
HAL Id: hal-02107675
https://hal.science/hal-02107675

Submitted on 30 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Aircraft and MiniCAST soot at the nanoscale
Iman Marhaba, Daniel Ferry, Carine Laffon, Thomas Z Regier, F.-X Ouf, Ph.

Parent

To cite this version:
Iman Marhaba, Daniel Ferry, Carine Laffon, Thomas Z Regier, F.-X Ouf, et al.. Air-
craft and MiniCAST soot at the nanoscale. Combustion and Flame, 2019, 204, pp.278-289.
�10.1016/j.combustflame.2019.03.018�. �hal-02107675�

https://hal.science/hal-02107675
https://hal.archives-ouvertes.fr


1 
 

Aircraft and MiniCAST Soot at the Nanoscale 

 

I. Marhaba1, D. Ferry1, C. Laffon1, T.Z. Regier2, F.-X. Ouf3, Ph. Parent1,* 

1Aix Marseille Univ, CNRS, CINaM, Marseille, France 

2Canadian Light Source, Saskatoon, SK S7N 2V3, Canada 

3Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES, SCA, LPMA, Gif-

Sur-Yvette, 91192, France 

*Corresponding author: Tel: +33660302807. E-mail: philippe.parent@univ-amu.fr 

(Philippe Parent) 

 

ABSTRACT: Transmission electron microscopy (TEM), X-ray photoelectron 

spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS) and Fourier-

transform infrared spectroscopy (FTIR) have been used to compare the nanoscale 

characteristics of aircraft soot collected at the exhaust of a recent PowerJet SaM146 jet engine, 

with those of soot generated by a MiniCAST burner. Analyses show that some MiniCAST 

operating conditions enable generating soot particles of morphology, internal nano-structure 

and chemical structure close to those of aircraft soot. However, MiniCAST soot have gyration 

diameters systematically larger compared to aircraft soot. Provided that this imperfect 

agreement is not critical for the studied properties, MiniCAST soot might be used as a relevant 

analogue of aircraft soot for studying some of their physical or chemical properties, offering a 

convenient and affordable way to conduct laboratory studies on the environmental impacts of 

aviation emitted particles. 
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1. INTRODUCTION  

 

 Soot particles emitted from aircrafts are the most important source of carbonaceous 

particles in the upper troposphere and the lower stratosphere [1–5]. They affect the Earth’s 

climate by absorbing and scattering sunlight, changing the radiative balance of the atmosphere 

[6–8]. Acting as condensation nuclei, they induce condensation trails ending in artificial cirrus, 

increasing atmospheric cloudiness [6,9–11]. They also contribute to pollution in airport areas, 

and are considered responsible for much of human health risks from aviation emissions [12]. 

Forecasts over the next two decades indicate that aviation transportation could grow to about 

three times its present level [6], exacerbating these environmental issues. In this context, 

determining physical and chemical properties of aircraft soot particles is necessary to reach 

enough knowledge of their radiative properties, ice nucleation ability and toxicity, allowing 

developing guidance for their future regulation. However, collecting soot particles at the 

exhaust of a jet engine is a challenging task, requiring complex and expensive facilities [13–

17]. It likely explains the sparseness of their studies [12] compared to other combustion soot, 

like diesel soot. Even fewer are the studies using non-destructive methods revealing their 

physical and chemical structures at the nanoscale [18–23]. Furthermore, in the frame of 

increasing regulations of aircraft emissions, it would be interesting to develop real-time 

diagnostics to monitor soot particles at the exhaust of the jet engine, such as, for instance, optical 

spectroscopies. However, it seems unrealistic to develop such methods on test stands that are 

so complex and costly to operate, and in such hostile and hectic environment of an operating 

jet engine. For these reasons, it is desirable to have a laboratory source providing relevant 

analogue of aircraft soot, which can be produced easily and in a reproducible way, using a well 

mastered combustion technique. To this end, we have used a Miniature Combustion Aerosol 
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Standard soot generator MiniCAST (Jing Ltd). This burner is based on a quenched propane 

diffusion flame, with flexible operating parameters allowing to control the size, morphology, 

and the organic fraction of the soot, and offers high stability and reproducibility of the soot 

properties [24]. MiniCAST soot has been recently extensively characterized [25–32]. Although 

the combustion conditions between the MiniCAST and a jet engine are completely different, 

MiniCAST soot can have morphologies, organic carbon fractions, densities, and Raman spectra 

close to some aircraft soot [24,33]. In the present work, we used TEM, NEXAFS, XPS and 

FTIR techniques for a nanoscale comparison of MiniCAST soot with aircraft soot collected 

during the MERMOSE campaign downstream a PowerJet SaM146 engine fueled with Jet A-

1[14,34], in order to validate this laboratory generator as a relevant tool in the production of 

aircraft soot analogues. 

 

2. EXPERIMENTAL 

 

Samples: Laboratory soot was generated by a MiniCAST 5201 C-type model from Jing 

Ltd. The propane (optionally mixed with nitrogen)/air coflow laminar diffusion flame was 

quenched by nitrogen and the particles generated were transported in a stream of nitrogen, 

preventing further combustion (the device and the sampling procedure are schematized in the 

supplementary material S1). Downstream the MiniCAST, a flow rate of 0.6 l/min was 

injected through a thermodenuder (TSI 3065, temperature up to 400°C) filled with silica gel to 

avoid water condensation on soot. The flow was then injected into a deposition line where soot 

was collected by inertial impaction on gold-coated silicon windows (UQG optics) for XPS and 

NEXAFS experiments, and on bare silicon windows (UQG optics) for FTIR experiments. 

