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Abstract—Decision-making problems can be mod-
eled as combinatorial optimization problems with Con-
straint Programming formalisms such as Constrained
Optimization Problems. However, few Constraint Pro-
gramming formalisms can deal with both optimization
and uncertainty at the same time, and none of them are
convenient to model problems we tackle in this paper.
Here, we propose a way to deal with combinatorial
optimization problems under uncertainty within the
classical Constrained Optimization Problems formal-
ism by injecting the Rank Dependent Utility from
decision theory. We also propose a proof of concept of
our method to show it is implementable and can solve
concrete decision-making problems using a regular con-
straint solver, and propose a bot that won the partially
observable track of the 2018 µRTS AI competition.
Our result shows it is possible to handle uncertainty
with regular Constraint Programming solvers, without
having to define a new formalism neither to develop
dedicated solvers. This brings new perspective to tackle
uncertainty in Constraint Programming.

Index Terms—Combinatorial optimization, Uncer-
tainty, Decision-making problems, Constraint pro-
gramming, Decision theory, Real-Time Strategy games.

I. Introduction
Decision-making problems can be modeled as combina-

torial optimization problems through a given formalism,
and then can be solved with appropriated tools, i.e.,
solvers. Combinatorial optimization problems are very
frequent problems in domains such as logistics, finance,
supply chain, planning, scheduling and in industries such
as pharmaceutical industry, transportation, manufactur-
ing and automotive industry [1].
Strategy games propose a rich environment to study

decision-making problems, allowing researchers to develop
new algorithmic approaches to model and solve such
problems. This is particularly true for Real-Time Strategy
games, or RTS games, offering a dynamic environment
under a fog of war forbidding players to have a complete
information about the game state. Such environments con-
tain many challenging combinatorial optimization prob-
lems.
This research was supported by the Pays de la Loire region through
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Combinatorial optimization problems can be expressed
through different formalisms. One convenient formalism
used in AI is Constraint Satisfaction Problems (CSP)
and Constrained Optimization Problems (COP). The first
formalism deals with satisfaction problems, i.e., problems
where all solutions have the same quality. In this paper, a
solution is an assignment of each variable of the problem
such that all constraints are satisfied. The second formal-
ism COP deals with optimization problems, i.e., problems
where there is a criteria to rank solutions.
There exist many extensions of the CSP formalisms

dealing with uncertainty, but very few of them have
been extended to handle optimization problems, and when
they did, they force to declare additional parameters that
might be undesirable and inconvenient while modeling a
problem.
This paper proposes a way to deal with a specific

kind of decision-making problems through combinatorial
optimization under uncertainty within the classical COP
formalism using the Rank Dependent Utility from decision
theory. We exhibit a proof of concept with a simple bot
playing to the µRTS game while solving a decision-making
problem of choosing the right units to produce. Our bot
has won the partially observable track of the 2018 µRTS
AI competition.
This paper is organized as follows: We first motivate

why we focus on single-stage decision-making problem and
why uncertainty is exclusively in the objective function
in Section II. Then, we introduce basic notions about
Constraint Programming and Decision Theory in Sec-
tion III. In Section IV, we expose our main contribution:
a way to handle uncertainty within the classical COP
formalism using the Rank Dependent Utility and finally
give a proof of concept in Section V by modeling with
a COP a decision-making problem under uncertainty in
µRTS. Related works can be found in Section VI. We
conclude in Section VII.

II. Motivation
We introduce in this section the type of problems we

focus on, and motivate why such problems worth to be
specifically tackled.



In this paper, we study single-stage decision-making
problem an agent must solve under uncertainty, where
uncertainty lies on the value of some stochastic variables
controlled by a third-party agent (such as the environment
where our agent evolves). Such stochastic values only have
an impact on the objective function the agent tries to
maximize or minimize, and not on constraints it must
satisfy.

We think important to motivate the two following
points: why single-stage decision-making problems only,
and why only considering uncertainty on the objective
function rather than on both the objective function and
the constraints.

