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ABSTRACT

Deep Neural Networks (DNN) received a great interest
from researchers due to their capability to construct robust
abstract representations of heterogeneous documents in a la-
tent subspace. Nonetheless, mere real-valued deep neural
networks require an appropriate adaptation, such as the con-
volution process, to capture latent relations between input
features. Moreover, real-valued deep neural networks reveal
little in way of document internal dependencies, by only
considering words or topics contained in the document as
an isolate basic element. Quaternion-valued multi-layer per-
ceptrons (QMLP), and autoencoders (QAE) have been intro-
duced to capture such latent dependencies, alongside to rep-
resent multidimensional data. Nonetheless, a three-layered
neural network does not benefit from the high abstraction
capability of DNNs. The paper proposes first to extend the
hyper-complex algebra to deep neural networks (QDNN) and,
then, introduces pre-trained deep quaternion neural networks
(QDNN-AE) with dedicated quaternion encoder-decoders
(QAE). The experiments conduced on a theme identification
task of spoken dialogues from the DECODA data set show,
inter alia, that the QDNN-AE reaches a promising gain of
2.2% compared to the standard real-valued DNN-AE.

Index Terms— Quaternions, deep neural networks, spo-
ken language understanding, autoencoders, machine learning.

1. INTRODUCTION

Deep neural networks (DNN) have become ubiquitous in a
broad spectrum of domains specific applications, such as im-
age processing [1, 2], speech recognition [3], or spoken lan-
guage understanding (SLU) [4]. State-of-the art approaches
involve different neural-based structures to construct abstract
representations of documents in a low dimensional subspace,
such as deep neural networks [5], recurrent neural networks
(RNN)[6, 7, 8, 9], convolutional neural networks (CNN)[1],
and, more recently, generative adversarial neural networks
(GAN)[10]. However, in a standard real-valued neural struc-
ture, the latent relations between input features are difficult
to represent. Indeed, multidimensional features require to be

reduced to a one dimensional vector before the learning pro-
cess, while an appropriate solution is to process a multidimen-
sional input as a single homogeneous entity. In other words,
real-valued representations reveal little in way of document
internal structure by only considering words or topics con-
tained in the document as an isolate basic element. Therefore,
quaternion multi-layer perceptrons (QMLP) [11, 12, 13] and
quaternion autoencoders (QAE) [14] have been introduced to
capture such latent dependencies, thanks to the fourth dimen-
sionality of hyper-complex numbers alongside to the Hamil-
ton product [15]. Nonetheless, previous quaternion-based
studies focused on three-layered neural networks, while the
efficiency and the effectiveness of DNN have already been
demonstrated [16, 5].

Therefore, this paper proposes first to extend QMLPs to deep
quaternion neural networks (QDNN) for theme identifica-
tion of telephone conversations. Indeed the high abstraction
capability of DNNs added to the quaternion latent relation
representations, fully expose the potential of hyper-complex
based neural structures. Nevertheless, in [17], the authors
highlighted the non-local optimum convergence, and the high
overfitting probability of training deep neural networks. To
alleviate these weaknesses, different methods have been pro-
posed, such as adding noises during learning to prevent the
overfitting phenomenon[18], or a pre-training process to eas-
ily converge to a non-local optimum [19], with a Restricted
Boltzman Machine (RBM) [20] or an encoder-decoder neural
network (AE) [21].

The paper proposes then to compare the randomly initial-
ized QDNN with a greedy layer-wise pre-trained QDNN
using QAE, called “QDNN-AE”, to fully expose the quater-
nion deep neural structure capabilities during a SLU task.
The experiments are conduced on the DECODA telephone
conversations framework and show a promising gain of the
QDNN compared to the QMLP. Moreover, the experiments
underline the impact of pre-training with a dedicated autoen-
coder for a QDNN. Finally the proposed quaternion based
models are compared to the real-valued ones.