Holey carbon-coated copper grids (AGAR Scientific) were used for the TEM experiments. 
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Sampling was also achieved on quartz fiber filters (Pall tissuquartz 2500 QAT-UP, 47 mm in 

diameter) to determine the OC/TC ratio by a thermal-optical analysis [35] using a Sunset 

Laboratory Inc. Lab OC-EC Aerosol Analyzer, compliant to the IMPROVE protocol [36]. 

Before use, the filters were baked at 850 °C during 1 hour for desorbing the organic content 

potentially absorbed during their storage in atmospheric conditions. After collection, all the 

samples were stored under dry nitrogen. The conditions of the four MiniCAST setpoints, called 

CAST1, CAST2, CAST3 and CAST4, are reported in Table 1. They are mainly characterized 

by their fuel-air equivalence ratio, also called global equivalence ratio , describing the flame 

in terms of fuel-lean ( <1), stoichiometric ( =1), and fuel-rich ( >1) conditions [24]. 

 

 

 

 

 

 

 

 

Table 1:  MiniCAST operating conditions and thermal-optical OC/TC ratios for the four setpoints 

 

Aircraft soot was collected on similar substrates. The PowerJet SaM146 engine was 

running at different thrusts according to the ICAO Landing and Take-Off (LTO) cycle: idle, 

approach, climb and take-off, corresponding to 7%, 30%, 85% and 100% of the maximum rated 

thrust at sea level static, called F00. As MERMOSE was dedicated to the study of soot particles 

regarding their role as ice nuclei in the atmosphere, an additional engine regime was also tested, 

representative of cruise conditions and corresponding to 70% F00. At the lowest thrust of 7% 

SAMPLE CAST1 CAST2 CAST3 CAST4 

Propane (mL/min) 60 60 60 50 

Oxidation air (L/min) 1.5 1.15 1 1.20 

Fuel dilution N2 (mL/min) 0 0 0 200 

Quench N2 (L/min) 7.5 7.5 7.5 7.5 

Dilution air flow (mL/min) 20 20 20 20 

Global equivalence ratio  0.97 1.2 1.46 1.01 

OC/TC (%) 4.1±3.5 46.8±3.1 87±5.0 22.1±4.6 
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F00, the mass flow at the exhaust of the engine was too low to collect sufficient particulate 

matter for the methods used in this work, and this regime could not be studied. The samples are 

called hereafter AS30, AS70, AS85 and AS100, corresponding to 30% F00, 70% F00, 85% F00, 

and 100% F00 engine operating regimes, respectively. The 30% F00 regime provided enough 

material for TEM and OC/TC measurements, but not to carry out XPS, NEXAFS and FTIR 

spectroscopies. Thus, only the 70% F00, 85% F00, and 100% F00 samples were studied with these 

methods.  

Electron microscopy: The TEM experiments were performed on a JEOL JEM-2010 

microscope using a LaB6 filament and operated at 200 kV. Observations in the direct space 

were carried out in the bright field mode, and digital images were recorded using a Gatan CCD 

camera (UltraScan®1000XP model 994). At low magnification (x5000 - x100000) bright field 

images were obtained using the 000-transmitted beam and provided morphological information. 

150 soot aggregates were randomly selected for each sample to present statistically reliable 

results. At higher magnifications (> x 200000) the interference between the 000 and 002 beams 

gave rise to lattice fringes that reproduce the profile of the graphitic carbon layers. The 

Euclidian Distance Mapping Surface-Based Scale (EDM-SBS) algorithm [37] loaded in the 

Scilab program provided the two-dimensional fractal dimension of the projected image of the 

aggregates, and the size distribution of the primary particles. Images analyses were performed 

using the measurements tools of the open source ImageJ software (http://imagej.nih.gov/ij/) to 

determine manually the carbon layer’s length, the distance between them, and the gyration 

diameter of the aggregates. The microscope was also used in the diffraction imaging mode with 

a camera length value of 400 mm, enabling accurate measurements of the carbon interlayers 

spacing. 
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Electron spectroscopy: The NEXAFS and XPS experiments were carried out on the XPS 

end-station of the high-resolution SGM beamline (11 ID-1) of the Canadian Light Source. 

NEXAFS data were recorded in the total electron yield (TEY) mode using the drain 

photocurrent, and in partial electron yield (PEY) mode using the Auger electron yield measured 

by a SCIENTA100 hemispherical electron analyzer. In PEY, the Auger electrons kinetic energy 

window was 257-262 eV, corresponding to electron inelastic mean free paths (IMFP) of 0.5 nm 

at the C1s edge [38]. This distance is equivalent to the 1-2 outermost surface layers of the soot 

particles; the PEY method is therefore extremely sensitive to the surface. On the other hand, 

the TEY mode integrates the electron emission over all kinetic energies down to a few eV, 

resulting in a deeper probed depth of about 5 nm [39]. As we will see, the mean radius of the 

studied nanoparticles range between 7.5 nm and 17 nm. Thus, the TEY mode probes a large 

fraction of the bulk of soot. Since part of the detected electrons in TEY also comes from the 

surface, there is an inherent contribution of the surface to the TEY signal, estimated at 10% 

from the ratio between the depths probed in PEY (0.5 nm) and in TEY (5 nm). A highly ordered 

pyrolytic graphite (HOPG) sample was also used as reference material for the interpretation of 

the soot spectra. XPS experiments were carried out with the same hemispherical analyzer, using 

a pass energy of 50 eV and 460 eV excitation energy for the C1s core level. This corresponds 

to an electron IMFP of 0.5 nm at the C1s line [40]. Thus, XPS and PEY-NEXAFS probe the 

same depth. Whether in XPS or in NEXAFS (in TEY or PEY) no evolution of the spectra was 

observed during successive acquisitions, showing the absence of measurable radiation-induced 

damages. 