Studying single-stage decision-making problems means
that a decision must be made before revealing stochastic
values so far unknown. Once these values are known, the
agent can only observe the consequences of its decision
without having the possibility to sharpen or fix it like
in multi-stage decision-making processes. Although multi-
stage decision-making problems are interesting and would
deserve a proper study, we think single-stage decision-
making problems are still relevant and capture all one-shot
decision-making problems that must be made recurrently.
Concrete examples can be 1. a factory manager deciding
about the production of the month taking into account
the stock (known) and client orders (unknown), 2. blind
auctions where one aims to win some auctions taking into
account the available money (known) and other partici-
pants bid (unknown) or 3. air traffic management where
one must take into account the number of waiting planes
for taking off and landing (known) and future demands
(unknown). In his PhD thesis [2], Éric Piette shows that
decision-making problems in strategy games can be handle
in practice by single-stage decision-making problems only.
Finally, another reason to study single-stage decision-
making problems is that some environments do not allow
multi-stage problems: to do multi-stage decision-making,
some stochastic variables must be revealed at each stage.
However, it is easy to find natural problems where stochas-
tic variables are never completely revealed. This is the case
in RTS games for instance, where the fog of war is never
completely dissipated. The problem we tackle in the paper
belongs to this category.

Considering uncertainty having only an impact on a
solution quality (the objective function) rather than its
possibilities (the constraints) makes sense for the same rea-
sons as above: There are many concrete decision-making
problems where one knows what is possible and what is
not, but does not known what the quality of its decisions
will be. In other words, the scope of our possible decisions
is known (our constraints) but we live in an uncertain,
dynamic environment where events out of our control can
impact not the applicability of our decisions but their
quality. Examples cited in the previous paragraph are still
relevant here: whatever our client orders, we can make a
production plan of the month regarding our available stock

only; we can bid to an auction regarding only our available
money, but we can lose because of better bids; and we can
plan air traffic knowing the current situation, but we can
be overwhelmed by a group of arriving planes if we made
bad runway assignments.

III. Preliminaries
A. Constraint Programming
The basic idea behind Constraint Programming is to

deal with combinatorial problems by splitting them up
into two distinct parts: the first part is modeling your
problem via one Constraint Programming formalism. This
is usually done by a human being and this task must
be ideally easy and intuitive. The second part consists in
finding one or several solutions based on your model. This
is done by a solver, i.e., a program running without any
human interventions.
The two main formalisms in Constraint Programing are

Constraint Satisfaction Problems (CSP) and Constrained
Optimization Problems (COP). The difference between a
CSP and a COP is simple:
A CSP models a satisfaction problem, i.e., a problem

where all solutions are equivalent; the goal is then to just
find one of them, if any. For instance: finding a solution of
a Sudoku grid. Good grids lead to a unique solution, but
let’s consider several solutions are possible for a given grid.
Then, finding one solution is sufficient, and no solutions
seem better than another one. Sometimes, we may also be
interested in finding all solutions of a problem instance.
A COP models an optimization problem, where some

solutions are better than others. For instance: Several
paths may exist from home to workplace, but one of them
is the shortest.
Formally, a CSP is defined by a tuple (V , D, C) such

that:
• V is a set of variables,
• D is a domain, i.e., a set of values for variables in V ,
• C is a set of constraints.
A constraint over k variables can be seen as a function

from Dk to {true, false} to make explicit what combina-
tions of values among its k variables are allowed or not.
Notice that D should formally be the set of the domain

for each variable in V , thus a set of sets of values. However,
it is common to define the same set of values for all
variables of V , thus one can simplify D to be the set of
values each variable in V can take.
A CSP models a problem, and a problem instance is

expressed by a CSP formula, i.e., a set of constraints
applied on variables in V where all constraints are linked
by a logical and. The goal is then to attribute a value in
D for each variable in V such that all constraints in C are
satisfied, i.e., outputs true.

A COP is defined by a tuple (V , D, C, f) where V ,
D and C represent the same sets as a CSP, and f is
an objective function applied on variables in V . The goal



is first to find a solution, i.e., a value of each variable
such that all constraints are satisfied, like for CSP, but
moreover to find the solution minimizing or maximizing
the objective function f among all possible solutions.

