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A coupling of the spectral measures at a vertex

Paul Rochet, Thibault Espinasse

April 17, 2019

Abstract

Given the adjacency matrix of an undirected graph, we define a coupling of the spectral measures
at the vertices, whose moments count the rooted closed paths in the graph. The resulting joint spectral
measure verifies numerous interesting properties that allow to recover minors of analytical functions of
the adjacency matrix from its generalized moments. We prove an extension of Obata’s Central Limit
Theorem in growing star-graphs to the multivariate case and discuss some combinatorial properties
using Viennot’s heaps of pieces point of view.

Keywords: graph; excursions; Slater determinant; cumulants; heaps of pieces

1 Introduction

A powerful tool to study the spectral properties of the adjacency matrix A of a graph G is given by the
concept of spectral measure at a vertex, which encapsulates some information on the graph as seen from
a particular vertex. This probability measure is fundamental in the study of the asymptotic spectrum
distribution of random matrices [1, 2] and is related to the Benjamini-Schramm convergence of random
rooted graphs [3]. In quantum mechanics, it is associated to quantum measurements with the adjacency
matrix of the graph as the observable [4, 5].

The spectral measure at a vertex allows to define a random variable with values in the spectrum of
A and whose moments have simple combinatorial interpretations in term of closed paths. While it can
be defined for every vertex of the graph, no multivariate extension have been proposed in the literature
to our knowledge. This could be explained by the current lack of interpretation of a joint distribution
in quantum mechanics, where Positive Operator Valued Measures [6] prevail as the most natural way to
deal with the spectral measures simultaneously. In this paper, we address the question of looking for a
natural coupling of these random variables. We introduce a joint spectral distribution in the form of a
quasi-probability, that is, a signed measure with total mass 1. This results in a quasi-random permutation
X of the spectrum of the adjacency matrix A which verifies numerous interesting properties. In particular,
the minors of Ak, k ∈ N can be expressed as generalized moments of X. Moreover, if the graph has no
self-loop, the covariance matrix under the joint spectral measure is the Laplacian of the graph. We show
this formalism to be compatible with the interpretation of the wave function of a multi-fermionic system
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as Slater determinants [7], which appear naturally when calculating multivariate marginal distributions
of the joint spectral measure, up to permutations.

Limit theorems on the spectral measures have been investigated for several types of growing graphs
such as star graphs [8] or comb graphs [9]. We extend Obata’s result on star graphs to the multivariate
case by considering the joint spectral measure in a graph obtained by merging a subset of vertices in n
copies of a graph, and letting n tend to infinity. We show that, as in the univariate case, the limit only
depends on the immediate neighborhood of the subset of vertices in the remaining part of the graph.

We explore some combinatorial properties that emerge from the joint distribution of a subset of the
quasi-random variables in term of paths on the graph. Precisely, we show that the moment generating
function of the quasi-random variables enumerates particular objects which can be described in terms of
excursions on the graph, using Viennot’s heaps of pieces point of view [10].

The paper is organized as follows. In the first section, we introduce the joint distribution and derive
some properties related to its generalized moments. We prove the multivariate extension of Obata’s
Central Limit Theorem on star graphs in Section 3. Then, we discuss a combinatorial aspect in relation
with heaps of cycles and excursions on the graph. Finally, technical proofs of some of the results are
presented in the Appendix.

2 The joint spectral measure

Let A =
(
aij
)
i,j=1,...,N

be a symmetric matrix with real coefficients. The local spectral measure of A at

i ∈ {1, ..., N} is defined as the unique real measure µi with moments∫
R
xkdµi(x) =

(
Ak
)
ii
, k = 0, 1, 2, ...

