbauer measurements for siderite (FeCO3), chalcopyrite (CuFeS2), hematite (Fe2O3) and 

pyrite (FeS2). Data were taken from Blanchard et al. (2009, 2012), Dauphas et al. (2012), 

Polyakov and Mineev (2000), Polyakov and Soultanov (2011), Polyakov et al. (2007). In these 

minerals where iron atoms are always in octahedral coordination, the "-factor is mainly 

controlled by the iron oxidation state and the degree of covalence of the chemical bonds 

involved. 

 Figure 4 displays a comparison of the iron "-factors derived from NRIXS, 

Mössbauer measurements and first-principles calculations (DFT) for various iron-bearing 

minerals, i.e. sulfides, an oxide and a carbonate. For siderite (FeCO3), DFT results 

(Blanchard et al. 2009) are in excellent agreement with Mössbauer data (Polyakov et al. 

2007). The same kind of agreement is found between the DFT and NRIXS resuls of 

chalcopyrite (CuFeS2, Polyakov et al. 2013). For hematite (Fe2O3) DFT-derived iron "-

factors (Blanchard et al. 2009) are very close to NRIXS-derived values (Dauphas et al. 

2012) while the results from Polyakov et al. (2007) are slightly above. In the case of 

pyrite (FeS2), the apparent discrepancy between DFT and Mössbauer results that was 

reported in Blanchard et al. (2009) and in Polyakov and Soultanov (2011), could be 

resolved by using a better constrained temperature dependence of the Mössbauer spectra 

(Blanchard et al., 2012). The value of the iron "-factor in pyrite was confirmed by 
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NRIXS data (Polyakov et al. 2013) and also appears consistent with experimental 

measurements of equilibrium isotopic fractionation between pyrite and dissolved Fe
2+

 

(Syverson et al. 2013). These comparisons exhibit that DFT, NRIXS and Mössbauer 

spectroscopy should lead to statistically undistinguishable "-factors, when high-quality 

measurements are performed followed by a careful data processing. Therefore, the 

comparison of results from these independent techniques provides reliable isotope 

fractionation factors. Figure 4 also shows that iron "-factors of these minerals are 

noticeably different; pyrite displaying the highest value while siderite has the lowest one. 

In all minerals except chalcopyrite iron atoms are in octahedral sites, the observed order 

can be discussed in terms of oxidation state (Fe
3+

 in hematite vs. Fe
2+

 in siderite) and 

degree of covalence of the interatomic bonds (low-spin, strongly covalent d-orbitals in 

pyrite vs. high-spin, ion-like d-orbitals in almost all other minerals). 

 

MASS-INDEPENDENT FRACTIONATION & VARIATIONS IN 
MASS LAWS 

 Typical fractionating processes, including equilibrium isotope partitioning, 

activation-energy and transport-controlled disequilibrium reactions, and even 

gravitational and centrifugal isotope separation, almost always impart a characteristic 

signature in which the magnitude of isotope fractionation scales in close proportion to the 

difference in isotopic mass (e.g., Hulston and Thode 1965; Matsuhisa et al. 1978; Weston 

1999; Young et al. 2002). A typical example is oxygen, where 
17

O/
16

O fractionation is 

usually 0.5-0.53 times as large as 
18

O/
16

O fractionation, very close to the ratio of mass 

differences ("0.501).  In high temperature igneous and metamorphic rocks the mass-

fractionation relationship for oxygen is remarkably consistent, with !17
O " 0.528±0.001 

x !18
O (e.g., Rumble et al. 2007). Subtle variations in mass dependence are observed in 

light stable isotope systems, including oxygen and sulfur (Barkan and Luz 2012; 

Hofmann et al. 2012; Farquhar et al. 2003), and are of increasing interest as potential 

tools to unravel the nature of fractionation in the hydrological cycle, in the precipitation 

of low-temperature minerals from solution, and in biochemical reactions. Young et al. 