CSP and COP deal with certain information only.
There exist many extensions of the CSP formalisms deal-
ing with uncertainty: Mixed CSP, Probabilistic CSP,
Stochastic CSP, etc. We invite the reader to look at
surveys [3] and [4] on this topic. However, few are conve-
nient to model a decision-making problem where one does
know what his or her possible choices are (i.e., variables,
domains and constraints are known and fixed), but a third-
party agent (a person, an environment, etc) fixes the values
of some specific variables. These values are unknown at
the moment we must make a decision and impact the value
output by the objective function. Stochastic CSP [5] is the
most well adapted formalism to model such problems, but
with the huge drawback that constraints are considered to
be chance-constraints, i.e., constraints are considered true
if their probability to be true reaches a given threshold.
The main problem with such a formalism is that this
threshold must be provided by the human being modeling
the problem, and it is often unclear in practice how to
fix a good threshold value for a given problem. This does
not follow the Constraint Programming philosophy where
problem models must be easy to produce by a human
being, without any arbitrary choices.

Moreover, while COP are a trivial extension of CSP
with an objective function, it is absolutely not clear
how to extend constraint satisfaction formalisms under
uncertainty to deal with optimization problems. Indeed, to
each solution of a problem can correspond several possible
objective function values, due to uncertainty on stochastic
variables, and such values depend on the state of an
environment determining stochastic variable values. How
is it then possible to discriminate solutions between them?

To the best of our knowledge, no Constraint Program-
ming formalisms without chance-constraints able to han-
dle optimization problems under uncertainty have ever
been proposed. We propose in Section IV a way to deal
with uncertainty within the classical COP formalism,
allowing us to solve such problem models with classical
solvers.

B. Decision Theory
We consider the set D of decisions an agent can take.

The goal is to define a preference relation �D on this
set. Preferring the decision d1 over d2 means to prefer
d1 consequences over d2 ones, thus we can also consider
a space X of consequences, and study a preference re-
lation �X on this space in such a way that we have
d1 �D d2 ⇐⇒ x1 �X x2 where xi is the consequence of
the decision di. However, we do not have this equivalence
anymore when uncertainty comes into play, because we
are not sure anymore the decision d will lead to the
consequence x.

In uncertain environments, we consider the set S of pos-
sible states of the environment. We consider consequences
to be sets of states after making a decision. Thus, we have
X = P(S).
Utility-based theories consider P a probability distribu-

tion over X , i.e., a probability distribution over sets of
possible states in S. Let pd be the probability following
P of obtaining the consequence xd ∈ X after making the
decision d.
We can then introduce the notion of lottery. A lottery

l is a tuple (x1, p1; ...;xn, pn) where xi is a consequence
and pi its associated probability, such that

∑n
i=1 pi = 1.

A lottery is thus a sum-up of a decision in the sense it
represents the list of possible consequences of a decision
with their associated probabilities. Let L be the set of
lotteries. We can then define a preference relation �L on
L. How we define �L exactly depends on the decision
theory, but the idea is to bring back the equivalence
d1 �D d2 ⇐⇒ l1 �L l2.
There exist different works on decision theory to estab-

lish this equivalence. We have thus the notion of Expected
Utility (EU) defined by [6] in the game theory framework.
However EU has a limited power of expression since one
can quickly derivate paradoxes such as the Allais Paradox
violating the independence axiom, telling that if someone
has no preference between decisions A and B, then he or
she must still not have no the preference if we mix A and
B with some decision C.
Choquet Expected Utility is a decision theory based on