Recall that, because A is symmetric, its eigenvalues λ1, ..., λN are real and there exists an eigendecom-
position A = PΛP> with Λ = Diag(λ1, ..., λn) a diagonal matrix and P = (pij)i,j=1,...,n an orthogonal
matrix. Without loss of generality, we will always assume det(P ) = 1. One verifies easily that µi is the
probability measure

µi =
n∑
k=1

p2ikδλk ,

where δλk is the Dirac measure at λk. This measure has a combinatorial interpretation when A is the adja-
cency matrix of a graph, in which case the k-th moment of µi counts the number of walks of length k from
i to itself on the graph. In this context, µi is called the spectral measure at root (or vertex) i. This can be
generalized to any symmetric matrix viewing A as the weighted adjacency matrix of a graph (possibly the
complete graph). Then, the k-th moment of µi is equal to the sum of the weights of all walks of length k
from i to itself, where the weight of a walk is the product of the entries of A over the edges that compose it.
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In this paper, we define a joint spectral measure on RN whose marginal distributions are the univariate
spectral measures µ1, ..., µN . Let SN be the set of permutations on {1, ..., N} and π the signed measure
on SN with density (with respect to the counting measure)

π(σ) = ε(σ)
N∏
j=1

pjσ(j) , σ ∈ SN ,

where ε(.) denotes the signature. Alternatively, π(σ) = det(P �Mσ) where Mσ is the permutation matrix
associated to σ and � is the Hadamard product. Remark that π is a quasi-probability distribution, i.e. a
signed-measure with total mass 1, in view of∑

σ∈SN

π(σ) =
∑
σ∈SN

ε(σ)

N∏
j=1

pjσ(j) = det(P ) = 1.

Throughout the paper, λ = (λ1, ..., λN ) designates the vector of eigenvalues of A (which may contain
multiple occurrences). For σ ∈ SN , we define λσ :=

(
λσ(1), ..., λσ(N)

)
the associated vector of permuted

eigenvalues.

Definition 2.1 The joint spectral measure of A is the push-forward measure of π by the application
σ 7→ λσ. In particular, µ has support {λσ : σ ∈ SN} and density

µ
(
λσ
)

=
∑

τ :λτ=λσ

ε(τ)
N∏
j=1

pjτ(j) , σ ∈ SN .

If all eigenvalues λi are distinct, then simply µ
(
λσ
)

= π(σ) = ε(σ)
∏N
j=1 pjσ(j). The definition is more

general to account for multiple eigenvalues.

Although the definition involves the transformation matrix P , the joint spectral measure µ actually
does not depend on the choice of the eigendecomposition. Precisely, if A has some multiple eigenvalues
and A = PΛP> = QΛQ> are two eigendecompositions with det(P ) = det(Q) = 1, then

∀σ ∈ SN ,
∑

τ :λτ=λσ

ε(τ)
N∏
j=1

pjτ(j) =
∑

τ :λτ=λσ

ε(τ)
N∏
j=1

qjτ(j).

For a direct combinatorial proof of this statement see Section 4.1 in the Appendix. Alternatively, it
suffices to show that the generalized moments:

∀k1, ..., kN ∈ N , m[k1, ..., kN ] :=

∫
RN

xk11 ...x
kN
N dµ(x1, ..., xN )

do not depend on the eigendecomposition (µ is characterized by its generalized moments as a signed
measure on RN with finite support). In fact, the generalized moments m[k1, ..., kN ] have a rather simple
expression, as we show in Lemma 2.2 below. Let A[k1, ..., kN ] denote the matrix whose i-th column is the
i-th column of Aki for i = 1, ..., N (with the convention A0 = I, the identity matrix).

Lemma 2.2 For all k1, ..., kN ≥ 0, m[k1, ..., kN ] = det
(
A[k1, ..., kN ]

)
.
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Proof: By definition,

m[k1, ..., kN ] =
∑
σ∈SN

λk1σ(1)...λ
kN
σ(N)µ

(
λσ
)

=
∑
σ∈SN

ε(σ)
N∏
i=1

piσ(i)λ
ki
σ(i).

Since AkP = PΛk for all k = 0, 1, ..., it follows that
(
AkP

)
ij

= pijλ
k
j for all i, j = 1, ..., N and k ≥ 0.

Hence,

m[k1, ..., kN ] =
∑
σ∈SN

ε(σ)

N∏
i=1

(
AkiP

)
iσ(i)

= det
(
A[k1, ..., kN ]P

)
= det

(
A[k1, ..., kN ]

)
. �

For ease of readability, we shall still use the standard notations for probability measures such as the
probability P(.) of an event or the expectation E(.) defined similarly by integrating against µ. To this
aim, we introduce a quasi-random vector X = (X1, ..., Xn) with distribution µ, denoting e.g. E

(
f(X)

)
=∫

RN f(x)dµ(x) for any integrable function f : RN → R. Quasi-random variables are common in quantum
probability where they have a physical interpretation, typically for Wigner phase-space representations
[11].

