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Abstract

Deep learning is at the core of recent spoken language un-
derstanding (SLU) related tasks. More precisely, deep neu-
ral networks (DNNs) drastically increased the performances of
SLU systems, and numerous architectures have been proposed.
In the real-life context of theme identification of telephone con-
versations, it is common to hold both a human, manual (TRS)
and an automatically transcribed (ASR) versions of the conver-
sations. Nonetheless, and due to production constraints, only
the ASR transcripts are considered to build automatic classi-
fiers. TRS transcripts are only used to measure the perfor-
mances of ASR systems. Moreover, the recent performances in
term of classification accuracy, obtained by DNN related sys-
tems are close to the performances reached by humans, and it
becomes difficult to further increase the performances by only
considering the ASR transcripts. This paper proposes to dis-
tillates the TRS knowledge available during the training phase
within the ASR representation, by using a new generative adver-
sarial network called M2H-GAN to generate a TRS-like version
of an ASR document, to improve the theme identification per-
formances.
Index Terms: Spoken language understanding, generative ad-
versarial networks.

1. Introduction
Spoken language understanding (SLU) has been massively im-
pacted by machine learning (ML) algorithms, and more pre-
cisely by deep neural networks (DNNs). Interesting solutions
have been therefore proposed for SLU in human-computer and
human-human dialogues [1, 2, 3, 4]. An important component
of this domain area is the task of topic identification in text doc-
uments [5]. As an example, this paper deals with customer care
services (CCS) in which an agent interact with a customer to
address her/his concerns and to provide a solution. The auto-
matic system is expected to correctly identifies the major theme
of the conversation from the transcriptions obtained by an au-
tomatic speech recognition system (ASR), or by human manual
transcripts (TRS). Unfortunately, TRS versions are only avail-
able at training time due to the fact that the production environ-
ment is automated, and relies on ASR transcripts. To address
this problem, various neural architectures have been developed
to directly classify the ASR transcriptions of telephone conver-
sations, based on multi-layer perceptrons and pre-trained deep
neural networks [6, 7], or convolutional neural networks [8].
Nonetheless, while such models are powerful, they are also lim-
ited by the quality of the ASR transcriptions. [9, 10] proposed
to use the knowledge available at training time through the TRS
transcriptions to enhance the input representation of the ASR
versions. This enhancement is made possible with the use of

stacked and deep stacked auto-encoders to learn a static map-
ping that projects the ASR latent space to the TRS one. Based
on the promising results observed with this approach, we pro-
pose to further investigate the distillation of the TRS knowledge
to the ASR representation with the recent generative adversarial
networks (GAN).

GANs are an active field of research and offer an interest-
ing approach that focuses on a game-theoretic method to train a
generative model [11]. Numerous architectures have been pro-
posed to address various tasks [12, 13]. From a simplified per-
spective, GANs are commonly used to learn a mapping from a
random noise space to a target one, making it possible to gener-
ate new unseen samples. In natural language processing (NLP)
tasks, the noise space is commonly replaced with a well defined
input representation, such as text written in a specific language
for neural machine translation [14]. Then, GANs are used to
project this latent representation to a different target language.
In the task of theme identification of telephone conversations
investigated in this paper, we consider the latent ASR transcrip-
tion as the noise space, and the TRS versions as the target one.
After training, the model is expected to enhance the ASR la-
tent representation with TRS knowledge, to further improve the
results when classifying the documents.

This paper proposes a task adapted model called Machine-
to-Human GAN (M2H-GAN) by merging the GAN with a
semi-supervised GAN (SGAN), to better represent and classify
telephone conversations. Therefore, the contributions of the pa-
per are:

• Introduce a new GAN architecture called M2H-GAN to
efficiently map the automatically transcribed representa-
tion of conversations, to a latent representation of their
manually transcribed version (Section 3).

• Compare the classification accuracy obtained with this
new representation to other methods on a theme identifi-
cation of telephone conversations task (Section 4).

The experiments conduced on the DECODA [15] dataset show
that the M2H-GAN reduces the performances gap in term of
classification accuracy between automatically and manually
transcribed documents by learning a robust mapping between
the two latent sub-spaces. The M2H-GAN also offers a more
stable classification process with a lowered standard deviation
with respect to results observed.