capacities, a notion generalizing probabilities. A special
case of Choquet Expected Utility restricted to probabil-
ity deformation function is the Rank Dependent Utility
(RDU) introduced by [7], [8]. RDU has more power of
expression than EU since it can explain the Allais Paradox.
Unlike EU, RDU allow to model attraction or repulsion to
risks through a probability deformation function. This can
help to modify on-the-fly the behavior of an agent taking
a decision regarding its environment.
The Rank Dependent Utility is then a way to compute
�L, and then to evaluate and compare lotteries such that
l1 �L l2 ⇐⇒ RDU(l1) ≥ RDU(l2). RDU applied to the
lottery l is the function defined by Equation 1.
In Equation 1, u(x) is a utility function over the conse-
quence space, intuitively giving a score to consequences,
and φ(p) an increasing function from [0, 1] to [0, 1] and
interpreted as a probability deformation function. The
function φ(p) can be anything, as soon as it is monotone
and both equalities φ(0) = 0 and φ(1) = 1 hold. Conse-
quences in the lottery l are ordered such that ∀xi, xj with
i < j, we have u(xi) ≤ u(xj).
This probability deformation function φ allows to model

risk-aversion since a concave φ function defines an attrac-
tion to risks and a convex φ function a repulsion to risks.
Intuitively, if we have φ(p) ≤ p for all p, then the agent
taking a decision will underestimate gains probabilities
and then will show a kind of pessimism about risks. We



RDU(l) = u(x1) +
(
u(x2)− u(x1)

)
∗ φ

(
n∑
i=2

pi

)
+
(
u(x3)− u(x2)

)
∗ φ

(
n∑
i=3

pi

)
+ . . .+

(
u(xn)− u(xn−1)

)
∗ φ(pn) (1)

will have the opposite behavior if we have φ(p) ≥ p for all
p. Notice that sigmoid functions, which are neither con-
cave nor convex, are also possible. In our experiments in
Section V, we use a sigmoid function rather than a convex
function to model pessimism, to decrease probabilities of
good outcomes and increase probabilities of unfavorable
ones.
Remember that consequences xi in l are ordered accord-

ing to the value of u(xi), such that consequences with a
small score outputed by the utility function u are placed
at the beginning of the lottery l. The intuition behind
Equation 1 is then the following: With probability p = 1,
by making the decision d, you are sure to have at least
the score of the worst consequence x1, i.e., u(x1). Then,
with (deformed) probability φ(p2 + . . .+pn), you can have
the score u(x1) plus a gain equals to

(
u(x2)−u(x1)

)
. With

probability φ(p3+. . .+pn), you can have an additional gain
equals to

(
u(x3)−u(x2)

)
, and so on until having an addi-

tional gain equals to
(
u(xn) − u(xn−1)

)
with probability

φ(pn). The obtained value depends on the order, or rank,
of the value of the utility function applied to consequences,
justifying the name “Rank Dependent Utility”.
However, defining a utility function u over the conse-

quence space it not easy, even for numerical-only conse-
quences. This space is completely dependent on the prob-
lem and even on the problem instance so it is not realistic
to propose general-purpose utility functions that could
work and certify a behavior on any kind of decision-making
problem. This is however possible with the probability
deformation function φ since it is always a function from
[0, 1] to [0, 1].
Our decision-making problems being modeled as opti-

mization problems, a consequence x of a decision d is the
value of our objective function. Therefore, the relation �X
is merely the relation ≥ over real numbers. This implies
that u is a function from R to R. In this work, we consider
u to be the identity function id(x) = x and will use generic
probability deformation functions φ to change an agent’s
behavior regarding risks.

IV. Main contribution
The main difficulty to tackle a combinatorial optimiza-

tion problem under uncertainty via Constraint Program-
ming is the lack of reliable criterion to attribute a quality
to each possible solution. How do you rank solutions if
they lead to different objective function values regarding
possible values of stochastic variables?

The main contribution of this paper is proposing to
inject the Rank Dependent Utility from decision theory
into the classical COP formalism to solve optimization
problems under uncertainty.

We consider decision-making problem where one knows
what our variables are, what values they can take (i.e., we
know the domain of each variable), what values combina-
tions are possible or not (i.e., we know our constraints),
but where we have an objective function to optimize impli-
cating stochastic variables for which values are unknown
at the moment we must take a decision, such that only a
third-party (the environment, an independent agent, etc)
has the power to set the value of these variables.
This describes in fact most common decision-making

situations: when we have to take a decision, we often
miss some pieces of information (we cannot have a perfect
knowledge about everything) that still have an impact on
the quality of our decision. Should I invest my money in
stocks or bitcoins? We do not know if the price will climb
up or fall down, but we know however what we can or
cannot do (how much money can we invest for instance).
The quality of our decision will be only revealed once
stochastic variables values will be known.