Proposition 2.3 The marginal distributions of µ are the rooted spectral measures µ1, ..., µN . In partic-
ular, if all eigenvalues λ1, ..., λN are distinct,

P(Xi = λk) = p2ik , ∀i, k = 1, ..., N.

Proof: The i-th marginal distribution of µ is characterized by the moments E(Xk
i ) = m[0, ..., 0, k, 0, ..., 0]

for k = 1, 2, ... placed at position i. By Lemma 2.2,

E
(
Xk
i

)
= det

(
A[0, ..., 0, k, 0, ..., 0]

)
= (Ak)ii,

ending the proof. �

The explicit formula of the generalized moments provides a powerful tool to prove some interesting
properties of the joint spectral measure. For instance, expressing the (i, j)-minor of Ak in function of the
moments of Xi, Xj , we obtain

cov
(
Xk
i , X

k
j

)
:= E

(
Xk
i X

k
j )− E(Xk

i )E(Xk
j ) = −

(
Ak
)2
ij
, i 6= j , k ∈ N.

This shows in particular that Xk
i and Xk

j are always non-positively correlated for i 6= j. When A is the

adjacency matrix of an undirected graph G with aij ∈ {0, 1} for all i, j = 1, ..., N , − cov
(
Xk
i , X

k
j

)
gives

the squared number of walks of length k from i to j. If we assume moreover that the graph contains no
self-loop (i.e. A has zero diagonal), we can verify by direct calculation that the covariance matrix of µ is
the Laplacian of the graph:

var(X) = E
(
XX>)− E(X)E(X)> = L,
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where Lij = −aij for i 6= j and Lii is the degree of the vertex i in G.

Another straightforward consequence of Lemma 2.2 concerns the minors of A, which are linked to the
quasi-random variables Xi by the identity det

(
Auu

)
= E

( ∏
i∈uXi

)
, where u is a subset of {1, ..., N} and

Auu the corresponding submatrix. The cycle decomposition of the determinant shows a relation between
the cumulants of Xi, i ∈ u and the simple cycles with vertex set u. Consider the set P(u) of all the
partitions of u, that is, all the collections of subsets {π1, ..., πk} with k ≥ 1 such that πi ∩ πj = ∅ for all
i 6= j and ∪kj=1πj = u. Let c(u) denote the sum of all simple cycles on G with vertex set u, we have the
well-known equality

det
(
−Auu

)
=

∑
(π1,...,πk)∈P(u)

(−1)kc(π1)× ...× c(πk).

On the other hand, the multivariate first-order cumulants κ(πj) associated to the variables Xi, i ∈ πj are
defined in such a way that

E
( ∏

i∈u
Xi

)
=

∑
(π1,...,πk)∈P(u)

κ(π1)× ...× κ(πk).

It follows that κ(u) = (−1)|u|−1c(u) where |u| is the size of u.

The identity equating a minor of A to a generalized moment can be extended to any power Ak, k ∈ N,
e.g. det

(
(Ak)uu

)
= E

(∏
i∈uX

k
i

)
, as another direct consequence of Lemma 2.2. In fact, a similar result

holds for any analytical transformations f(A) =
∑

k≥0 γkA
k.

Proposition 2.4 Let f : x 7→
∑

k≥0 γkx
k be an analytical function with spectral radius ρ > max{|λj |, j =

1, ..., N} and u ⊆ {1, ..., N},

det
(
f(A)uu

)
= E

(∏
i∈u

f(Xi)

)
.

Proof: Assume without loss of generality that u = {1, ..., p} with 1 ≤ p ≤ N . By multilinearity of the
determinant

det
(
f(A)uu

)
= det

(∑
k≥0

γk(A
k)uu

)
=

∑
k1,...,kp≥0

γk1 ...γkp det
(
A[k1, ..., kp, 0, ..., 0]

)
.