Infrared spectroscopy: The FTIR measurements were recorded in transmission mode 

using a Bruker VERTEX70 spectrometer equipped with a DLaTGS detector and purged with 

dry nitrogen. Because in such transmission geometry the measured beam is transmitted through 
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the entire sample, the infrared spectra presented in this work are representative of the whole 

soot. To carry out these experiments, a small area at the periphery of the silicon substrates was 

cleaned to remove all the deposited soot and was used as reference. The spectra result from the 

difference between the signal obtained at the center of the substrate and that obtained on the 

cleaned area. All spectra were accumulated in a spectral range of 400-7000 cm-1 by recording 

3000 scans at a resolution of 4 cm-1.  

 

3. RESULTS  

 

3.1. Transmission electron microscopy  

 

Figure 1 presents typical TEM images of aircraft and MiniCAST soot particles. Both are 

made of primary particles forming fractal aggregates of few hundred nanometers. The image 

analysis provides the fractal dimensions of their planar projections, Df, ranging from 1.7 to 1.9 

(Table 2), close to the maximum value of 2 of the projected image of a non-fractal particle, 

showing that the aggregates are rather compact. The Df values are very similar for MiniCAST 

and aircraft soot, indicating that their morphology is close. The image analysis also provides 

the aggregates gyration diameters, the primary particles diameters, and the lengths of the 

graphitic layers. The statistical distributions of these three parameters were found log-normal, 

and we discuss hereafter their mode values, defined as the maximum of the distribution, i.e. the 

most frequently encountered value in the statistical sampling. The gyration diameter is used to 

characterize the size of the aggregates, and defined as the diameter of a single sphere having 

the same mass and the same moment of inertia than the aggregate [41]. The distributions are 

plotted in Figure 2a, and their mode values Dg are summarized in Table 2. Overall, MiniCAST 
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particles have gyration diameter mode (71nm <Dg <134 nm) greater than those of aircraft soot 

(27.4nm < Dg<91.1 nm). Their distributions are also broader for MiniCAST soot. It shows that 

the agglomeration phase of the primary particles, leading to the formation of aggregates, occurs 

in a wide range of conditions in the MiniCAST flame. In some areas of the flame, few particles 

will meet leading to aggregates with small gyration diameters whereas in other areas many 

particles (or primary aggregates) will agglomerate leading to aggregates with large gyration 

diameters. It can be assumed that this results from a fairly large heterogeneity of residence times 

and density of the primary particles, certainly greater heterogeneity than in the aircraft engine, 

where the distribution of gyration diameters is much narrower. 

The distributions of the primary particle diameters are presented Figure 2b. For aircraft 

soot, the mode values Dpp slightly increase with the engine regime, from 12 nm (AS30) to 13.7 

nm (AS100) (Table 2). Then, the large aggregates of the AS30 sample (Figure 2a) results from 

a number of particles per aggregate larger than at higher engine regimes. For three of the 

MiniCAST setpoints, the primary particles diameters are significantly greater than in aircraft 

soot: Dpp is 24.7, 34.5 and 28.5 nm for CAST1, CAST2 and CAST3, respectively, while Dpp is 

smaller for CAST4 (14.1 nm) and closer to those of aircraft soot.  

Figure 3 shows typical high-magnification TEM images of the primary particles 

(previously presented in ref. [23] for aircraft soot and in ref. [25] for MiniCAST soot), revealing 

their inner structure. They are nanostructured, made of small graphitic layers (or “crystallites”) 

concentrically arranged in onion-like structure, except for CAST3 that is less ordered and 

resemble to low-temperature or nascent soot [42]. The outer edges of the selected particles look 

similar to their inner part and present no coating of condensed semi-volatile organic 

compounds. Such coating could give rise to an amorphous, liquid-like zone at the surface (or 

mixed with soot), as observed for instance in young soot particles [43], or in particles produced 
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in biomass combustion [44]. As we will see, organic molecules are in fact present at the surface, 

but in too small amount to appear on the TEM images. The length of the graphitic layers is one 

parameter characterizing the inner structure of soot. We have measured it manually using the 

measuring tool of the ImageJ software on high-magnification TEM images. For each sample 

more than 2000 graphitic layers were accounted to establish their length distribution, shown in 

Figure 2c, and their mode value Lc (cf. Table 2). Crystallites in aircraft soot have similar 

lengths (Lc ranging from 2.54 nm to 3.66 nm), with no clear correlation with the engine regime. 

Crystallites in CAST3 soot are very small (Lc = 0.48 nm). In the other MiniCAST samples, 

crystallites have almost the same lengths (Lc ranging from 1.91 to 2.09 nm), overall smaller 

than in aircraft soot, and with narrower distributions.  