A. Injecting RDU into COP
We recall we are interested in modeling uncertainty in

decision-making problems. These problems without uncer-
tainty can be modeled through the COP formalism. For
many cases, uncertainty in decision-making problems does
not affect what you can or cannot do but on external un-
known elements that have a direct impact on the decision
quality.
An easy way to model such decision-making problems

is to model it through the regular COP formalism, by
defining 1. a set of decision variables, i.e., regular variables
which the solver has the control on, 2. a set of stochastic
variables, representing all unknown pieces of information,
3. a domain for both decision and stochastic variables, 4. a
probability distribution for the domain of each stochastic
variable, 5. a set of constraints upon decision variables and
6. an objective function mixing decision and stochastic
variables. If probability distributions of stochastic vari-
ables are unknown, we can approximate them with statis-
tics. A convenient point with games is that we can often
simulate their environment or analyze replays and then
collect those statistics fairly easily.
Like Equation 1 suggests, we need to know all conse-

quences of a decision to compute RDU. This is of course
intractable since we have |D||S| consequences for each
decision, with |S| the number of stochastic variables and
|D| the cardinality of their domain. A convenient way
to approximate RDU is to do Monte Carlo sampling
of stochastic variable values, following their probability
distribution.



We can now apply our objective function to compute
the RDU and get a usable metric under uncertainty, which
allows us to rank solutions and guide our decisions.

Let’s consider a problem modeled by a COP with deci-
sion variables vi, stochastic variables sj and an objective
function f . Like described in Subsection III-B, conse-
quences xi of a decision d corresponds to values output
by f . In the context of a COP, a decision d is a vector
of values assigned to each decision variables vi. Using
Algorithm 1, we can compute the relation �D among
decisions by approximating the RDU of their respective
lottery with Monte Carlo samplings.

In our experiments next section, we draw k = 50
samples. In Algorithm 1, k being a parameter and not
an input, we do not take it into count to compute the
algorithm complexity. The complexity of Algorithm 1 is
then in Θ(f), depending on the complexity of the objective
function f only. Sampling m stochastic variables is also
outside the scope of the complexity of Algorithm 1 since
stochastic variables are not among its inputs.

V. Proof of concept
We give a proof of concept of our contribution to

show it is implementable and use it to solve a decision-
making problem under uncertainty in a RTS game. We
have included this decision-making solving system into a
bot playing to the game µRTS. Our bot, named POAd-
aptive, has won the partially observable track of the
2018 µRTS AI competition organized within the CIG
2018 conference. The code of our bot, our experimental
setup and our experimental results can be found in the
following github repository: github.com/richoux/microrts-
uncertainty/releases/tag/v1.0.

We will consider the following problem: RTS game pro-
pose to train units which often follow a rock-paper-scissors
scheme. Because of the fog of war, we do not perfectly
know the enemy army composition and we must infer
his or her strategy from some partial observations. We
must constantly take a production decision answering this
question: “What next units should I produce to counter
my enemy strategy?”

A. µRTS
We decided to use µRTS has an experimental envi-

ronment. µRTS is an open-source, minimalist real-time
strategy game developed by Santiago Ontañón for research
purpose [9].

The game is made upon classical RTS mechanisms:
there are resources (or money) to gather (green squares
in Figure 1). This money allow us to build buildings and
train units. In µRTS, there are two kind of buildings:
bases (white squares) where money is stocked and barracks
(grey squares) where army units are produced. Four units
are available in µRTS: workers (small grey circles), light
units (orange circles, not appearing in Figure 1), ranged
units (blue circles) and heavy units (large yellow circles).

Figure 1. A game frame of µRTS on a 8x8 map. Resources are in
green, squares are buildings and round items are units.

Workers are weak against all units but are the only
ones able to gather resources and build buildings. Light,
ranged and heavy units are following a rock-paper-scissors
scheme, in the sense that heavy units are strong against
light units, light units are strong against range units and
range units are strong against heavy units.
To win, a player must destroy all enemy units and build-

ings. If nobody reaches that goal before a fixed number of
frames, the game ends in a draw.