Using Lemma 2.2, we get

det
(
f(A)uu

)
= E

( ∑
k1,...,kp≥0

γk1 ...γkpX
k1
1 ...X

kp
p

)
= E

(∏
i∈u

f(Xi)

)
,

ending the proof. �
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Interestingly, the same equality holds for the trace tr
(
f(A)uu

)
= E

(∑
i∈u f(Xi)

)
, although it only

pertains to the marginal distributions µi. This particular coupling somewhat allows to obtain a similar
property for the determinant. This shows moreover that the quasi-random variables Xi, i ∈ u encapsu-
late the information on the spectrum of the submatrix f(A)uu, for any analytical transformation of A.
Specifically, the eigenvalues of f(A)uu are the roots of the characteristic polynomial

z 7→ E
(∏
i∈u

(
z − f(Xi)

))
= det

(
zI − f(A)uu

)
.

Proposition 2.5 Assume that the eigenvalues λ1, ..., λN of A are distinct. Let u, v be two subsets of
{1, ..., N},

P
(
{Xi : i ∈ u} = {λj : j ∈ v}

)
= det

(
Puv
)2
,

where Puv is the submatrix of P with rows in u and columns in v (in any particular order).

Proof: Since the ordering of the eigenvalues λj is arbitrary, we may assume u = v without loss of
generality (note that the condition det(P ) = 1 is not an issue here as it can be ensured without changing
the order of the eigenvalues). We have

P
(
{Xi : i ∈ u} = {λj : j ∈ v}

)
=

∑
σ:σ(u)=u

ε(σ)
N∏
i=1

piσ(i),

where the sum runs over all permutations σ that stabilize u. Such permutations can be associated with the
pair (σu, σu) of permutations over u and u = {1, ..., N} \ u respectively, corresponding to the restrictions
of σ to u and u. Noticing that ε(σ) = ε(σu)ε(σu), we get

P
(
{Xi : i ∈ u} = {λj : j ∈ v}

)
=

∑
σu∈S(u)

ε(σu)

N∏
i∈u

piσu(i) ×
∑

σu∈S(u)

ε(σu)

N∏
i∈u

piσu(i),

where S(u) and S(u) are the sets of permutations over u and u. Thus,

P
(
{Xi : i ∈ u} = {λj : j ∈ u}

)
= det

(
Puu

)
det
(
Puu

)
.

We conclude by Jacobi’s Identity (see e.g. Equation (11) in [12]): det
(
Puu

)
= det

(
Puu

)
/ det(P ). �

This last result can also be shown directly, together with a stronger property giving the multidimen-
sional marginal distributions of µ, see Section 4.2 in the Appendix.

In quantum mechanics, the last expression corresponds (up to a normalization constant) to the square
of the wave function Ψu(λv) := det(Puv) known as Slater determinant [7]. In this context, the coupling
µ provides a non-local interpretation of the quantum wave-function from a quasi-probability, where the
square emerges naturally from marginal distributions.
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3 A multivariate central limit theorem for star graphs

In this section, we generalize a result of Obata [8] on the asymptotic behavior of the spectral measure in
star graphs. Let us first recall the original result: let G be a rooted graph (that is a graph given with a
special vertex o called the root) with adjacency matrix A, and G(n) the star product defined by taking n

copies of G and merging all the roots. Let µ
(n)
o be the spectral measure of G(n) at the root o and do the

degree of o in G.

Theorem 3.1 (Theorem 3.7 [8]) The (normalized) spectral measure µ
(n)
o converges weakly as n→∞

with
1√
n
µ(n)o

( .√
n

)
−⇀
n→∞

1

2

(
δ−
√
do

+ δ√do
)
.

The proof relies on showing the convergence of moments via the Szëgo-Jacobi sequence derived from
the adjacency matrix of G(n). Obata’s result can be stated equivalently as the convergence in distribution

X(n)

√
n

d−−−→
n→∞

B
√
d0,

where X(n) is a random variable with distribution µ
(n)
o and B is a Rademacher random variable: P(B =

1) = P(B = −1) = 1/2. We show a multivariate version of this result, where G(n) is the the graph
obtained by merging the n copies of G at p ≥ 1 vertices, say u1, ..., up. For simplicity and without loss of
generality, we assume that u1, ..., up are the first p vertices of G. As a result, the adjacency matrix A(n)

of G(n) contains p+ n(N − p) rows and columns and can be decomposed by blocks as

A(n) =


Auu Auu . . . Auu
Auu Auu 0 0

... 0
. . . 0

Auu 0 0 Auu


where u = {u1, ..., up} and u = {1, ..., N} \ u. We consider the joint spectral measure µ

(n)
u of the first p

vertices in the graph G(n). For quasi-random variables, the convergence in distribution signifies the weak
convergence of the signed measures.