(2002) pointed out that variations in mass-fractionation relationships could also help 

distinguish equilibrium from kinetic fractionations in non-traditional elements such as 

magnesium, although such measurements are likely to require very high precision in 

systems where fractionations of only a few per mil are observed.  

 Various notations have been developed to describe variations in mass 

dependence. Here we have followed the basic formulation of Mook (2000), which has 

been widely adopted. In a stable isotope fractionation involving element X with stable 

isotopes, 
1
X, 

2
X, and 

3
X that have masses m1, m2, and m3, there are two distinct 

fractionation factors ": 

! 

3 /1"
AX /BX

=

3
X[ ] 1

X[ ]( )
AX

3
X[ ] 1

X[ ]( )
BX

 

and 

! 

2 /1"
AX /BX

=

2
X[ ] 1

X[ ]( )
AX

2
X[ ] 1

X[ ]( )
BX

  (19) 



! #&!

In such a system it is convenient to express the mass dependence of the fractionation as a 

mass-fractionation exponent, &, the ratio of the natural logarithms of the fractionation 

factors: 

! 

" =
ln

2 /1#
AX /BX( )

ln
3 /1#

AX /BX( )
  (20) 

Formally, mass-independent fractionation refers to any deviation of an observed 

fractionation from a reference mass fractionation exponent, typically expressed in delta 

notation: 

! 

"'
2 /1 XAX /BX ‰( ) =103 # $#reference( ) ln 3 /1%AX /BX( )  (21) 

 Note that the prime indicates that logarithmic delta is being used here. Alternative 

expressions using conventional delta units may also be used, but for a discussion of 

fractionation factors the logarithmic delta makes the math simpler. The reference 

exponent might be a theoretical law or an empirically observed trend (an empirical 

exponent may be indicated by using ' instead of &). There is generally not a well-

accepted consensus in favor of a particular mass law exponent, so it can be tricky to 

compare (' values reported by different labs. 

 

Variability in mass laws for common fractionations 

 Detailed derivations of mass law exponents for various fundamental fractionation 

processes have been published elsewhere (e.g., Young et al. 2002; Dauphas and Schauble 

2016), and will not be reproduced here. Several of the most significant and/or common 

mass law exponents are listed in Table 1, below, along with calculated exponents for 

some traditional and non-traditional stable isotope systems. Among the most important 

of these is the high-temperature equilibrium mass law exponent, which can be derived 

from the simplified formula for isotope fractionation in Equation (11), above (Matsuhisa 

et al. 1978): 
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 As noted above for Equation (11), the constant mass-dependence implied by this 

relationship is a surprisingly good approximation at low temperatures, even for materials 

with high-frequency vibrations such that h!/kT > 2 (Matsuhisa et al. 1978). In part, this 

occurs because the low-temperature equilibrium exponent is identical in the limit where 

the element of interest is much more massive than other atoms in the molecule (Cao and 

Liu 2011; Dauphas and Schauble 2016). These light-atom molecules tend to have the 

highest vibrational frequencies and h!/kT, especially when considering non-traditional 

(typically high atomic mass) isotope systems. This mass law is thus a common and 

sensible choice as a theory-based reference exponent (e.g., Young et al. 2002). 

 The mass-dependent relationships described above indicate that there will be a 

narrow range of variability in mass dependence for typical fractionating processes. For 

equilibrium fractionations of non-traditional isotopes, it is expected that the variability 
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will be quite small. Indeed, commonly occurring sulfur species (Z=16) show very little 

change in mass dependence at equilibrium at relevant temperatures (Hulston and Thode 

1965; Otake et al. 2008; Farquhar et al. 2003). There has not been a focused theoretical 

effort to quantify the variability in elements heavier than sulfur. However, studies of 

oxygen and sulfur suggest that even fairly crude electronic structure models (including 

DFT) can give an accurate picture of mass dependence variations at equilibrium (Cao 

and Liu 2011), and this seems likely to be an area of future development, as 

measurement precision continues to improve for many non-traditional elements.