µRTS supports both complete and partially observable
games. In order to test our method solving decision-
making problem under uncertainty, we used µRTS exclu-
sively in partially observable mode.

B. Deciding about unit production
We propose here a model of our production prob-

lem through the regular COP formalism. Let’s consider
{H,L,R} the heavy, light and ranged type of units, re-
spectively. We have:
• Two kind of decision variables: planX , with X ∈
{H,L,R}, representing the total number of units of
type X we should have (i.e., the total number of units
we currently possess plus the number of units we plan
to produce), and assignXY , ∀X,Y ∈ {H,L,R}, the
number of our units of type X we plan to use to
counter enemy units of type Y .

• One kind of stochastic variables: enemyUnitsX , with
X ∈ {H,L,R}, representing the total number of units
of type X the enemy currently possesses.

• Domains for each variable are natural numbers from
0 to a threshold. We used 20 as a threshold in our
experiments, which is sufficient for small maps in
µRTS.

• Two kind of constraints:
assignHL + assignHR + assignHH = planH
assignRL + assignRR + assignRH = planR
assignLL + assignLR + assignLH = planL

3(planH − ourUnitsH) + 2(planR − ourUnitsR) +

https://github.com/richoux/microrts-uncertainty/releases/tag/v1.0
https://github.com/richoux/microrts-uncertainty/releases/tag/v1.0


Algorithm 1: Estimating a preference on the decision d
input : A decision d, i.e., a vector in Dn, with D the domain of decision variables v1, . . . , vn
output: A preference on d, i.e., a real value

1 Initialize an empty vector x of size k, with k a parameter for the number of wanted samples;
2 for i = 1 to k do
3 Sample values for stochastic variables s1, . . . , sm according to their probability distribution;

// f is our objective function, taking both decision and stochastic variables
4 x[i]← f(v1, . . . , vn, s1, . . . , sm);
5 end
6 Sort(x);

// Considering each sample has a probability 1
k, computes RDU

7 RDU ← x[1] + (x[2]− x[1]) ∗ φ(k−1
k ) + (x[3]− x[2]) ∗ φ(k−2

k ) + . . .+ (x[k]− x[k − 1]) ∗ φ( 1
k );

8 return RDU

2(planL − ourUnitsL) ≤ stockResource

The first three constraints create the bridge between
the total number of units of type X we aim to have
and the number of units of type X we consider we
need to counter an unknown number of enemy units
of type Y . The last constraint is the resource balance
constraint: given ourUnitsX the number of units of
type X we currently have, (planX − ourUnitsX)
corresponds to the number of units X we have to
produce. A heavy unit costs 3 resource points, a light
and ranged units only 2. The parameter stockRe-
sources corresponds to the current resource points we
possess at the moment of we must decide about our
production.

• The objective function max targetH + targetL +
targetR with

targetX = min{1, (HX ∗ assignHX
+RX ∗ assignRX
+LX ∗ assignLX
−enemyUnitsX)}

where X ∈ {H,L,R} and coefficient of AB-type (i.e.,
HH, HL, . . ., RR) are constants representing how many
units of type A we need to counter a unit of type B.
The min function for targetX is to avoid a mere sum
of the expressions HX ∗ assignHX + RX ∗ assignRX +
LX ∗ assignLX − enemyUnitsX for the three possible
X ∈ {H,L,R}, otherwise it would lead to simply produce
the unit with the highest AB-type coefficient. We take
the minimum between these expressions and the value 1
to allow to produce up to one more unit than necessary.

Our AB-type coefficients have been estimated by run-
ning 200 games of 10 units of A against 10 units of B,
for each combination of AB ∈ {H,L,R}2. We then took
the ratio of the total numbers of surviving units over 200
simulations. For instance, after 200 games of type “10
heavy versus 10 light”, we had 1284 surviving heavy units
and 480 surviving light units. Then our parameter HL is

equals to 480
1284 = 0.3738 (i.e., we need 0.3738 heavy unit to

deal against 1 light unit) and LH is equals to 1284
480 = 2.675.