The rest of the paper is organized as follows: Section 2
presents the quaternion deep neural networks and quater-



nion encoder-decoders and Section 3 details the experimental
protocol. The results are discussed in Section 4 before con-
cluding on Section 5

2. DEEP QUATERNION NEURAL NETWORKS
(QDNN) AND QUATERNION AUTOENCODERS
(QAE)

The proposed QDNN combines the well-known real-valued
deep neural network ! with the Quaternion algebra. Sec-
tion 2.1 details the quaternion fundamental properties re-
quired to define and understand the QDNN algorithms pre-
sented in Section 2.2.

2.1. Quaternion algebra

The quaternion algebra Q is an extension of the complex
numbers defined in a four dimensional space as a linear
combination of four basis elements denoted as 1,i,j,k to
represent a rotation. A quaternion () is written as:

Q=rl+zi+yj+:zk (1)

In a quaternion, r is its real part while zi + yj + 2Kk is the
imaginary part (/) or the vector part. There is a set of basic
Quaternion properties needed for the QDNN definition:

e all products of i, j.k

iP=j =K =ijk=-1

e quaternion conjugate Q* of Q is: Q@ = r1l—zi—yj—zk

dot product between two quaternions ()1 and Qo is
(Q1,Q2) =r1m2 + 122 + Y1y + 2122

e quaternion norm: |@Q] = \/r2 +a24y2 4 22

normalized quaternion Q< = I%I

Hamilton product ® between ()1 and @5 encodes latent
dependencies and is defined as follows:

Q1 ® Q2 =(r172 — 122 — Y1Y2 — 2122)+
)i+
)i+
T1z2 + T1y2 — 172 + 21m2)k - (2)

=(
(rizo + 2172 + Y122 — 2192
(r1ya — x122 + Y172 + 2122
(

This encoding capability has been confirmed by [22].
Indeed, the authors have demonstrated the rotation,
transformation and scaling capabilities of a single
quaternion due to the Hamilton product. Moreover,
it performs an interpolation between two rotations fol-
lowing a geodesic over a sphere in the R? space.

A multilayer perceptron (MLP) with more than one hidden layer

Given a segmentation S = {si, s9, 83,84} of a document
p € P depending on the document segmentation detailed
in [12] and a set of topics from a latent Dirichlet allocation
(LDA) [23] z = {21,..., 2i,- .-, 2T}, each topic z; in a doc-
ument d is represented by the quaternion:

Qp(z) = g = p' (z)1 + 2 ()i + 2 (2)] + 2 (2)k (3)

where z"(z;) is the prior of the topic z; in segment s,,
of a document p as described in [12]. This quaternion is then
normalized to obtain the input Q5 (z;) of QMLPs.

More about hyper-complex numbers can be found in [24,
25, 26] and more precisely about quaternion algebra in [27].

2.2. Deep Quaternion Neural Networks (QDNN)

This section details the QDNN algorithms and structure (Fig-
ure 1). QDNN differs from the real-valued DNN in each
learning subprocess, and all elements of the QDNN (inputs
Qp, labels ¢, weights w, biases b, outputs v, ...) are quater-
nions:

t = outputs = [y,

I3

@, = inputs = [;

Fig. 1. Illustration of a Quaternion Deep Neural Network with
2 hidden layers (M = 4).

Activation function

The activation function £ is the split [11] ReLU function (),
applied to each element of the quaternion @ = 1+ zi+yj+
zk as follows:

fz) = a(r)l + a(@)i+a(y)j + a(z)k €y

Where o is
a(zr) = Max(0,x) Q)

Forward phase

Let IV; be the number of neurons contained in the layer [ (1 <
I < L) and L be the number of layers of the QDNN including
the input and the output layers. 6., is the bias of the neuron n
(1 < n < N)) from the layer [. Given a set of P normalized
quaternion input patterns Q) (1 < p < P, denoted as @,
for convenience in the rest of the paper) and a set of labels



t, associated to each input Q,, the output v, (79 = Q) and
M = t,) of the neuron n from the layer [ is given by:

v, = B(S)
Ni—1
with S, = > " wl,, @4kt 46, (6)
m=0

Learning phase

The error e observed between the expected outcome y and
the result of the forward phase v, is then evaluated for the
output layer (I = M) as follows:

¢ =t = (7)
and for the hidden layer (2 <[ < M — 1)
Nipq
e =Y witt @t (8)
h=1
The gradient § is computed with
oB(SL) 9B(Sh) 1, ifSL >0
oL = el x 2 where =37 " 9
noon oSk oSk, 0, otherwise ©
Update phase

The weights w/, ,,, and the bias values 6!, have to be respec-
tively updated to @, ,,, and 8

Wy = Wh ,, + €61, ® B*(S),) (10)
oL, = 0. + ol . (11)

n —

2.3. Quaternion Autoencoder (QAE)

The QAE [14] is a three-layered (M = 3) neural network
made of an encoder and a decoder where N; = N3 as de-
picted in Figure 2. The well-known autoencoder (AE) is ob-
tained with the same algorithm than the QAE, but with real
numbers, and the Hamilton product is replaced with the mere
dot product.

Given a set of P normalized inputs @, (1 < p < P), the
encoder computes an hidden representation [y of @),, while
the decoder attempts to reconstruct the input vector ), from
this hidden vector from [, to obtain the output vector Qp. The
learning phase follows the algorithm previously described in
Section 2.2. Indeed, the QAE attempts to reduce the recon-
struction error eysg between Qp and @), by using the tradi-
tional Mean Square Error (MSE) [19] between all m (1 <
m < Nj) quaternions (), and estimated Qm composing the

pattern Q:
emsE(Qm, Qm) = |Qm — Quml|? (12)

to minimize the total reconstruction error Lysg

1 -
Lvsg = F Z Z eMSE(QTfM Qm)- (13)

peEP meM

Q, = outputs = I3

Q, = inputs = [;

Fig. 2. Illustration of a quaternion autoencoder.

2.4. QDNN initialized with dedicated QAEs

Deep neural networks learning process is impacted by a wide
variety of issues related to the large number of parameters [3],
such as the vanishing or exploding gradient, and the over-
fitting phenomenon. Different techniques have been proposed
to address thes drawbacks [18, 28, 29, 30]: additive noises,
normalization preprocessing, adaptive learning rates, and
pre-training. The pre-training process allows the neural net-
work structure to converge faster using a pre-learning phase
in an unsupervised task, to a non-local optimum. Indeed,
an autoencoder is employed for learning the weight matrices
composing the QDNN, except the last one that is randomly
initialized, as illustrated in Figure 3-(b)-(c). Therefore, the
auto-encoded neural networks (DNN-AE, QDNN-AE) are
able to map effectively the initial input features in an homo-
geneous subspace, learned during an unsupervised training
process with dedicated encoder-decoder neural networks.

t = outputs = [y, Iy

(000000]  (0O00OO0)
@, = inputs = [; Qp
(a) (b) (©)

Fig. 3. Illustration of a pre-trained Quaternion Deep Neu-
ral Network (a) based on 2 dedicated Quaternion encoder-
decoders (b-c).

3. EXPERIMENTAL PROTOCOL

The efficiency and the effectiveness of the proposed QDNN
and QDNN-AE are evaluated during a spoken language un-



derstanding task of theme identification of telephone conver-
sations described in Section 3.1. The conversations data set is
from, the DECODA framework detailed in Section 3.2. Sec-
tion 3.3 expresses the dialogue features employed as inputs
of autoencoders as well as the configurations of each neural
network.

3.1. Spoken Language Understanding task

The application considered in this paper, and depicted in Fig-
ure 4, concerns the automatic analysis of telephone conversa-
tions [31] between an agent and a customer in the call center
of the Paris public transport authority (RATP) [32]. The most
important speech analytics for the application are the con-
versation themes. Relying on the ontology provided by the
RATP, we have identified 8 themes related to the main rea-
son of the customer call, such as time schedules, traffic states,
special offers, lost and found,...

A conversation involves a customer, which is calling from
an unconstrained environment (typically from train station or
street, by using a mobile phone) and an agent which is sup-
posed to follow a conversation protocol to address customers
requests or complains. The conversation tends to vary accord-
ing to the model of the agent protocol. This paper describes a
theme identification method that relies on features related to
this underlying structure of agent-customer conversation.