Table 1. Theoretical mass-fractionation exponents. 

Type of fractionation !  exponent 16,17,18
O 

24,25,26
Mg 

28,29,30
Si 

32,33,34
S 

54,56,57
Fe 

198,200,202
Hg 

Equilibrium, Hi-T 

! 

1

m
1

"
1

m
2

1

m
1

"
1

m
3

 
0.5305 0.5210 0.5178 0.5159 0.6780 0.5049 

Equilibrium, Low-T, light partner 

! 

1

m
1

"
1

m
2

1

m
1

"
1

m
3

 0.5305 0.5210 0.5178 0.5159 0.6780 0.5049 

Equilibrium, Low-T, heavy partner † 
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1

m
1

"
1

m
2

1

m
1

"
1

m
3

 
0.5232 0.5160 0.5135 0.5121 0.6750 0.5037 

Graham's law (pinhole) effusion, atomic 
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 0.5158 0.5110 0.5092 0.5083 0.6720 0.5024 

Graham's law effusion, high-mass molecule 
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 0.5010 0.5010 0.5006 0.5007 0.6660 0.4999 

Kinetic, transition state theory, jump limited 
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 Intermediate between Hi-T Eq. and high-mass molecular diffusion 
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Gravitational/centrifugal 

! 

m
2
"m

1

m
3
"m

1

 0.5010 0.5010 0.5006 0.5007 0.6660 0.4999 

Calculated variability  0.0295 0.0200 0.0172 0.0151 0.0119 0.0050 

mi are isotopic masses, Mi are masses of isotopically substituted molecules, and µi* are reduced masses of a reaction coordinate at the transition state. 

Based on Matsuhisa et al. (1978), Young et al. (2002), and Dauphas and Schauble (2016). † This equation only applies to the reduced partition function 

ratio !AX, and thus to fractionation relative to atomic vapor. Actual !AX exponents for non-traditional elements will rarely, if ever approach this limit 

because h"/kT and/or the masses of bond partners are too small. 

 



Mass-independent fractionation in light elements (O and S) 

 In addition to the subtle variations in mass dependence discussed above, there are 

some natural and laboratory environments that give rise to fractionations that deviate 

strongly from a proportional relationship with mass differences. These are called mass-

independent fractionations, even though they are usually driven, ultimately, by 

differences in isotopic mass. The best-known examples of mass-independent 

fractionation are in oxygen and sulfur isotopes, and are thought to be associated with 

reactions between molecules in the gas phase. Large, approximately 1:1 variation in 
17

O/
16

O vs. 
18

O/
16

O is observed in primitive meteoritic oxides and silicates (Clayton et al. 

1973). Although the cause of this fractionation is not yet settled, the most common 

explanation is that it represents a self-shielding effect in carbon monoxide, in which the 

common isotopologue 
12

C
16

O is optically thick to incoming light with the right energy to 

break it apart, while 
12

C
17

O and 
12

C
18

O are optically thin, and thus more prone to react in 

the interior of the solar nebula or a molecular cloud (Clayton 2002; Lyons and Young 

2005). In the stratosphere, a large,  ~1:1 fractionation of 
17

O/
16

O and 
18

O/
16

O is found in 

ozone, and in gases that exchange oxygen with ozone. It is thought that this fractionation 

reflects an isotopic effect on the lifetime of excited ozone molecules (Heidenreich and 

Thiemens 1986; Mauersberger 1987; Gao and Marcus 2001). Mass-independent sulfur 

isotope fractionation has been found widely in Archean and earliest Proterozoic samples 

(Farquhar et al. 2000). These samples show a range of 
33

S/
32

S vs. 
34

S/
32

S relationships, 

thought to be caused by photochemical reactions of SO2 in the early atmosphere, before 

O2 became a major constituent of air (Pavlov and Kasting 2002; Lyons 2007). 