2. Related work
Generative neural models are a specific and active domain
area in the machine learning field. Recently, generative ad-
versarial networks (GANs) [11] received an astonishing inter-
est due to the remarkable results obtained in computer vision
[16, 12, 17, 18]. The ability of GANs to generate samples that
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Figure 1: Illustration of the M2H-GAN architecture at training (top) and testing (bottom) time. Red and blue lines show the ASR and
TRS representation signal. Note that the output of the generator G goes from red to blue during the training phase.

are closely-related to targets ones has also been extended to nat-
ural language processing (NLP) tasks, such as text and dialogue
generation [19, 20, 21], or neural machine translation [14, 13].
To the best of our knowledge, [13] is the most related work
to the problem addressed in this paper. Indeed, [13] proposed
a model aiming to generate sentences which are hard to be dis-
criminated from human-translated sentences. Consequently, the
GAN model is expected to learn a mapping from one language
to another one based on human manual translations. The task
considered in this paper replaces the initial language by an au-
tomatic transcription of a conversation, and the target language
by its manual transcription. Furthermore, we propose to per-
form classification on top of the generation, as driven by the
semi-supervised GAN (SGAN) approach [22]. Nonetheless,
our model uses a different architecture that does not take into
consideration the target classes when generating the samples,
since golden-targets (i.e manual transcriptions) are not avail-
able at testing time.

3. Generative neural models
In this paper a basic GAN is merged with the semi-supervised
SGAN (Section 3.1) to allow a projection of an automatically
transcribed document, to its manual transcription representation
with the Machine-to-Human GAN (M2H-GAN, Section 3.2).

3.1. Generative Adversarial Networks

In a generative adversarial network [11], two neural networks
are trained in opposition. First, a generator G outputs a fake
object named x̃ from an input random noise vector z:

x̃ = G(z) (1)

Then, a discriminatorD receives alternatively a true sample
x or a fake one x̃ from G, and outputs a probability distribution
of the input being a fake or not. During training, D tries to

maximize the log-likelihood of the correctly assigned source:

L = E[log p(real|x)] + E[log p(fake|x̃)] (2)

In the same manner, G is trained to fool D by minimiz-
ing the second term of Eq. 2. Indeed, reducing the probability
of correct classification of fake inputs increases the generating
capability of G.

Auxiliary and semi-supervised GANs [23, 22] have been
proposed to take into consideration the labels in both the gener-
ator and the discriminator to drive the generation process toward
a specific class. In an SGAN, D is trained to determine if the
input signal is fake or of a certain label. Consequently, the out-
put dimension of D is of size N + 1 with N being the number
of classes, and +1 representing the fake case. The loss function
remains unchanged. SGANs use labels to add a condition on
the generation process, making it possible to generate samples
of a specific class, such as car or bird for image generation.

3.2. Machine-to-Human representation with generative
models

We propose to merge the initial GAN with its semi-
supervised version SGAN, in a model named Machine-to-
Human GAN(M2H-GAN). An overview of the M2H-GAN ar-
chitecture is depicted in Figure 1. In M2H-GAN, x̃ is the gen-
erated representation of an automatically transcribed document
(ASR) from G, and x is the “clean” TRS version of the same
sample. D is trained to determine if the input has been gener-
ated, or belongs to a certain class (SGAN), and thus contains
N + 1 output neurons. Consequently, G is jointly trained to
map the ASR representation to a latent TRS and “clean” repre-
sentation, in order to fool the discriminator. Unlike for SGAN,
the generator of M2H-GAN does not have access to the label,
due to the fact that conversations classes are unknown during
the testing phase. This modification allows the discriminator to
have more room to discover if an input is fake or not, making it



more powerful. As a consequence, the generator must create a
more convincing representation of the ASR signal, and receives
gradients according to the label, without any conditioning on
the input. An overview of M2H-GAN is depicted in Figure 1.

4. Experiments
This section introduces the theme classification of telephone
conversations task with the DECODA dataset (Section 4.1),
alongside with the proposed representation of the document
(Section 4.2). The investigated architectures are detailled in
Section 4.3, while the observed results are reported in Section
4.4.

4.1. Spoken conversations dataset

The corpus of spoken conversations is a set of automatically
transcribed and annotated human-human telephone conversa-
tions of the Paris transportation system CCS (RATP). This cor-
pus comes from the first version of the DECODA project [15]
and is employed to evaluate the effectiveness of the proposed
M2H-GAN on a conversation theme identification task. The
DECODA corpus is composed of 1, 242 telephone conversa-
tions recorded during high traffics days in the capital, which is
equivalent to about 74 hours of signal. The dataset was split into
8 categories or dominant themes that are detailed in Table 1. An
example of a manually transcribed conversation of DECODA is
given in Figure 2.

Figure 2: Example of a human transcription of a dialogue from
the DECODA corpus for the SLU task of theme identification.