Theorem 3.2 Let X(n) =
(
X

(n)
1 , ..., X

(n)
p

)
be a quasi-random vector with distribution µ

(n)
u ,(

X
(n)
1 , ..., X

(n)
p

)
√
n

d−−−→
n→∞

(
B1

√
Y1, · · · , Bp

√
Yp
)
,

where Y = (Y1, ..., Yp) is a quasi-random vector with distribution the joint spectral measure of D = AuuAuu
and B1, ..., Bp are iid Rademacher random variables, independant of Y .
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Proof: Recall that the X(n) takes values in the permutations of the eigenvalues of A(n). Let ‖.‖ and
‖.‖F denote respectively the Euclidean and Frobenius norms, we have

‖X(n)‖2 = ‖A(n)‖2F ≤ n‖A‖2F . (1)

Thus, ‖X(n)‖/
√
n ≤ ‖A‖F almost-surely. To prove the weak convergence, it now suffices to prove the

convergence of the moments

m(n)
u [k1, ..., kp] := E

((
X

(n)
1√
n

)k1
...

(
X

(n)
p√
n

)kp)
=

1
√
n
k1+...+kp

det
(
A(n)[k1, ..., kp, 0, ..., 0]

)
where the last equality follows from Lemma 2.2. By Schur’s complement formula applied to I − zA(n),
the (u, u)-block of the resolvant satisfies

R(n)
u (z) :=

((
I − zA(n)

)−1)
uu

=
(
I − zAuu − nz2Auu

(
I − zAuu

)−1
Auu

)−1
.

R(n)
u

( z√
n

)
=

(
I − z√

n
Auu − z2Auu

(
I − z√

n
Auu

)−1
Auu

)−1
= I + z

(
A(n)

)
uu√

n
+ z2

(
A(n)2

)
uu√

n
2 + ...

−−−→
n→∞

(
I − z2D

)−1
= I + z2D + z4D2 + ...

where we recall D = AuuAuu. The sub-multiplicativity of the Frobenius norm combined with Eq. (1)

gives
∥∥(A(n)

)k
uu

∥∥
F
/
√
n
k ≤ ‖A‖kF . Thus, the series has positive convergence radius and by continuity of

the determinant, we deduce

m(n)
u [k1, ..., kp] −→

n→∞

{
det
(
D
[
k1/2, ..., kp/2

])
if k1, ..., kp are even,

0 otherwise.

For (z1, ..., zp) in a sufficiently small neighborhood of 0, the moment generating function verifies

E
( p∏
i=1

1

1− ziX(n)
i /
√
n

)
=

∞∑
k1,...,kp=0

zk11 ...z
kp
p m(n)

u [k1, ..., kp]

−→
n→∞

∞∑
k1,...,kp=0

z2k11 ...z
2kp
p det

(
D[k1, ..., kp]

)
= E

( p∏
i=1

1

1− z2i Yi

)
where Y = (Y1, ..., Yp) is a quasi-random vector with distribution the joint spectral measure of D. Finally,
let B1, ..., Bp be iid Rademacher variables independent of Y , we have by Fubini’s theorem

E
( p∏
i=1

1

1− ziBi
√
Yi

)
= E

( p∏
i=1

[
1

2

1

1− zi
√
Yi

+
1

2

1

1 + zi
√
Yi

])
= E

( p∏
i=1

1

1− z2i Yi

)
.
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Hence,
(
X

(n)
1 /
√
n, ...,X

(n)
p /
√
n
)

converges in distribution towards (B1

√
Y1, ..., Bp

√
Yp
)
. �

Remark that because D = AuuAuu is positive definite, Yi is always non-negative almost-surely and√
Yi is well-defined. The entry Duiuj gives the number of vertices in u that are adjacent to both ui and

uj . Obata’s result corresponds to the particular case u = {o} where D is equal to the degree do of the
root o in G and the associated joint spectral measure is a Dirac mass at do.