 

Mass-independent fractionation in non-traditional elements (Hg, Tl, and U) 

 For non-traditional stable-isotope systems, at least two different fractionation 

mechanisms seem to be responsible for mass-independent fractionation effects. Most 

dramatic are large (> 1‰) mass-independent mercury isotope fractionations that are 

mainly photochemical (e.g., Bergquist and Blum 2007), and appear to be magnetic 

isotope effects dependent on the non-zero spins of the odd numbered mercury isotopes 
199

Hg and 
201

Hg. Introductory reviews of the magnetic isotope effect have been presented 

elsewhere (Turro 1983; Buchachenko 1995, 2013). The effect is apparent only in a subset 

of disequilibrium reactions. As yet, there are not any quantitative theoretical models that 

can reproduce the observed mass-independent signatures, and this is an area where more 

work is clearly needed. 

 Another type of fractionation is observed in the uranium and thallium isotope 

systems (Stirling et al. 2007; Rehkämper et al. 2002). Variation in isotope abundances in 

these elements in nature appears to mainly result from an equilibrium mass-independent 

phenomenon: the nuclear field shift effect. This effect also acts to fractionate mercury 

isotopes (e.g., Estrade et al. 2009; Wiederhold et al. 2010; Ghosh et al. 2013; Schauble 

2007), but the mass-independent signature is much more subtle than the largest MIFs 

observed in natural samples, e.g, Blum et al. (2014). This effect has been the subject of a 

number of first-principles theoretical studies. 

 Bigeleisen (1996) and Nomura et al. (1996) proposed that equilibrium isotopic 

fractionation in elements with very high atomic numbers could be driven by differences 

in the shape and size of nuclei, in addition to differences in mass. Hints of this effect 

were also described in an earlier experimental study of strontium isotope fractionation 
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(Nishizawa et al. 1995). This is the nuclear field shift effect, and it is caused by overlap 

of electron density with the spatial volume occupied by the positive charge of a nucleus 

(Fig. 5). The general effect is to reduce the binding energy of electrons around large 

nuclei. This nuclear volume effect appears to be the most important component of the 

field shift, but non-spherical shapes may also be important for field shift effects in some 

nuclei; this shape-dependent part of the field shift is not as well studied as the volume 

component (e.g., Knyazev et al. 1999). Bigeleisen, Nomura, and their collaborators used 

the field shift effect to explain laboratory uranium isotope fractionation experiments in 

which the oxidized form of uranium, U(VI), had lower 
238

U/
235

U than coexisting reduced 

species at equilibrium. Such inverted redox/fractionation relationships are rare. A key 

observation was that 
236

U/
238

U, 
238

U/
234

U, 
238

U/
235

U, and 
238

U/
233

U fractionations did not 

obey a consistent mass dependent relationship, with the magnitude of 
238

U/
235

U 

fractionation for instance being very similar to 
238

U/
234

U, despite a 3:4 mass difference 

ratio (Nomura et al. 1996). 

 

 
Figure 5. Nuclear field shift fractionations depend on the effect of the size and shape of a 

nucleus on the binding energy of electrons. The simplified example shown here assumes a single 

electron attracted to a spherical nucleus with a uniform charge density. The solid line shows the 

electrostatic potential binding an electron to an infinitesimally small nucleus, which goes to 

negative infinity as the electron approaches the nuclear center. For finite nuclei, the Coulomb 

potential does not go to negative infinity, but instead approaches a finite minimum inside the 

nucleus because the net electrostatic attraction to the shell of nuclear charge farther from the 

center than the electron is zero. The minimum is higher (the binding potential is weaker) for a 

large nucleus than for a small nucleus. Here the radius difference is assumed to be 10%, which is 

much larger than the difference between stable isotopes of most elements. Adapted from 

Schauble (2007). 