Here, the identification of conversation theme encounters
two main problems. First, speech signals may contain very
noisy segments that are decoded by an Automatic Speech
Recognition (ASR) system. On such difficult environments,
ASR systems frequently fail and the theme identification
component has to deal with high Word Error Rates (WER
~ 49%).

Second, themes can be quite ambiguous, many speech
acts being theme-independent (and sometimes confusing) due
to the specificities of the applicative context: most of con-
versations evoke traffic details or issues, station names, time
schedules, etc... Moreover, some of the dialogues contain sec-
ondary topics, augmenting the difficulty of dominant theme
identification. On the other hand, dialogues are redundant
and driven by the RATP agents which try to follow, as much
as possible, standard dialogue schemes.

3.2. Spoken dialogue data set

The DECODA corpus [32] contains human-human telephone
real-life conversations collected in the Customer Care Ser-
vice System of the Paris transportation system (RATP). It is
composed of 1,242 telephone conversations, corresponding
to about 74 hours of signal, split into a train (train - 739 di-
alogues), a development (dev - 175 dialogues) and a test set
(test - 327 dialogues). Each conversation is annotated with
one of the 8 themes. Themes correspond to customer prob-
lems or inquiries about itinerary, lost and found, time sched-
ules, transportation cards, state of the traffic, fares, fines and

special offers. The LIA-Speeral Automatic Speech Recogni-
tion (ASR) system [33] is used for automatically transcribing
each conversation. Acoustic model parameters are estimated
from 150 hours of telephone speech. The vocabulary contains
5,782 words. A 3-gram language model (LM) is obtained
by adapting a basic LM with the training set transcriptions.
Automatic transcriptions are obtained with word error rates
(WERS) of 33.8%, 45.2% and 49.% on the train, development
and test sets respectively. These high rates are mainly due to
speech disfluencies in casual users and to adverse acoustic en-
vironments in metro stations and streets.

Agent: Hello

Customer: Hello

Agent: Speaking...
Customer: | call you because

| was fined today, but | still @
have an|Imagine card

suitable for zone 1 [.:].I forgot

to use my[Navigo cardffor- .. H

zone 2 . " Transportation
Agent: You did not use cards

Agent

N

> -
~

why they give you a fine not Customer
for a zone issue [...]
Customer: Thanks, bye

Agent: Bye

Fig. 4. Exemple of a dialogue from the DECODA corpus for
the SLU task of theme identification. This dialogue has been
labeled by the agent as “OBJECTS” (Lost & founds objects).

3.3. Input features and Neural Networks configurations

The experiments compare our proposed QDNN, QDNN-
AE with DNN, DNN-AE based on real-numbers and to the
QMLP[12], MLP made of a single hidden layer.

Input features: [12] show that a LDA [23] space with 25
topics and a specific user-agent document segmentation in-
volving the quaternion @ = rl1 + zi + yj + zKk to be build
with the user part of the dialogue in the first complex value
x, the agent in y and the topic prior of the whole dialogue
on z, achieve the best results on 10 folds with the QMLP.
Therefore, we keep this segmentation and concatenate the
10 representations of size 25 in a single input vector of size
Qp = 250. Indeed, the compression of 10 folds in a single
input vector gives to the QDNNs more features to generalize
patterns. For fair comparison, a QMLP with the same input
vector is tested.

Neural Networks configurations: First of all, the appropri-
ate size of a single layer for both DNN (MLP) and QDNN
(QMLP) have to be investigated by varying the number of
neurons N before extending to multiple layers. Different
QMLP, MLP have thus been learned by fluctuating the hid-



den layer size from 8 to 1024. Finally we trained multiple
DNN and QDNN by varying the number of layers from 1
to 5. Indeed, it is not straightforward to investigate all the
possible topologies using 8 to 1024 neurons in 1 to 5 layers.
Therefore, each layer contains the same fixed number of neu-
rons. During the experiments, a dropout rate of 50% is used
for each layer to prevent overfitting.

4. EXPERIMENTAL RESULTS

Section 4.1 details the experiments to find out the “op-
timal” number of hidden neurons /N; with a real-valued
(MLP) and a quaternion-valued (QMLP) neural networks.
Then, DNN/QDNN and their pre-trained equivalents DNN-
AE/QDNN-AE are compared in Section 4.2. Finally, perfor-
mances of all neural networks models (real- and quaternion-
valued) are depicted in Section 4.3.