 

AIRCRAFT  AS30 AS70 AS85 AS100 

OC/TC (%) 79±10 24±10 14.5±10 12±10 

Gyration diameter mode Dg 

(nm) 
91.1±2.8 27.5±1.3 27.4±2.3 41.7±1.3 

Fractal dimension Df 1.7 1.8 1.9 1.8 

Diameter of the primary particle 

mode Dpp (nm) 
12.0±0.1 13.0±0.1 13.8±0.1 13.7±0.1 

Crystallite length mode Lc (nm) 3.66±0.07 2.54±0.03 3.04±0.05 2.94±0.04 

Interlayer distance d002 (nm) 0.367±0.004 0.363±0.004 0.365±0.004 0.358±0.004 

MiniCAST CAST1 CAST2 CAST3 CAST4 

OC/TC (%) 4.1±3.5 46.8±3.1 87±5.0 22.1±4.6 

Gyration diameter mode Dg(nm) 75±5 134±14 115±20 71±7 

Fractal dimension Df 1.7 1.7 1.9 1.8 

Diameter of the primary particle 

mode Dpp (nm) 
24.7±0.1 34.5±0.1 28.5±0.1 14.1±0.1 

Crystallite length mode Lc (nm) 1.91±0.01 2.09±0.01 0.481±0.003 1.94±0.01 

Interlayer distance d002 (nm) 0.375±0.004 0.369±0.004 0.376±0.004 0.369±0.004 
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Table 2. Thermal optical OC/TC ratios, and mode values of selected morphological and 

structural parameters of aircraft and MiniCAST soot samples. 

 

3.2. NEXAFS spectroscopy 

 

NEXAFS spectroscopy provides information on the local electronic properties of soot 

particles, which are related to their local atomic structure and chemical composition [23,45–

47]. Let us recall some key points. First, our previous study [23] has shown that the TEY spectra 

of the AS70, AS85 and AS100 samples are extremely similar, and, as a reminder, we only 

present the AS70 data in Figure 4a, compared to graphite used as a reference (the AS70 and 

graphite NEXAFS data were previously presented in ref. [23]). In graphite, the two resonances 

at 285.5 eV and 292.8 eV correspond to the C1s→π*graph. and C1s→σ*graph. transitions, 

respectively [48]. The weak peak around 288 eV corresponds to the C1s→π*(C=O) transition 

due to oxidized carbon from contamination. The narrow peak at 291.5 eV is an exciton state, 

whose wave function extends over several hexagonal rings [49]. The AS70 spectrum presents 

some differences with graphite: the C1s→π*graph transition is asymmetric on the low energy 

side; the spectrum is strongly broadened around 291 eV, and the exciton is strongly damped. 

The latter effect results from the limited size of the graphitic layers that affects the formation 

of the excitonic state. The low energy asymmetry of the C1s→π*graph results from an additional 

peak at 284.7 eV (shaded in grey Figure 4b) corresponding to a C1s→π*edge transition related 

to the carbon atoms located at the edges of the graphitic layers. Between 286 and 289 eV, 

oxidized carbon species give rise to several C1s→π*(C=O) resonances related to ketone, 

carbonyl and carboxyl functions [23,50]. At 292 eV and above, the σ* region is deconvoluted 

with a C1s→σgraph* transition, slightly shifted upwards compared to graphite (293.5 eV instead 
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of 292.8 eV), and a damped exciton peak. The smooth spectral slope around 290 eV results a 

specific C1s→σ* resonance (labelled σ*defects) corresponding to elongated CC bonds of 0.146 

nm (shaded in violet Figure 4b) [23,51], longer than in graphite (0.142 nm) and shorter than 

single C-C bonds in alkanes (linear or cyclic, 0.154 nm in average). Such CC bond length of 

0.146 nm is contained in pentagon-heptagon point defects (Stone-Wales defects) in graphitic 

layers. They also contain CC bonds with a shorter length (0.138 nm) [52,53] giving rise to a * 

resonance slightly shifted above that of graphite [51]. The slight upwards energy shift observed 

in C1s→σgraph* transition could come from the contribution of such short CC bonds owning to 

the Stone-Wales defects. These defects contribute to the curvature of graphitic planes [54] and 

are likely present in soot particles since the crystallites exhibit more or less pronounced 

curvatures. Figure 4c compares the PEY (surface) to the TEY (bulk) spectra of the AS70 

sample. The difference spectrum PEY-TEY (Figure 4c) show the presence of a further π* 

transition located at 284.9 eV (shaded in orange Figure 4c) in between the π*edge and the π*graph. 

Its energy is characteristic of C1s→π*(-C=C-) transitions in linear unsaturated organic 

molecules [55] or in polyaromatic hydrogenated molecules (PAHs) [56]. We assign this feature 

to PAHs since they usually dominate the unsaturated organic phase in soot [57,58]. They are 

only observed on the PEY and not on the TEY spectra, showing that PAHs are located at the 

surface of the particles. We can estimate their surface concentration relative to the total sp2 

hybridized carbon atoms (i.e. PAHs + graphitic carbon atoms) from the intensity ratio 

[PAHs]surf = I(π*PAHs)/{I(π*edge )+ I(π*graph )+I(π*PAHs)}. We found [PAHs]surf = 30±3 %, 17±3 

% and 22±3 % for the AS70, AS85 and AS100 samples, respectively [23]. It shows that at the 

surface, the sp2 hybridized carbon atoms are mainly located in the graphitic layers while they 

are fewer in the PAHs. Last, the increase in intensity of the *defects at 290.5 eV indicates higher 

defects concentrations at the surface compared to the bulk. This increase is of a factor of 1.7, 
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2.1 and 1.9 for the AS70, AS85 and AS100 samples, respectively, showing that the crystallites 

at the surface are about twice more defective that in the bulk. 