 Isotope fractionations caused by the field shift effect can be quantified if field 

shift energies are known: 
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where !FS is the field shift fractionation factor, and E
0
(AX), etc. are the ground state 

electronic energies of isotopic forms of AX and BX. Approximate expressions for the 

field shift energies have been derived in the optical spectroscopy literature (e.g., King 

1984); these formulations capture the dependence of the field shift effect on the size of 

the nucleus (i.e., spatial nuclear volume) and on the electron density that overlaps it, e.g., 

! 
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   (24) 

where Z is the nuclear charge, e is the charge of an electron, |!(0)AX|
2
 and |!(0)BX|

2
 are 

the electron densities at the center of the nucleus of the atom of interest in substances AX 

and BX, and "#r2$ is the difference in mean-squared nuclear charge radius between the 

fractionating isotopes. This expression is approximate because it assumes a simplified 

model of the distribution of charge density in nuclei, that the nuclei are spherical (nuclei 

with odd numbers of neutrons and/or protons are aspherical) and that the electronic 

structure does not change as the nuclear size changes. The assumption of sphericity 

means that only the nuclear volume component of the field shift is considered, and 

potential shape effects are ignored. 

 Given these assumptions, however, it is clear that large nuclear field shift 

fractionations are most likely to occur between substances where the electron densities at 

the nucleus are very different, and where the difference in nuclear charge radius is large. 

Because the wavefunctions d- and f-orbital electrons (and most p-orbital electrons) do not 

overlap significantly with nuclei, variations in s-orbital electron population and structure 

control field shift fractionations. Based on Equation 24, and theoretical studies made so 

far, it is possible to list some qualitative rules of thumb about the chemical and physical 

properties that control field shift isotope fractionations: 

 1) Field shift isotope effects scale with nuclear charge radius, not with isotopic 

mass. Nuclear charge radii usually (but not always) increase with increasing neutron 

number, but tend to be smaller for nuclei with odd numbers of neutrons than one would 

expect from the radii of neighboring even-neutron number nuclei. For this reason, field 

shift fractionations will often generate a characteristic odd-even fractionation pattern 

(e.g., Nomura et al. 1996; Bigeleisen 1996). Not all elements show this pattern, however. 

For platinum, radii are almost perfectly linear for both odd and even numbered nuclei. In 

contrast, the 
52

Cr nucleus, with a "magic" number of 28 neutrons, is notably smaller than 

stable chromium isotopes with fewer or greater numbers of neutrons. 

 2) Changes in s-electron occupation and s-orbital shapes control field shift 

fractionation.  

 3) Species with more s-electrons, and more compact s-orbitals, will tend to attract 

smaller nuclei. Examples include Hg(0) vs. Hg (II) and Tl(I) vs. Tl(III) -- in each case the 

reduced form has two 6s electrons while the oxidized form has none, so Hg(0) and Tl(I) 

species preferentially incorporate small (neutron poor) isotopes. This pattern is likely for 

the 0 to +2 oxidation states of most elements in groups 1-12 of the periodic table, for the 

+1 to +3 oxidation states of group 13 elements, and for the +2 to +4 oxidation states of 

the group 14 elements. Field shift fractionation and mass-dependent fractionation will 
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often tend to reinforce each other for elements and species in this category, leading to 

larger observed fractionations. p-, d-, and f-electronic orbitals affect field shifts 

indirectly; more electrons in these orbitals, and more compact orbital structures, tend to 

push s-electrons away from the nucleus. So species with more p-, d-, and/or f-electrons 

will tend to attract larger nuclei. U(IV) vs. U(VI) is an example of this behavior, with the 

two valence 5f-electrons in U(IV) species leading to higher 
238

U/
235

U than in 5f-depleted 

U(VI) species. This pattern is likely to occur in oxidation states higher than +2 for 

elements in groups 3-11, lanthanides, and actinides, as well as for the –4 to +2 oxidation 

states of group 14 elements, the –3 to +3 oxidation states of group 15 elements, the –2 to 

+4 oxidation sates of group 16 elements, and the –1 to +5 oxidation states of group 17 

elements. In these systems, field shift effects and mass-dependent fractionation may tend 

to oppose each other and partially cancel. 