4 Combinatorial properties

In this section, we investigate the combinatorial aspects of the joint spectral measure via its relations with
paths enumeration on a graph G. Thus, A is viewed here as the (possibly weighted) adjacency matrix
of a graph G with vertex set {1, ..., N}. As usual when one is interested in enumerating paths in G, the
entries aij of A may be thought of as formal variables whenever (i, j) is an edge and aij = 0 otherwise. A
path of length n from i to j in G is a succession of n contiguous edges w = aii1ai1i2 ...ain−1j . The length
of a path w is denoted by `(w). By convention, the null path 1 is a path of length 0 from one vertex to itself.

A simple cycle is a closed path in the graph that does not visit the same vertex twice before its return
to its starting vertex. When endowed with a specific partially commutative rule, product of cycles form
well studied algebraic objects originally introduced as circuits by Cartier and Foata [13] later revisited as
heaps of cycles by Viennot [10] or hikes [14]. The free partially commutative monoid (or trace monoid)
of hikes consists of all finite products of simple cycles h = c1...cn (some cycles may be repeated), allowing
to permute two consecutive cycles only if they have no vertex in common. For instance, ab2 = bab = b2a
if a and b are vertex disjoint in G but all three terms all different if a and b share at least one vertex (and
a 6= b). This somewhat peculiar structure is heavily related to the spectral properties of the graph. In
particular, letting H denote the set of hikes in G, the zeta function of H (or characteristic function) is
the determinant of the resolvant R(z) = (I − zA)−1

ζ(z) :=
∑
h∈H

hz`(h) = det
(
R(z)

)
,

where `(h) is the length of h, that is the added length of all cycles composing h. Equivalently, the (slightly
modified) characteristic polynomial of A is the Mobiüs function of H,

M(z) :=
1

ζ(z)
= det

(
I − zA

)
,

whose expression in terms of products of vertex-disjoint cycles is well known. Due to the numerous simi-
larities with their number theoretic counterparts, simple cycles have been described as the prime elements
inH. The representation of a hike as a product of simple cycles is its prime decomposition, which is unique
up to permuting consecutive vertex-disjoint cycles [14]. We say that d ∈ H is a right divisor of a hike h
if there exists h′ ∈ H such that h = h′d.
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While all closed paths are hikes, the reverse is clearly not true. Viennot remarked that closed paths
can be characterized as hikes with a unique prime right divisor, called pyramids in the context of heaps of
pieces (see Proposition 7 in [10]). However, when viewed as a hike, a closed path w loses the information
of its starting point. In fact, the vertices in the unique prime right divisor of w are the possible starting
points of a closed path. Thus, the number of closed paths that are associated with the same hike is
equal to the length of the unique right prime divisor. This observation gave rise to the so-called hike
von-Mangoldt function

Λ(h) :=

{
`(p) if h has p as its unique prime right divisor of h

0 otherwise,

whose associated generating function is given by the trace of the resolvant∑
h∈H

Λ(h)hz`(h) = tr
(
R(z)

)
= tr

(
I + zA+ z2A2 + ...

)
.

More details can be found in [14].

Definition 4.1 An excursion on a proper subset u of vertices in G is a path that starts and ends in u
but does not visit u in between. Formally, a path w = aii1ai1i2 ...ain−1j is an excursion on u in G if i, j ∈ u
and ik ∈ u,∀k = 1, ..., n− 1.

Let Eij(u) denote the set of excursions from i to j on u in G and Eu(z) the matrix generating function
of the excursions on u. Since an excursion on u in G can be decomposed uniquely as the concatenation of
an edge from u to u followed by a path (possibly empty) in u and a edge from u to u, one verifies easily
that

Eu(z) :=
( ∑
w∈Eij(u)

w z`(w)
)
i,j∈u

= zAuu + z2Auu
(
I − zAuu

)−1
Auu.