Finally, statistics on enemyUnitsX stochastic variables
have been made by analyzing 800 replays of µRTS games
from 2017 competitions. For each frame and each unit
type, we counted these units occurrence. These statistics
are sharpen by observations while playing a game: if we
observe for instance 3 enemy light units at the same mo-
ment, we nullify probabilities that the enemy has 0, 1 or 2
light units only, and we normalize remaining probabilities.

C. Experiments
Few µRTS bots have been developed for partially ob-

servable games, and most of them are in fact scripted
bots. We have taken a basic rush bot and only modify
its production behavior, giving our bot POAdaptive.
We did not modify its initial build order (produce no
additional workers, start immediately a barracks with our
unique worker and then gather resources until the end of
the game). We only add a quick hit-and-run behavior for
our ranged units and a light seek-and-destroy behavior.
Our bot adapts its production in function of the RDU

preference computed according to the objective function.
We give our pure COP model to the GHOST solver [10],
a solver dealing with classical CSP or COP models and
unable to handle uncertainty directly. This shows that
our way to inject decision theory into the classical COP
formalism is sufficient to handle uncertainty and do not
required to develop a new formalism neither dedicated
solvers. We give to the solver 100 milliseconds per frame
as computation budget to solve our COP problem, to be
consistent with µRTS competitions rules.
With our bot POAdaptive, we won the partially ob-

servable track of the 2018 µRTS AI competition, over 7
competitors. We did not tweak our bot before the com-
petition to be efficient on the competition maps neither
against specific bots (such as 2017 competitors). This show
that our decision-making solving is efficient enough to beat
scripted rush bots as well as MCTS-based and Hierarchical
Task Network-based bots. Figure 2 shows final scores of



the 2018 µRTS AI competition, over 720 games for each
bot within a round-robin tournament over 12 maps (4
of them were kept secret before the beginning of the
competition). The cumulative score is the sum of the score
result for each game, i.e., 1 for a win, 0.5 for a tie and
0 for a loss. The scores are normalized by dividing the
cumulative scores by the number of games per bots, i.e.,
720.

Figure 2. Final normalized scores of the partially observable track
of the 2018 µRTS AI competition.

To evaluate our decision-making process, we run 100
games (50 starting at the North-East position, 50 starting
at the South-West position) between the second best bot
of the competition, POLightRush bot, and four methods:
POAdaptive using RDU with a pessimistic φ function,
POAdaptive using RDU with an optimistic φ function,
POAdaptive using Expected Utility instead of RDU
(this can be easily done by using RDU with φ as the
identity function), and finally a baseline bot having exactly
the same behavior as POAdaptive except for the unit
production decision, taken randomly among the three
military units. The pessimistic function we use is the
logistic function φ(p) = 1

1+exp(−λ∗(2∗p−shift)) where p
is the probability and with parameters λ = 10 and
shift = 1.3. The optimistic function is the logit function
φ(p) = 1 + log( p

2−p )
λ with λ = 10.

We run experiments on three small basic maps 8x8,
12x12 and 16x16 as well as on three large basic maps
24x24, 32x32 and 64x64. Results on small maps are
shown in Table I, and normalized scores are illustrated
by Figure 3. We choose to show results on small maps
only since they are more representative of our decision-
making system performances. Indeed on larger maps,
POAdaptive has too few occasions to meet enemy units
since no scouting behavior has been written (we know by
experience that coding a proper scouting behavior would
not be so trivial). Thus, behavior of these four methods
tends to be the same. POAdaptive’s adaptation skills
give it a slight advantage and then slight better scores than
the baseline method. On these larger maps, RDU with the
optimistic φ gives the best results (this optimistic version
was besides used for the CIG 2018 competition), slightly

better than the pessimistic version. In average on these
maps, normalized scores of both RDU versions is around
0.8.
On small maps, Table I and Figure 3 show that both

RDU versions outperformed the EU version, itself outper-
forming our baseline. Unlike for large maps, the pessimistic
version gives slightly better results than the optimistic
version. This can be explained by the fact that small maps
do not give you a lot of time to react when you spot
an unfavorable enemy army composition. Being already
prepare to the worst helps in that case.