 4) Valence s-orbital electron densities vary much more widely in heavy (high-Z) 

elements than light (low-Z) elements. So field shift isotope fractionation effects will be 

much larger for elements with high atomic numbers (Knyazev and Myasoedov 2001; 

Schauble 2007). Isotopic variation in nuclear charge radii also varies a lot from one 

isotope pair to another, but it does not show a strong general trend with atomic number 

(Knyazev and Myasoedov 2001). It is not yet clear what the minimum atomic number 

needs to be for significant field shift effects to occur. 

 5) Field shift fractionation factors scale with T
–1

, whereas equilibrium mass-

dependent fractionations tend to scale as T
–2

 (Eq. 11). As temperature increases, field 

shift effects may overwhelm mass-dependent fractionation for some elements. 

 

Mass-independent fractionation signatures in heavy elements, versus light elements 

 In light elements (e.g., oxygen and sulfur), mass-independent fractionations 

(despite the terminology) ultimately follow from effects of mass differences on reaction 

rates and photochemical cross sections. In contrast, mass-independent fractionation 

effects in elements with high atomic numbers appear to be determined mainly by nuclear 

properties other than mass, including nuclear spin, volume, and shape. This can lead to 

some confusion, because mass-independent phenomena in heavy elements may or may 

not lead to observable departures from proportionality to isotopic mass differences. 

Illustrative examples can be found in the thallium and mercury isotope systems. Thallium 

isotope fractionation in nature is likely dominated by the field shift effect (Rehkämper et 

al. 2002; Schauble 2007; Nielsen et al. 2015), but there are only two stable thallium 

isotopes, 
203

Tl and 
205

Tl, making observation of mass-disproportionate fractionation 

impossible in natural samples and impractical in laboratory experiments. Among the four 

common even-numbered isotopes of mercury (
198

Hg, 
200

Hg, 
202

Hg, and 
204

Hg), isotope 

fractionations caused by field shift, magnetic, and mass-dependent isotope effects cannot 

be distinguished solely on the basis of apparent mass-fractionation relationships, because 

nuclear volume increases by an almost constant increment with each additional pair of 

neutrons and the magnetic isotope effect is limited to the odd-numbered isotopes 
199

Hg 

and 
201

Hg. 

 

Ab initio methods for calculating field shift fractionation factors 
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 Bigeleisen (1996) and Nomura et al. (1996) identified the nuclear field shift effect 

in uranium isotope fractionations based on the inverse relationship between 
238

U/
235

U and 

oxidation state, and the close correlation between the magnitude of fractionation in other 

uranium isotopes and nuclear charge radii variations inferred from optical spectra of 

uranium vapor. Because of the characteristic pattern of isotopic charge radii, which 

deviates from pattern of mass differences, they were able to draw conclusions without a 

quantitative, ab initio theoretical model of the species present in the experiments. Such 

charge radius pattern matching has been widely used to search for evidence of field shift 

isotope fractionations in laboratory experiments and natural samples (Fujii et al. 2009; 

Fujii et al. 2006a,b), and it has been useful for ruling out the field shift effect as the main 

cause of mass-independent signatures in mercury (e.g., Blum et al. 2014). However, it is 

not well suited to predict how large field shift effects will be in previously unstudied 

reactions and isotope systems. The ability to make forward models is important in these 

situations, and may also be necessary in systems where processes that mimic field shift 

fractionation patterns might be active, such as during nucleosynthesis. Reasonably 

accurate compilations of nuclear charge radii for almost all stable and long-lived 

radioactive nuclei are available in the literature (Fricke and Heilig 2004; Angeli and 

Marinova 2013.; Nadjakov et al. 1994 and updates), so the main goal of theoretical 

models is to determine electron densities in the species of interest. 