4.1. QMLP vs. MLP

Figure 5 shows the different accuracies obtained on the devel-
opment and test data sets, with a real-valued and a quaternion
based neural networks, composed with a single hidden layer
(M = 3). To stick with a realistic case, the optimal neu-
rons number in the hidden layer is chosen with respect to the
results obtained on the development data set, by varying the
number of neurons in the hidden layer. The best accuracies
on the development data set for both MLP and QMLP are
observed with an hidden layer composed with 512 neurons.
Indeed, the QMLP and MLP reach an accuracy of 90.38%
and 91.38% respectively. Moreover, both MLP and QMLP
performances go down since the hidden layer contains more
than 512 neurons.

0 Ll L -

—QMLP
- MLP ||

86 -| -

2 | —QMLP]} {

80 T T T TT T T T
8 256 512 1024 8 256 512 1024

Fig. 5. Accuracies in % obtained on the development (left)
and test (right) data sets by varying the number of neurons in
the hidden layer of the QMLP and MLP respectively.

4.2. Quaternion- and real-valued Deep Neural Networks

This Section details the performances obtained for both DNN,
QDNN, DNN-AE and QDNN-AE for 1,2, 3,4 and 5 layers
composed of 512 neurons.

DNN vs. QDNN randomly initialized. Table 1 and 2 show
the performances obtained for the straightforward real-valued
and the proposed quaternion deep neural networks trained
without autoencoders and learned with a dropout noise [18]
to prevent overfitting.

The “Real Test” accuracies observed for the Test data set
are obtained depending on the best accuracy reached on the
Development data set.

The “Best Test” accuracy is obtained with the best con-
figuration (number of hidden neurons for the MLP/QMLP or
number of hidden layers for the DNN/QDNN) on the Test
data set.

Topology || Dev | Best Test. | Real Test | Epochs
2-Layers | 91.38 84.92 84.30 609
3-Layers || 90.80 84 84 649
4-Layers | 86.76 85.23 82.39 413
5-Layers | 87.36 80.02 77.36 728

Table 1. Summary of accuracies in % obtained by the DNN

It is worth emphasizing that, as depicted in Table 1, the re-
sults observed for the DNN on the development and test data
sets drastically decrease while the number of layer increases.
This is due to the small size of the training data set (739 doc-
uments). Indeed, there is not enough patterns for the DNN
to construct a high abstract representation of the documents.
Conversely, Table 2 shows that the proposed QDNN achieves
stable performances with a standard deviation of barely 0.6
on the development set while the DNN gives more than 2.0.
Indeed, the DNN accuracies move down from 85% with 2/3/4
hidden layers, to 80% with 5 hidden layers. This can be easily
explained by the random initialization of the large number of
neural parameters, that makes difficult DNNs to converge to
a non-local optimum. Indeed, the Hamilton product of the
QDNN constraint the model to learn the latent relations be-
tween each component. Therefore the best DNN results are
observed with only 2 hidden layers with 91.38% and 84.30%,
while the QDNN obtains 92.52% and 85.23% with 4 layers
for the development and test data sets respectively. Finally,
the QDNN converged about 6 times faster than the DNN with
the same topology (148 epochs for the QDNN and 728 for
the DNN composed with 5 hidden layers for example).

DNN vs. QDNN initialized with dedicated encoder-
decoders. Table 3 and Table 4 expose the obtained pre-
trained QDNN-AE results with dedicated autoencoders (QAE
for the QDNN and AE for the DNN). It is worth underlying
that the numbers of epochs required to converge for the DNN-



Topology || Dev | Best Test. | Real Test | Epochs
2-Layers | 91.95 86.46 84 140
3-Layers | 91.95 85.53 85.23 113
4-Layers | 92.52 86.46 85.23 135
5-Layers || 90.80 85.84 84 148

Table 2. Summary of accuracies in % obtained by the
QDNN

AE is lower than those for the DNN for all the topologies,
as depicted in Table 1. Moreover, the accuracies reported for
the DNN-AE are more stable and move up with regard to the
number of layers.