It is important to highlight the difficulty of the classification
task due to the close sub-topics that can occur within a conversa-
tion. Indeed, a customer can ask for the price of a transportation
card after a loss, and the document will be assigned to trans-
portation cards, while the vocabulary is also closely related to
lost and found. Furthermore, high word error rates (WER) are
reported on the ASR transcripts with the LIA-Speeral ASR sys-
tem [24], due to very difficult and noisy environments including
streets, buses and metros. Indeed, WERs of 45.8%, 59.3% and
58.0% are obtained on the training, validation and test sets re-
spectively. Considering the high WERs and the closely related
sub-topics within a document, it is crucial to introduce the clean
and manual transcription of the conversation information to the
training process, to build better classification systems.

Table 1: DECODA dataset.

Class Number of samples
label training development testing

problems of itinerary 145 44 67
lost and found 143 33 63
time schedules 47 7 18

transportation cards 106 24 47
state of the traffic 202 45 90

fares 19 9 11
infractions 47 4 18

special offers 31 9 13
Total 740 175 327

4.2. Abstract document representation with LDA

The latent Dirichlet allocation or LDA is an effective method
to represent documents in an unsupervised manner, as probabil-
ity distributions of hidden topics [25] in a document, and have
shown their efficiency in many previous related works [26, 6].
For the experiments described in this section, LDA models are
trained over the training set of DECODA following the stan-
dard hyper-parameters heuristic [25]. It is important to note
that two LDA models are trained with either the ASR or TRS
conversations from the training sub-set of the DECODA data-
set. Consequently, α = 50

T
, with T the number of topics, and

β = 0.01. The number T has been previously investigated for
this task in [6, 7], and is set to 25. More precisely, 10 runs of the
T = 25 LDA model are concatenated to obtain a final vector
of size 25 × 10 = 250, to alleviate any variations. Then, ev-
ery conversation is projected into the corresponding LDA space,
and is embedded in a vector of size 250.

4.3. Experimental protocol

To evaluate the effectiveness of the M2H-GAN to gener-
ate TRS-like representations of ASR transcripts, we compare
M2H-GAN to a GAN model on the theme classification of tele-
phone conversations. Deep feed-forward NNs trained on TRS
and ASR transcripts are used as baselines. We also compare
M2H-GAN to previously investigated generative models [10].
Training and testing steps are detailed in Algorithm 1, and can
be summarized as follows: 1) Train GAN or M2H-GAN mod-
els; 2) Freeze the generator and train a DNN classifier from the
generated features. Finally, Figure 1 represents the global ar-
chitecture of the model.

Algorithm 1 Training procedures.

1: procedure TRAIN GANS(Xtrs,Xasr)
2: Project Xtrs, Xasr in LDA to obtain Ztrs, Zasr .
3: Generate X̃asr with G from Zasr .
4: Train D and G based on X̃asr , Ztrs. [11].
5: procedure TRAIN DNNS(Xasr)
6: Project Xasr in LDA to obtain Zasr .
7: Generate X̃asr with frozen G from Zasr .
8: Train a DNN to classify X̃asr .

DNNs. Classifiers rely on 2 hidden layers of size 256 with
tanh activations, and a final softmax layer corresponding to the
8 themes of the DECODA dataset [15]. They are trained during
40 epochs based on the Adam optimizer [27] with vanilla hyper-
parameters and no regularization techniques. After training, the
maximum accuracy obtained on the test, alongside with the best



result w.r.t to the best validation performances are saved.
GAN. The generator is made of 2 hidden layers of size 512 and
250 (corresponding to the size of the LDA vector) with layer-
wise normalization [28] and tanh activations, while the dis-
criminator is composed of 2 layers of 128 and 8 neurons with
tanh and sigmoid activation functions. The discriminating la-
bels are smoothed by being sampled from a uniform distribution
bounded by [0.0, 0.7] for the valid ones, and by [0.7, 1.0] for the
fake ones, as proposed in [29].
M2H-GAN. The generator is identical to the GAN baseline.
The discriminator also includes a semi-supervised classification
task. Consequently, the output layer is made of 9 neurons for
the 8 themes of the DECODA framework plus the FAKE label.

Both GAN and M2H-GAN generators are trained to min-
imize the binary cross-entropy loss observed with the dis-
criminator predictions on their fake generated features, while
their discriminators maximize the binary and traditional cross-
entropy loss functions of correctly classified sources. Finally,
models are trained in an adversarial manner as proposed in [11]
during 25 epochs with SGD, no momentum, and with a learning
rate set to 0.02.

4.4. Results

Two baselines DNN classifiers (Section 4.3) are tested on both
the ASR and TRS versions of the DECODA corpus. Then,
GAN-based approaches are trained following Algorithm 1. All
the experiments are performed 10 times and averaged, to allevi-
ate variations due to the random initialization of the parameters.