Let us now consider the MiniCAST samples. Figure 5a presents the TEY (bulk) spectra 

of the four samples, each compared to AS70 (in black). The NEXAFS data of CAST1, CAST2 

and CAST3 were  previously presented in ref. [25]. The CAST1 and CAST4 spectra are very 

close to each other and also very close to AS70, while CAST2 and CAST3 are the farthest from 

AS70. Figure 5b shows their spectral deconvolution, made with the same components than for 

aircraft soot. We observe an additional resonance at 284.9 eV in the * region of CAST2, 

CAST3 and CAST4, already observed in the PEY spectrum of AS70 and assigned to the 

C1s→π*PAHs transition. It reveals the presence of PAHs in the bulk of CAST2, CAST3 and 

CAST4, with intensities (i.e. concentrations) increasing according to CAST4<CAST2<CAST3. 

This transition is not detected in the bulk of CAST1 (or is below the detection limit, estimated 

at 3% of the π* signal), as in aircraft soot. As for the surface, we can estimate for the bulk the 

fraction of sp2 carbon atoms involved in PAHs relative to the total sp2 hybridized carbon atoms 

(i.e. PAHs + graphitic carbon atoms), by calculating the intensity ratio [PAHs]bulk= 

I(π*PAHs)/{I(π*edge )+I(π*graph )+I(π*PAHs)}. We obtain [PAHs]bulk =0±3 %, 18±3 %, 32±3 % and 

7±3 % for CAST1, CAST2, CAST3, and CAST4, respectively. The PAHs concentration 

follows the trend of the thermal optical OC/TC ratios (CAST1<CAST4<CAST2<CAST3), and 

increases with the global equivalence ratios. Another feature observed on the NEXAFS data 

(Figure 5b) is the C1s→σ*defect resonance related to structural defects (shaded in violet), 

prominent for CAST2 and CAST3 and weaker for CAST1 and CAST4. It indicates that the 

crystallites of CAST2 and CAST3 have high concentrations of defects in their bulk, while those 

of CAST1 and CAST4 are less defective. If we compare the intensity of this region with that of 

aircraft soot (Figure 4b), the defect concentrations in the bulk of CAST1 and CAST4 are 
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roughly similar to that of aircraft soot, while CAST2 and CAST3 are significantly more 

defective. 

Figure 6a compares the PEY (surface) to the TEY (bulk) spectra of CAST1, CAST3 and 

CAST4 (experimental data of CAST2 proved unusable). The difference spectra (PEY-TEY) 

show that the increase in intensity observed between 287-291 eV in the PEY spectrum of 

CAST1 and CAST4  is due to more oxidation and more defects at the surface. The π*PAHs 

intensity also increases (shaded in orange Figure 6b), indicating that PAHs are more 

concentrated at the surface of these samples. This is also true for CAST1 where some PAHs are 

detected at the surface. Figure 6b presents the deconvolution of the PEY spectra with the same 

components than for the TEY data. Again, one can calculate the concentration of PAHs at the 

surface as [PAHs]surf = I(π*PAHs)/{I(π*edge )+I(π*graph )+I(π*PAHs)}. We obtained [PAHs]surf 

=4±3 %, 43±3 % and 25±3 % for CAST1, CAST3, and CAST4 respectively. As said in the 

Experimental section, the PEY signal contribute 10% to the TEY signal, and this is therefore 

also the case for the surface PAHs signal, which will contribute 10 % to the bulk PAHs signal. 

For CAST3 and CAST4, where [PAHs]bulk=32±3 and 7±3 %, respectively, the fact that 

[PAHs]bulk > 0.1x [PAHs]surf (as established before, [PAHs]surf is 43±3 % and 25±3 % for 

CAST3 and CAST4, respectively) indicates that the PAHs are necessarily present in the bulk 

and are not only located at the surface. We can also apply this type of reasoning in the case of 

CAST2, despite the fact that [PAHs]surf in unknown for this sample. Indeed, in the hypothetical 

situation where all PAHs would be at the surface and none would be present in the bulk, then 

[PAHs]surf =100% and [PAHs]bulk= 0.1x100%=10%. Since in CAST2 [PAHs]bulk =18±3 %, we 

can infer that PAHs are present in the bulk of this sample, and are not located only at the surface. 

Last, we can quantify the increase of defect concentrations at the surface from the intensity ratio 

of the *defects at 290.5 eV in PEY and in TEY, giving values of 2.5, 1.2 and 2.0 for CAST1, 
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CAST3 and CAST4, respectively. CAST3, whose graphitic planes are already very defectives 

in the bulk, are slightly more disordered at the surface, whereas CAST1 and CAST4 have twice 

more defects at their surface than in their bulk, as in aircraft soot.  

 

3.3. XPS spectroscopy 

 

Figure 7 presents the C1s XPS spectra of graphite, CAST1, CAST4 (experimental data 

of CAST2 and CAST3 proved unusable) and AS70, which is similar to AS85 and AS100 [23]. 

The data of AS70 and graphite were previously presented in ref. [23]. We have fitted the 

graphite spectrum with a single sp2 contribution at 284.5 eV and a linewidth (FWMH) of = 

0.35±0.05 eV and a Doniac-Sunjic (DS) profile (asymmetry parameter (AS) = 0.08) [59]. The 

soot spectra are fitted with a combination of a broadened sp2 peak at 284.5 eV (FWMH=0.8±0.2 

eV; DS profile with AS=0.08), and a second peak at 284.9 eV corresponding to aliphatic sp3 

carbon atoms (FWMH=1.2±0.2 eV, GL profile) [13,60,61]. The broadening of the sp2 peak 

originates from non-graphitic sp2 carbon atoms having binding energies slightly higher than in 

graphite, such as in the PAHs species [62] detected at the surface of all soot. To complete the 

fittings, it was also necessary to add a weak line corresponding to C-O bonds at 286.5 eV 