Map size
8x8 12x12 16x16

Baseline
Win 14 38 50
Tie 0 2 12
Loss 86 60 38
Score 14 39 56

Expected utility
Win 27 35 52
Tie 2 6 9
Loss 71 59 39
Score 28 38 56.5

RDU with optimistic φ

Win 23 44 55
Tie 10 7 13
Loss 67 49 32
Score 28 47.5 61.5

RDU with pessimistic φ

Win 26 50 57
Tie 6 5 5
Loss 68 45 38
Score 29 52.5 59.5

Table I
Results of 100 games played against LightRush bot on three
maps. In bold, results with the highest score for each map.

Figure 3. Normalized sum of scores of Table I for each method.

VI. Related works
Uncertainty has been intensively studied for the last

30 years in fields dealing with combinatorial optimization
such as Operational Research [11], but significantly less
works have been done for optimization under uncertainty
in Constraint Programming [4]. To the best of our knowl-
edge, all methods to solve optimization problems through
Stochastic Constraint Programming use a formalism con-
sidering chance-constraints, usually handled by scenario-
based methods. [12] is a recent example where the authors
inject a probabilistic inference engine from the graphical
model community into a classical solver to solve Stochastic
CSP instances, thus dealing with chance-constraints.
There are also few works in RTS Game AI using Con-

straint Programming techniques, in particular through



Constraint Satisfaction/Optimization Problems, and few
of them dealing with uncertainty. However, we can cite
works of [13]–[15] where authors use Stochastic CSP to
make a bot participating to the General Game Playing
competition. Their bot has won the 2016 competition.

Although the following papers do not deal with uncer-
tainty, they all focus on solving optimization problems in
RTS games, in particular StarCraft. Thus [16] propose
to model with COP the optimal building placement to
make a wall at a base entrance in order to make easier
its defense. [10], [17] propose a CSP and COP solver,
GHOST, that we used for our experiments. Their Con-
straint Programming solver as been designed to output
good quality solution within some tenth of milliseconds,
make it usable in RTS games.

Beyond Constraint Programming but close enough, [18]
use a branch and bound algorithms to optimize build order
in the RTS game StarCraft. Like [16], [19] tackle the prob-
lem to optimize a wall-in building placement in StarCraft
but through the prism of Answer-Set Programming.

VII. Conclusion
In this paper, we proposed a way to deal with combina-

torial optimization problems under uncertainty within the
classical Constrained Optimization Problems formalism by
injecting the Rank Dependent Utility from decision theory.
The difficulty for Constraint Programming formalisms of
handling both optimization and uncertainty at the same
time was due to the impossibility to rank solutions if
they lead to different objective function values regarding
possible values of stochastic variables.

We get around this difficulty by computing preferences
over decisions with the Rank Dependent Utility using
our objective function to score decisions. This allow us
to show it is possible to handle uncertainty with regular
Constraint Programming solvers, without having to define
a new formalism neither to develop dedicated solvers for
uncertainty. This brings new perspective to tackle uncer-
tainty in combinatorial optimization problems that where
considered so far to be intractable.

To show our result is usable in practice, we propose
a proof of concept of our result by modeling a decision-
making problem under uncertainty in the µRTS game
via the classical COP formalism, and we solve it using
a regular COP solver. We thus tackle a production unit
problem and implement a bot playing partially observable
µRTS games and deciding what units to produce in order
to maximize its chance to counter its opponent strategy.
Our bot has won the partially observable track of the 2018
µRTS AI competition and outperforms equivalent bots
based on Expected utility or randomly producing units.

Our result only concern short-horizon decision-making
problems. We could adapt it to take into account larger
horizons of action planning and integrate it into a bot
taking long-term strategy decision under uncertainty. We
also would like to investigate problems where constraints

contain stochastic variables. Finally, it would be interest-
ing to implement our result into a bot playing a more
ambitious game such as StarCraft. This method should
scale to a larger game like StarCraft since we already
successfully used GHOST in that game to solver other
optimization problems.
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