From this expression, it is apparent that I −Eu(z) is in fact the Schur complement of the block I − zAuu
in I − zA. Hence, excursions emerge naturally from submatrices of the resolvant R(z) =

(
I − zA

)−1
by(

I − Eu(z)
)−1

=
(
R(z)

)
uu

=: Ru(z). (2)

The associated minor of the resolvant,

ru(z) := det
(
I − Eu(z)

)−1
= det

(
Ru(z)

)
is a generating function of a certain type a hikes, as we show in Proposition 4.2 below. Minors of the
resolvant can also be expressed as generalized moments of the joint spectral measure. A direct application
of Proposition 2.4 to f(x) = 1/(1− zx),

ru(z) = det
(
Ru(z)

)
= E

(∏
i∈u

1

1− zXi

)
,

10



shows that ru(z) is the (homogenous) moment generating function of (Xi)i∈u. Remark that the series
ru(z) is not the hike zeta function in the induced subgraph G(u). The latter is simply given by

ζu(z) := det
((
I − zAuu

)−1) 6= det
((
I − zA

)−1
uu

)
.

Proposition 4.2 The series ru(z) is the generating function of hikes whose right divisors all intersect u.

Proof: Recall that I − Eu(z) is the Schur complement of the block I − zAuu in I − zA, in particular

det
(
I − zA

)
= det

(
I − zAuu

)
det
(
I − Eu(z)

)
,

or equivalently ru(z) = ζ(z)/ζu(z). By Proposition 5 in [10], multiplication of ζ(z) by the Mobiüs function
on G(u) cancels out all hikes with at least one right prime divisor in G(u). �

The link between ru(z) and the excursions comes from the fact that a hike has all its right divisors
intersecting u if and only if it can be decomposed as a product of excursions on u. Similarly, a closed
path w starting from a vertex in u can be divided into a succession of excursions that eventually returns
to its starting point. For the next result, let `u(h) denote the number of excursions on u that compose a
hike h, or equivalently the number of vertices in u visited by h, counted with multiplicity. We define the
function

Λu(h) :=

{
`u(p) if h has p as its unique prime right divisor of h

0 otherwise
, h ∈ H,

generated by the trace of the (u, u)-block of the resolvant:
∑

h∈H Λu(h)hz`(h) = tr
(
Ru(z)

)
,

Proposition 4.3 We have

log
(
ru(z)

)
=
∑
h∈H

Λu(h)

`u(h)
hz`(h),

with the convention Λu(h)/`u(h) = 0 if `u(h) = 0.

Proof: From Eq. (2), log
(
ru(z)

)
= − log

(
det
(
I − Eu(z)

))
= tr

(
− log(I − Eu(z))

)
. By a Taylor

expansion of − log(1− x) at x = 0, we get

log
(
ru(z)

)
= tr

(
Eu(z) +

Eu(z)2

2
+
Eu(z)3

3
+ ...

)
.

We now identify each path in the series. The denominator `u(h) results from the diagonal entries of
Eu(z)k which enumerate the closed paths that can be written as a product of k excursions on u. The
numerator Λu(h) is due to the trace, which counts the number of possible starting points of each path. �
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Let us investigate the particular case u = {i}. An excursion on {i} is a closed paths starting (and
ending) at i that do not visit i in between. Since every closed paths from i to i can be decomposed
uniquely as a product of excursions on {i}, we verify easily the relations

R{i}(z) =
∑
w:i→i

wz`(w) =
1

1− E{i}(z)
= 1 + E{i} + E2

{i} + ...

Remark that a hike whose right divisors all intersect {i} is a closed path, as two primes having a common
vertex do not commute. Hence, Proposition 4.3 is trivially true in this case with

r{i}(z) = det
(
R{i}(z)

)
= R{i}(z).

Following [15], E{i}(z) corresponds to the B-transform associated to moment generating function r{i}(z).
Hence, the Boolean cumulants of Xi enumerate the excursions on {i}.

In the case u = {i}, Λ{i}(h) ∈ {0, 1} with the value 1 if and only if h is a closed path starting from i.
Thus, Proposition 4.3 yields

log
(
R{i}(z)

)
=
∑
h∈H

Λ{i}(h)

`{i}(h)
hz`(h) =

∑
w:i→i

1

`{i}(w)
wz`(w).

In other words, the logarithm of the i-th diagonal entry of the resolvant is the generating series of closed
paths starting from i, divided by their number of visits to i.