(FWMH= 1.6±0.2 eV, GL profile) and a further one corresponding to C=O bonds at 288.7 eV 

(FWMH=1.9±0.2 eV, GL profile, too weak to appear in Figure 6). Our previous XPS analysis 

of aircraft soot [23] and MiniCAST soot [25] showed that [O]/[C], the oxygen content relative 

to carbon, is indeed weak. It is 2.3±0.5 %, 1.7±0.5 % and 3.5±0.5 % for the AS70, AS85 and 

AS100 samples, and 4±0.5 % for CAST1 and CAST2, 9±0.5 % for CAST3, and 3±0.5 % for 

CAST4. The intensity ratio [aliphatic]surf= I(sp3)/{I(sp2)+I(sp3)} provides the fraction of sp3 

carbon atoms in aliphatic compounds relative to all carbon atoms at the surface. We obtain 
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[aliphatic]surf= 33±3 % and 28±3 % for CAST1 and CAST4, and [aliphatic]surf= 36±3 % for 

AS70, AS85 and AS100, respectively. The complementary ratio [PAHs+graphitic]surf= 

I(sp2)/{I(sp2)+I(sp3)} represents the amount of all sp2 carbon atoms indistinctly involved in 

PAH and in graphite, giving rise to a single sp2 peak at 284.5 eV. As explained in the 

supplementary material S2, combined with the [PAH]surf values derived from the PEY-

NEXAFS data, these ratios provide the surface composition in terms of sp2 carbon atoms in 

graphitic layers and in PAHs and of sp3 carbon atoms in aliphatic species; it also provides the 

ratio [OC/TC*]surf, a spectroscopic estimate of the organic fraction at the surface. These values 

are reported in Table S2 of the supplementary material and will be presented synthetically in 

the Discussion Section. 

 

3.4. Infrared absorption spectroscopy 

 

Figure 8 presents the infrared absorption spectra of aircraft (top) and MiniCAST (bottom) 

soot. All spectra are baseline-corrected and normalized to the integrated signal; the intensity 

between 2600 and 3800 cm-1 has been multiplied by 10 for display. All the samples contain 

aromatic species identified by an aromatic C-H stretching band (3030 cm-1), three aromatic out-

of-plane C-H bending bands (750-870 cm-1) and an aromatic C=C stretching band (1580 cm-1). 

They also contain aliphatic chains revealed by the CH2 and CH3 stretching bands around 2900 

cm-1, as reported in previous FTIR studies of various soot [63]. In aircraft soot, these bands are 

more intense than the aromatic C-H stretching band, showing that aliphatics are more abundant 

than aromatics (see below). In MiniCAST soot, the aromatic stretching band is equal or more 

intense than the aliphatic ones. In the 1000-1800 cm-1 region lie the stretching bands of C-O-C 

groups in ethers (1070-1240 cm-1), those of C-OH groups in alcohols (1015-1200 cm-1) [64], 
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that of C=C groups in aromatics (1580-1590 cm-1), and that of C=O groups in carbonyls (1710 

cm-1). The weakness of this latter band is an indication of the weak oxidation of soot, as already 

observed with XPS. The O-H stretching vibrations of hydroxyl groups such as in acid, alcohol 

or phenol groups are located between 3100 cm-1 and 3600 cm-1. These bands are usually of 

medium-to-strong intensity, and their low intensity in our samples further indicates the low 

oxidation of our samples. The analysis of the band intensities in the 2800-3600 cm-1 region 

provides the length of the aliphatic chains (supplementary material S3). This length is almost 

constant in the MiniCAST samples (2.2 carbon atoms in average), indicating that the nature of 

the aliphatic species in soot is quite independent of the burning conditions. In aircraft soot the 

chain length varies with the engine regime (from 3.5 to 5.7 carbon atoms), with no clear 

correlation. From a series of alkylbenzene molecules used as references, we found that the 

infrared absorbance of a C-H bond is almost equal whether it is located in an aromatic or an 

aliphatic group (supplementary material S4). We can thus relate the intensity of each 

stretching band to a number of sp3 aliphatic carbon atoms and a number of sp2 aromatic carbon 

atoms. It provides the carbon sp2/sp3 hybridization ratios in the organic phase, which can be 

combined with the [PAHs]bulk values derived from TEY-NEXAFS to provide the carbon 

speciation in the bulk of soot in terms of sp2 carbon atoms in graphitic layers and PAHs, and 

sp3 carbon atoms in aliphatic species (supplementary material S5). It also provides a 

spectroscopic estimate of the OC/TC ratio, called [OC/TC*]bulk. These values are reported in 

Table S5 of the supplementary material and will be presented synthetically in the next 

Section. 

 

4. DISCUSSION 
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Figure 9 presents (a) the thermal-optical OC/TC and the spectroscopic [OC/TC*]bulk 

ratios (except for AS30), Dg the gyration diameter mode values of the aggregates, Dpp the 

diameter mode values of the primary particles, and Lc the length mode values of the crystallites 

(x10 for display); (b) the carbon speciation of the bulk in terms of graphitic, PAHs and aliphatic 

carbon atoms, and the spectroscopic [OC/TC*]bulk ratio (as listed Table S5); (c) the carbon 

speciation of the surface and the spectroscopic [OC/TC*]surf ratio (except for CAST2 and 

CAST3), as listed Table S2.  