Topology || Dev | Best Test. | Real Test | Epochs
2-Layers | 90.23 84 82.46 326
3-Layers || 90.80 84.92 83.69 415
4-Layers | 91.52 85.23 84.64 364
5-Layers || 91.95 85.23 84.30 411

Table 3. Summary of accuracies in % obtained by the DNN-
AE

The same phenomenon is observed with the QDNN-AE,
but with a smaller gain for the number of epochs alongside
with better reported accuracies. Indeed, the DNN-AE gives
an accuracy of 84.30% on the test data set while the QDNN-
AE obtains an accuracy of 86.46% in real conditions with a
gain of 2.16 points.

Topology || Dev | Best Test. | Real Test | Epochs
2-Layers || 92.52 86.46 84.61 100
3-Layers || 93.57 86.23 85.83 95
4-Layers | 92.52 86.46 86.46 88
5-Layers | 93.57 86.76 86.46 132

Table 4. Summary of accuracies in % obtained by the
QDNN-AE

Overall, the pre-training process allows each model
(DNN-AE/QDNN-AE) to better perform on a theme iden-
tification task of telephone conversations. Indeed, both
DNN-AE and QDNN-AE need less epochs (and thus less
processing time) and reach better accuracies, due to their
pre-training process based on dedicated encoder-decoders to
converge quickly to an optimal configuration (weight matri-
ces w) during the fine tuning phase.

4.3. QDNN-AE vs. other neural networks

Table 5 sums up the results obtained on the theme identifi-
cation task of telephone conversations from the DECODA
corpus, with different real-valued and quaternion neural net-
works. The first remark is that the proposed QDNN-AE
obtains the best accuracy (86.46%) for both development and

test data sets compared to the real-valued neural networks
(Deep stacked autoencoder DSAE (82%), MLP (83.38%),
DNN (84%) and DNN-AE (84.3%)). Moreover, the QDNN
randomly initialized outperforms also all real-valued neural
networks with an accuracy of 85.23%. We can point out that
each quaternion-based neural networks performs better than
his real-valued equivalent thanks to the Hamilton product
(+2.61% for the QMLP for example). Finally, the QDNN
presents a gain of roughly 1.25% compared to the real-valued
DNN, and the pre-trained QDNN-AE shows an improvement
of 2.10% compared to the DNN-AE.

Models Type || Dev. | Real Test | Epochs || Impr.
DSAE[34] R 88.0 82.0 - -
MLP R 91.38 83.38 499 +1.38
QMLP Q 90.38 84.61 381 +2.61
DNN R 91.38 84 609 -
QDNN Q 92.52 85.23 135 +1.23
DNN-AE R 91.95 84.30 411 -
QDNN-AE Q 93.57 86.46 132 +2.16

Table 5. Summary of accuracies in % obtained by different
neural networks on the DECODA famework.

5. CONCLUSION

Summary. This paper proposes a promising deep neural net-
work framework, based on the quaternion algebra, coupled
with a well-adapted pre-training process made of quaternion
encoder-decoders. The initial intuition that the QDNN-AE
better captures latent abstract relations between input fea-
tures, and can generalize from small corpus due to the high
dimensionality added by multiple layers, has been demon-
strated. It has been shown that a well-suited pre-training pro-
cess alongside to an increased number of neural parameters,
allow the QDNN-AE to outperform all the previously inves-
tigated models on the DECODA SLU task. Moreover, this
paper shows that quaternion-valued neural networks always
perform better and faster than real-valued ones, achieving
impressive accuracies on the small DECODA corpus with
a small number of input features and, therefore, few neural
parameters.

Limitations and Future Work. The document segmentation
process is a crucial issue when it comes to better capture la-
tent, temporal and spacial informations, and thus needs more
investigation to expose the potential of quaternion-based
models. Moreover, such DNN algorithms are adapted from
real-based ones and do not take into account the entire set
of specificities of the quaternion algebra. Therefore, a future
work will consist in investigate different structures of neural
networks such as recurrent and convolutional, and propose
well-tailored learning algorithms adapted to hyper-complex
numbers (rotations).
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