Appendix

4.1 Unicity of the joint spectral measure

We give a direct proof that, although its definition involves a basis matrix P , the joint spectral measure
µ does not depend on the choice of the eigendecomposition of A. We start with the following lemma.

Lemma 4.4 Let C = (cij)i,j=1,...,N be a block diagonal matrix with entries one in each block (and zero
elsewhere) and B = (bij)i,j=1,...,N a block diagonal matrix with support included in the support of C, i.e.
such that cij = 0⇒ bij = 0. Then, for all matrix M = (mij)i,j=1,...,N ,

(MB)� C = (M � C)B.

Proof: Note that bkjcij = bkjcik for all i, j, k = 1, ..., N since the two sides of the equality are non-zero
only if i, j, k belong to the same block. Thus,

(
(MB)� C

)
ij

=

N∑
k=1

mikbkjcij =

N∑
k=1

mikbkjcik =
(
(M � C)B

)
ij

12



for all i, j = 1, ..., N . �

Let A = PΛP> = QΛQ> be two eigendecompositions of A with det(P ) = det(Q) = 1. Without loss of
generality, we may assume that equal eigenvalues are ordered consecutively in λ. By a play on the indices
of the sum and product, the joint spectral measure can be written as

µ
(
λσ
)

=
∑

τ :λτ=λσ

ε(τ)

N∏
j=1

pjτ(j) =
∑

τ :λτ=λ

ε(τ ◦ σ)

N∏
j=1

pjτ◦σ(j) = ε(σ)
∑
τ∈SN

ε(τ)

N∏
j=1

pσ−1(j)τ(j)1{λj = λτ(j)},

where 1{.} is the indicator function. Define the block diagonal matrix C =
(
1{λi = λj}

)
i,j=1,...,N

, we
thus have

µ(λσ) = ε(σ) det
(
(M>σ P )� C

)
where Mσ is the permutation matrix associated to σ. Because the columns of P and Q are eigenvectors
of the symmetric matrix A, the i-th column of P is orthogonal to the j-th column of Q whenever λi 6= λj .
Therefore, B := Q>P and C satisfy the conditions of Lemma 4.4. Applying the lemma to M = M>σ Q,
we get

det
(
(M>σ P )� C

)
= det

(
(M>σ QB)� C

)
= det

((
(M>σ Q)� C

)
B
)

= det
(
(M>σ Q)� C

)
,

in view of det(B) = det(Q>P ) = 1. We conclude that µ does not depend on the basis matrix used in the
eigendecomposition.

4.2 Multivariate marginal distributions

In this section, we give an expression of the multivariate marginal (quasi) distributions of µ. We will
assume for simplicity that A has only simple eigenvalues.

Proposition 4.5 Let s = {s1, ..., sk} and t = {t1, ..., tk} be two subsets of vertices and σ a permutation
on Sk,

P
(
Xs1 = λtσ(1) , ..., Xsk = λtσ(k)

)
= ε(σ) det

(
Pst
) k∏
j=1

psjtσ(j) .

Proof: By definition

P
(
Xs1 = λtσ(1) , ..., Xsk = λtσ(k)

)
=

∑
τ :τ(sj)=tσ(j)

ε(τ)

N∏
j=1

pjτ(j),

where the sum runs over all permutations τ such that τ(sj) = tσ(j) for j = 1, ..., k. Let s = {s1, ..., sN−k} =
{1, ..., N} \ s and define t similarly. Let σst ∈ SN be the unique permutation such that σst(sj) = tσ(j) and

13



σst(sj) = tj for all j. We verify easily that ε(σst) = ε(σ). Letting τ ′ = τ ◦ σst in the equation above, we
obtain

P
(
Xs1 = λtσ(1) , ..., Xsk = λtσ(k)

)
=

k∏
j=1

psjtσ(j)

∑
τ ′:τ ′(tj)=tj

ε(σst)ε(τ
′)
N−k∏
j=1

psjτ ′(tj)

= ε(σ)

k∏
j=1

psjtσ(j) det
(
Pst
)
.

By Jacobi’s Identity (Equation (11) in [12]), det
(
Pst
)

= det
(
Pst
)
/ det(P ) = det

(
Pst
)
, which concludes

the proof. �
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