Figure 9a shows that MiniCAST soot having high OC/TCs (CAST2, CAST3) has larger 

aggregates and larger primary particles, in agreement with previous works [24,27,33]. CAST4 

and CAST1 soot are the closest to aircraft soot collected at engine regimes ≥ 70%F00. CAST4 

soot has primary particles diameter close to aircraft soot, but slightly smaller crystallite length 

and significantly larger aggregates. CAST1 has larger primary particles than CAST4 since it 

has been produced under diluted fuel conditions [24]. This strongly impacts the optical 

properties, especially the scattering component [30], and in this regard CAST1 is not a relevant 

analogue. Conversely, MiniCAST soot produced under fuel-rich conditions (CAST2 and 

CAST3) are the farthest from aircraft soot in terms of aggregate size, primary particle diameters 

and crystallite length, which is not surprising since aircraft soot are produced under fuel-lean 

conditions [33]. Figure 9a also indicates that the spectroscopic [OC/TC*]bulk values follow the 

same trend than the thermal-optical OC/TC ratios. However, the thermal-optical OC/TC ratio 

clearly overestimates the OC content in soot with the highest organic content, of about a factor 

of 2 for CAST2 and CAST3. Soot with high OC/TC ratios has very defective graphitic layers 

(see NEXAFS results), which may readily decompose at the first stage of the IMPROVE 

protocol (annealing under helium at 580°C). The carbon volatilized from these fragile 

crystallites is thus accounted for the OC content rather than for elemental carbon, increasing 
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the OC/TC ratio. Figure 9b indicates that aircraft and MiniCAST soot is mostly graphitic with 

a variable fraction of organic phase, made of aliphatic and aromatic (PAHs) compounds. In 

aircraft soot and CAST1 soot, we have seen from NEXAFS spectroscopy that the PAHs are 

only located at the surface (as indicated by  in Figure 9b). Since aliphatic compounds cannot 

remain condensed though van der Waals interactions at the high temperatures of the flame [65], 

they must be covalently bound to PAHs, or to the graphitic layers. The surface composition is 

more precisely described in Figure 9c. The surface of aircraft soot is balanced between a 

graphitic and an organic phase having aliphatics 2-3 times more abundant than PAHs, 

depending on the sample. Aircraft soot can be described as a graphitic core coated by an 

ultrathin layer (1-2 atomic layers, as probed by NEXAFS and XPS) mixing small defective 

graphitic layers, PAHs and aliphatics connected to them. MiniCAST soot produced in fuel-lean 

condition (CAST1) has almost the same chemical structure than aircraft soot, with a slightly 

more graphitic surface and shorter aliphatic chains. Such  particles with graphitic cores covered 

by organic shells have been evidenced in nascent soot of premixed ethylene flame [63], and in 

a coflow diffusion flame of Jet A-1 surrogate [43,65]. MiniCAST soot generated in fuel-rich 

conditions (CAST2, CAST3) is another case. In such conditions the fuel pyrolysis is 

incomplete, and oxidation rates and formation temperatures are lower. Thanks to a higher 

oxidation air flux, CAST2 is more graphitic (with larger crystallites) and less organic than 

CAST3. The bulk of these two soot samples is a mixture of graphitic crystallites and matrix-

bonded organic compounds – mostly aromatic- distributed throughout the particle, a chemical 

structure that is strongly different from aircraft soot at regimes ≥ 70% F00.  Figure 10 presents 

a plausible structure of a crystallite of the bulk (bottom) and at the surface (top) of AS70 soot 

(left) and CAST4 soot (right). These structures are optimized with Hyper-Chem™ using 

molecular classical mechanics calculations with a MM+ force field. For both soot, this 
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representation respects the size of the crystallites, the carbon speciation of the bulk and the 

surface in terms of graphitic, PAHs and aliphatic carbon atoms (neglected in the bulk of 

CAST4), the length of the aliphatic chains, and the low carbon oxidation provided by the 

[O]/[C] ratio, which, for simplicity, are considered the same for the bulk and the surface. The 

fact that in both soot, the crystallites at the surface are twice more disordered than in the bulk 

is also accounted. We assume that the surface defects provide further sites to bind the organic 

species, in addition to the edge sites. 

 

4. SUMMARY and CONCLUSION 

 

1/ A first part of this study focused on aircraft soot emitted by the SaM146 jet engine. 

Compared to our previous work [23], a more precise description of the physico-chemical 

structure of soot emitted at engine regimes ≥ 70% F00 has been obtained by coupling TEM, 

NEXAFS and XPS methods to new FTIR measurements. It shows that aircraft soot is made of 

compact fractal aggregates (1.7 ≤ Df ≤1.9) with gyration diameter Dg (mode value) ranging 

between 27.4 nm and 41.7 nm, made of small primary particles with diameters around 13 nm 

themselves made of concentrically arranged, small defective graphitic layers of about 3 nm in 

length. The chemical composition of the bulk of the primary particles is essentially that of pure 

graphite, and their surface (1-2 outmost atomic layers) is made for half of defective graphitic 

crystallites, and the other half of organic compounds covalently connected at the edge or at 

defects of the graphitic crystallites. This organic phase is mainly constituted by linear aliphatic 

hydrocarbons with chain lengths of about 5 carbon atoms. Furthermore, the surface of aircraft 

soot at the studied regimes (> 70%F00) is only poorly oxidized ([O]/[C] <3.5 %). Soot emitted 
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at cruise regime and soot emitted at climb-out (85% F00) and take-off regimes (100% F00) are 

very similar.  