 Accurate calculations of electron densities bound to high atomic number nuclei 

must take account of relativity effects. This can be understood by noting that the kinetic 

energy of a loosely bound s-orbital electron, when it is momentarily near the center of a 

highly charged nucleus, will be of the same order of magnitude as its rest mass energy. 

Even the average kinetic energies of inner-shell 1s-orbital electrons are ~100 keV (vs. 

511 keV rest mass energy) in elements such as Hg, Tl and U. That implies a velocity that 

is a significant fraction of the speed of light. For this reason, most ab initio studies of 

field shift effects to date have been based on the Dirac equation, a relativistic counterpart 

to the more familiar Schrödinger equation. 

 Some early theoretical studies of field shift fractionation are based on atomic and 

ionic models of electronic structure (Knyazev and Myasoedov 2001; Abe et al. 2008a). 

These calculations are easily performed on modern personal computers, but they assume 

a purely ionic bonding environment. More recently, Dirac-Fock and related model 

chemistries have been used to directly model molecules (e.g., Schauble 2007; Abe et al. 

2008b, 2010; Wiederhold et al. 2010; Fujii et al. 2010). Comparisons to atomic spectra 

and laboratory measurements indicate that such models are usefully accurate (Schauble 

2007; Wiederhold et al. 2010). The basic procedure for constructing a relativistic 

electronic structure model for calculating field shift fractionation is similar to the initial 

steps in creating a vibrational model for predicting mass-dependent fractionation, which 

was outlined in the preceding sections: first an initial structure is selected, and an 

electronic structure calculation is used to estimate the static energy of the structure; this 

is often followed up by performing a structural optimization. Vibrational frequencies 

need not be calculated -- if mass-dependent fractionation factors are desired it is usually 

easier to construct a separate model based on non-relativistic theory, such as 

conventional DFT. The energy associated with isotope substitution can either be 

determined using an expression like Equation (24), or (even better) directly by 

manipulating the size of the nucleus in the first-principles model. Much like Hartree-

Fock theory, Dirac-Fock theory has been extended to improve model accuracy by 

considering electron correlation effects and excited electronic states (see Wiederhold et 
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al. 2010 and Nemoto et al. 2015 for comparisons of model results at various levels of 

theory). These high-accuracy calculations are much more demanding of computation 

time and memory, however. 

 Although theoretical studies based on ab initio relativistic electronic structure 

models have shown good agreement with measurements, the calculations are notably 

more complex, memory-intensive, and slow than typical non-relativistic methods. As a 

result, only fairly small molecules (no more than ~20 non-hydrogen atoms) can be 

modeled easily. Solid and liquid phases must be approximated using small clusters, 

which is likely to increase model uncertainties. It is difficult to confidently formulate a 

model of substances with long-range bonding interactions, such as metals or strongly 

solvated aqueous species, within these constraints. Several different ways around this 

limitation have been proposed. The first takes advantage of strong correlations between 

field shift effects in mercury compounds and the effective ionic charges of mercury 

atoms in those structures. This makes it possible to interpolate fractionations involving 

complex materials, such as liquid mercury, based on effective ionic charges computed 

with simpler electronic structure models (Wiederhold et al. 2010; Ghosh et al. 2013). 

This method may be best suited for group 1, 2 and 12 elements, where the field shift 

effect is dominated by a single valence s orbital. The second method, introduced by 

Nemoto et al. (2015), involves the use of a simplified relativistic modeling approach (the 

Douglas-Kroll-Hess method) that accurately reproduces variations in electron density 

near high atomic number nuclei with an order of magnitude less computational effort. 