Table 2 reports the average accuracies observed with the
GAN, and the more adapted M2H-GAN approaches compared
to simple DNN classifiers on the DECODA task. It is first im-
portant to note the difference in term of accuracy, between the
two baselines during the theme identification on both ASR and
TRS transcripts. Indeed, while the standard deviation remains
almost equal, both real (w.r.t to the validation set) and max test
accuracies are different. More precisely, the ASR-based DNN
obtains a real test accuracy of 83.4% compared to 88.0% for the
TRS-based DNN, representing a drop of 4.6%. This is easily
explained by the high WER observed on the ASR transcriptions
(Section 4.1), that alter significantly the LDA representation and
the final classification performances. These results support the
initial intuition that a translation of ASR documents to TRS-
like representations allow us to better identify the most related
theme of a spoken dialogue.

Table 2: Accuracies obtained by various models on the DE-
CODA corpus. “Real Test” stands for the performances ob-
served on the test set w.r.t to the validation set, while “Max
Test” are the best results obtained. Results are averaged over
10 runs. The standard deviation is computed over these runs
and concern the “Real Test” performances.

Models Data Dev. Real Test Max Test Std. Dev.
DNN TRS 92.5 88.0 88.5 0.016
DNN ASR 89.5 83.4 84.6 0.017
GAN ASR 87.0 84.1 85.2 0.012

M2H-GAN ASR 90.0 85.5 85.8 0.007

As a first step to reduce this gap, ASR transcripts inputs are
mapped to the TRS ones with a GAN. This approach obtains a
best test accuracy of 84.1% for ASR inputs, reducing the abso-
lute difference with TRS performances to 3.9%. The standard
deviation is also lowered to 0.0012, resulting in a slightly more

stable model. Validation performances are altered with an aver-
age accuracy of 87.0% compared to 89.5% and 92.5% for the
DNNs trained on the ASR and TRS respectively.

The Machine-to-Human mapping is then performed with
the M2H-GAN. The real test accuracy is increased to 85.5%,
representing a absolute gain of 1.4% and 2.1% compared to
the simpler GAN and DNN classifier respectively. The gap be-
tween the ASR classification performances and the TRS ones is
also reduced to 2.5%. It is also worth underlying that the stan-
dard deviation is halved (0.007) in comparison of all the other
models, resulting in a more robust representation of the spoken
document content.

Table 3: Accuracies obtained by proposed generative models,
compared to previous works on the DECODA corpus. “Real
Test” stands for the performances observed on the test set w.r.t
to the validation set, while “Max Test” are the best results ob-
tained. Results are averaged over 10 runs. The standard devia-
tion is computed over these runs and concerns the “Real Test”
performances

Models Data Dev. Real Test Max Test Std. Dev.
AE[10] ASR - 81 - -

DAE[10] ASR - - 74.3 -
DSAE[10] ASR 88.0 82.0 83.0 -
QDAE[30] ASR 90.0 85.2 85.2 -

GAN ASR 87.0 84.1 85.2 0.012
M2H-GAN ASR 90.0 85.5 85.8 0.007

Table 3 shows the results observed with GAN and M2H-
GAN models compared to previously investigated generative
models. Both GAN and M2H outperform the auto-encoders
(AE), denoising auto-encoders (DAE), and deep stacked auto-
encoders (DSAE) proposed in [10, 9]. Indeed, encoder and
decoder are trained jointly to minimize the reconstruction er-
ror, while the generator and discriminator are trained on differ-
ent objectives impacting on each other. M2H-GAN also give
better results than the recent quaternion-valued denoising auto-
encoder (QDAE), despite the fact that the QDAE is based on a
better document representation and a specific segmentation with
the quaternion algebra.

5. Conclusions
Summary. This paper proposes to use the efficient gen-
erative adversarial networks to map an automatically tran-
scribed telephone conversation, to a latent representation of its
“clean” transcription from human, to better be classified by neu-
ral networks. The proposed M2H-GAN, derived from semi-
supervised GANs, is compared to common DNN classifiers and
a GAN architecture on a realistic task of theme identification
of telephone conversations. The M2H-GAN raises the classifi-
cation accuracy of the noisy ASR transcripts from 83.4% for a
straightforward DNN to 85.5%. The absolute difference with
manually transcribed document classification is therefore low-
ered to 2.5%. The model is also more robust with an halved
standard deviation over the 10 runs.
Future work. Generative adversarial networks suffer from the
fact of being a recent domain area with fewer investigations
compared to traditional methods. Therefore, a future work will
consist in investigating dedicated GAN models, to better con-
sider the structure of the documents, such as speech turns with
recurrent models. Moreover, the instability of GANs training
must be investigated in the specific context of noisy document.
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