2/ A second part of this study focused on laboratory-generated MiniCAST soot produced 

at four setpoints characterized by different fuel-air equivalence ratios, from fuel-lean to fuel-

rich flame conditions. Soot generated under fuel-lean and stoichiometric conditions are the most 

similar to aircraft soot (although there are some differences), while soot generated in fuel-rich 

conditions is very dissimilar to aircraft soot. Irrespective of the flame conditions, MiniCAST 

soot is made of compact fractal aggregates, but with gyration diameters 2-3 times larger than 

aircraft soot, and more broadly distributed. MiniCAST soot has also larger primary particles 

than aircraft soot, except for CAST4. MiniCAST soot has a similar turbostratic structure than 

aircraft soot, with, however, shorter crystallites. CAST3 is a separate case, having strongly 

disordered primary particles made of very short crystallites. In terms of chemical structure, the 

bulk of MiniCAST soot generated in fuel-lean (CAST1) and stoichiometric (CAST4) 

conditions is essentially graphitic, as aircraft soot. The organic phase is located in an ultrathin 

surface layer covering the graphitic core. The carbon speciation of the surface of CAST4 is the 

closest to aircraft soot. On the other hand, soot generated in fuel-rich conditions (CAST2 and 

CAST3) have a bulk composition very different from aircraft soot emitted at regimes ≥70% F00. 

The bulk of these particles mixes very defective graphitic crystallites and matrix-bonded 

organic compounds, more (CAST2) or less (CAST3) structurally organized. This high organic 

carbon content is typical of soot formed in fuel-rich conditions resulting in lower temperature, 

where fuel pyrolysis is incomplete. In line with this point, we have also observed that the PAHs 

content in the bulk of MiniCAST soot increases with the global equivalence ratio. Fuel-rich 

conditions might be an interesting possibility for simulating the more organic aircraft soot 

emitted at low engine regime (≤30% F00).  
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3/ In conclusion, the nanoscale properties of MiniCAST soot emitted under near-

stoichiometric and fuel-rich conditions are different from those of aircraft soot at high engine 

regimes ( ≥70% F00). A better agreement is found with MiniCAST soot generated under fuel-

lean conditions, in line with the recent study of Saffaripour et al. [33]. However, differences are 

highlighted when using characterization techniques providing an extremely accurate 

description of the nanostructure and the chemical composition of soot, which makes the 

validation of an analogue very constraining, as in the present work. Thus, seen up close, we can 

say that our attempt to produce aircraft soot analogues with the MiniCAST burner is not entirely 

satisfactory. CAST4 matches quite well - but not perfectly - some of the structural parameters 

(Df, Dpp and Lc) and the chemical structure of the surface of aircraft soot, especially those 

emitted at cruise regime (AS70). It could be used as surrogates for studying some of the physical 

or chemical properties of aircraft soot, if this imperfect agreement is not critical for the studied 

properties. In particular, it might be used to study the heterogeneous interactions of aircraft soot 

with water in order to understand their ice nucleation properties at the molecular level, keeping 

in mind, however, that there are still some differences, for example in the aliphatic chain lengths 

or in the PAH concentrations, as illustrated in Figure 10. Furthermore, the gyration diameter 

of CAST4 is quite far from aeronautical soot, which makes it irrelevant for optical studies, 

where the size of the aggregate is of prime importance.  

This work shows the importance of going down to the molecular level to validate or not 

an analogue of aircraft soot. It also gives suggestions for improving the development of 

analogues with the MiniCAST source: minimizing the organic content, and, above all, reducing 

the size of the aggregates. Last, our study shows that the thermal-optical method strongly 

overestimates the organic content in organic-rich soot of a factor of about 2 (the agreement is 



22 
 

better for more graphitic soot), calling for an adaptation of this measurement for aircraft soot 

especially at low engine regimes, or to use alternative methods. 
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FIGURE CAPTIONS 

 

Figure 1. TEM images of aircraft soot emitted at 30%, 70%, 85% and 100% F00 operating 

regimes and MiniCAST soot at four different set points. 

 

Figure 2. (a) Gyration diameter of the aggregates, (b) diameter of the primary particle and 

(c) crystallite length distributions of aircraft (left) and MiniCAST soot (right). 

 

Figure 3. High-magnification TEM images revealing the inner structure of aircraft and 

MiniCAST soot. 

 

Figure 4. a) TEY (bulk) carbon K-edge NEXAFS spectra of AS70 aircraft soot and graphite 

(HOPG); (b) Spectral deconvolution of AS70; (c) PEY (surface) vs. TEY (bulk) spectra, and 

their difference (PEY-TEY). 

 

Figure 5. a) Bulk (TEY) NEXAFS spectra of MiniCAST and AS70 soot (in black); b) 

spectral deconvolution of the spectra of MiniCAST soot 

 

Figure 6: a) surface (PEY, open circles) vs. bulk (TEY) NEXAFS spectra of MiniCAST 

soot TEY, and difference spectra (PEY-TEY); b) spectral deconvolution of the PEY spectra. 

 

Figure 7. XPS C1s spectra of graphite, CAST1, CAST4 and AS70, deconvoluted in C sp2, 

C sp3, C-O (and C=O, too weak to appear in the figure). 

 

Figure 8. Infrared spectra of aircraft (top) and MiniCAST (bottom)  soot. 

 

Figure 9. (a) OC/TC, [OC/TC*]bulk, Dg, Dpp, and Lc (x10); (b ) bulk and (c) surface carbon 

speciation. 

 

Figure 10. Schematic representation of the crystallites in the bulk (bottom) and at the surface 

(top) of AS70 (left) and CAST4 (right) and soot particles: carbon is in black, hydrogen in white, 

oxygen in red.  
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