This raises the possibility of directly modeling larger, more complex molecules while 

retaining enough accuracy to be useful. The third method, proposed by Schauble (2013) 

uses fully relativistic Dirac-Fock models (including some electron correlation effects) of 

simple molecules to calibrate a corresponding set of DFT models that are built using 

Projector Augmented Wave (PAW) data sets (Blöchl 1994). PAW is closely related to 

the pseudopotential methods described earlier in this chapter, and is also typically used in 

conjunction with plane-wave basis sets and periodic boundary conditions. Roughly the 

same computational effort is required for PAW methods as for standard pseudopotential-

based DFT. But PAW has the advantage that information about the structure of core 

electronic orbitals is preserved, so that it is possible to calculate the influence of different 

chemical bonding environments on electron densities at the nucleus with reasonable 

accuracy (e.g., Zwanziger 2009). Both PAW and pseudopotential basis sets can be 

constructed using a partial correction for relativistic effects near the nucleus. Like the 

simplified relativistic approach proposed by Nemoto et al. (2015), the calibrated PAW 

method can be applied to larger, more complex materials and molecules, and it can even 

be applied to metals (such as metallic mercury) and semi-conducting materials where 

long-range bonding interactions are important. However, the PAW method probably 

loses some accuracy due to its dependence on a limited calibration set of small 

molecules. 

 

Isomer shifts from Mössbauer spectroscopy 

 A final method of calculating nuclear field shift fractionations, suggested 

originally by Knyazev and Myasoedov (2001), uses isomer shifts measured with 

Mössbauer spectroscopy to determine changes in electron density from one species to 

another. Isomer shifts and field shifts arise from the same interaction between nuclear 

charge and electron density, with the main difference being that in Mössbauer 
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spectroscopy the nuclear charge radius changes spontaneously as the Mössbauer nucleus 

is excited and then decays. In terms of data processing, the isomer shift is distinct from 

the second-order Doppler shift and NRIXS vibrational spectroscopy -- it is typically one 

of the fundamental parameters measured in a standard Mössbauer experiment (along with 

quadrupole and magnetic splitting), and does not require measurements at multiple 

temperatures or a synchotron X-ray source.  Like second-order Doppler shift and NRIXS 

measurements, isomer shifts can be measured in complex materials, selectively and 

directly probing the Mössbauer isotope's chemical environment. Knyazev and 

Myasoedov (2001) showed a promising correlation between calculated electron density 

variations in vapor-phase neptunium ions with varying charge and measured 
237

Np-

isomer shifts in crystals where Np has the same formal oxidation states. Schauble (2013) 

went a step farther by comparing 
119

Sn-isomer shifts with electron densities calculated in 

the same substances using the DFT-PAW approach. The excellent correlation suggests 

that Mössbauer spectroscopy will be a powerful tool to predict field shift isotope 

fractionation in elements with Mössbauer-active isotopes. 

 

CONCLUSIONS 

 While the theory of stable isotope fractionation has been developed in the middle 

of the twentieth century, the last decade was marked by the growing use of first-

principles calculations to apply the theory to non-traditional stable isotopes. The aim of 

these calculations was first to determine the isotope fractionation factors when the 

considered phases are in thermodynamic equilibrium in order to identify the factors 

controlling these equilibrium fractionations. Quantitatively, the theoretical studies 

mentioned in this chapter but also the others dealing with the traditional stable isotopes 

show that calculated fractionation factors are reliable enough to be directly compared to 

experimental values and to values derived from spectroscopic techniques such as 

Mössbauer and NRIXS. To reach such level of accuracy, high-quality calculations are 

necessary (the quality of the model can be tested by comparing the calculated structural, 

electronic and vibrational properties with available experimental data) and most 

importantly the considered phases must be treated in a consistent manner. In stable 

isotope geochemistry, first-principles molecular modeling now represents numerical 

experiments that fully complement laboratory experiments for contributing to the 

interpretation of isotopic data collected on natural samples. 

 The advances in computation power enable to model systems of increasing 

complexity. Among the future directions of research that deserve special efforts, we can 

cite the investigation of isotopic fractionations associated with complex crystal chemical 

processes (e.g., solid solutions, chemical impurities, crystal defects, adsorption 

complexes), and the exploration of the mechanisms producing mass-independent 

fractionation, not to mention kinetic fractionation.!
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