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Sessions multi-parties réactives
Résumé : Assurer que les systèmes centrés sur la communication interagissent en accord avec un protocole
donné est un problème important et difficile à résoudre, en particulier lorsque certains composants de ces
systèmes sont réactifs ou temporisés. Pour relever ce défi, nous étudions l’intégration de primitives de
la programmation réactive synchrone (PRS) dans les calculs de sessions. Nous proposons un calcul de
sessions multi-parties enrichi avec des fonctionnalités typiques de la PRS. Dans ce calcul, les participants
d’une session peuvent diffuser des messages, se suspendre dans l’attente de messages, et également réagir
à des événements. Notre contribution principale est un système de types pour ce calcul, qui garantit deux
propriétés classiques des calculs de sessions: l’absence d’erreurs de communication et la conformité
au protocole. De plus, ce système de types assure deux propriétés liées au temps, que nous appelons
“persistance des outputs” et “gestion sans latence des inputs”. Notre système de types se démarque de
façon significative des systèmes de types de session existants, en particulier en ce qu’il rend compte de la
notion d’instant logique qui est caractéristique de la PRS.

Mots-clés : sessions multi-parties, types de session, types globaux, programmation réactive synchrone
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1 Introduction
We study the integration of synchronous reactive programming (SRP) [7, 23, 22, 8] and session-based
concurrency [18, 19]. Our goal is to devise a uniform programming model for communication-centric
systems in which some components are reactive and/or timed. Synchronous reactive programming is a
well-established model rooted on a few features: broadcast signals, logical instants, and event-based
preemption. This makes it an ideal vehicle for specifying and analysing reactive systems; programming
languages based on SRP include Esterel [4, 28], Céu [29], and ReactiveML [23]. On the other hand,
session-based concurrency is the model induced by session types [18, 19], a rich typing discipline for
message-passing programs. Session types specify protocols by stipulating the sequence in which messages
should be sent/received by participants along a channel.

The interplay of message-passing concurrency with time- and event-based requirements is very
common. In many protocols, participants are subject to time-related constraints (e.g., “the request must be
answered within n seconds”). Also, protocols may depend, in various ways, on events that trigger run-time
adaptations (e.g., “react to a timeout by executing an alternative protocol”). As a concrete example,
consider a buyer-seller protocol in which a smart fridge manages groceries on behalf of a buyer, and only
interacts with a supermarket in reaction to some event (say, “running out of milk”). Another example is an
electronic auction, where an auctioneer offers a good for sale and buyers compete for this good by bidding
the price upward. Here, the auctioneer supervises the bidding and decrees the knock-down price as soon
as a standstill is reached. Like a physical auction, the electronic auction follows a multiparty protocol in
which messages are broadcast to all participants, but they are “fetched” only by some of them. Bidders
must be able to react in real time to the offers issued by other bidders and to the auctioneer’s decisions.
These two examples are representative of a wide class of scenarios requiring both:

• the ability of broadcasting messages that are not fetched by all participants (“orphan messages”
become the norm rather than the exception) and

• a synchronous preemption mechanism, allowing participants’ behaviours to be simultaneously reset
in reaction to some event.

Unfortunately, existing frameworks based on session types lack these two key features—they are not
expressive enough to model reactive and time-dependent interactions, essential in the two examples above.
The framework in [21] handles contextual information through events, but does not support reactive
behaviour nor multiparty protocols. Models such as [6, 3, 5] account for multiparty protocols with time-
related conditions, but do not support reactive and event-based behaviours. The work [10] integrates SRP
and session-based concurrency, but it is restricted to binary session types (protocols with two participants).

To overcome the limitations of existing approaches, we propose a new typed framework for multiparty
protocols, expressive enough to support reactive, structured communications. Our framework builds on
a new process language dubbed MRS (Multiparty Reactive Sessions), which combines constructs from
(session) π-calculi with typical features of synchronous reactive languages, namely:

• Logical instants, or simply instants, which are periods in which all components compute until they
cannot evolve anymore (instants are what make SRP “synchronous”);

• Broadcast communication (instead of point-to-point communication);

• A “pause” construct, which suspends execution for the current instant;

• A “watch” construct implementing preemption, which is equipped with a standard and an alternative
behaviour that is triggered in reaction to a given event. This construct generalises the exception
mechanism provided by many programming languages, endowing it with a notion of time.

• Event emission, which is used here simply to control the watch construct.

RR n° 9270
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The operational semantics of MRS is given in a style that is typical of synchronous languages. A process
resides within a configuration with its memory and emitted events. There are two reduction relations
on configurations: the first one formalises small-step execution within an instant, until the configuration
converges, namely suspends or terminates. Suspension occurs when all participants have exercised their
right to send/receive for the current instant, or have reached a “pause” instruction. The second reduction
relation formalises how a suspended configuration evolves across different instants.

In more detail, during each instant, every participant can broadcast at most once and receive at most
once from the same sender. This is a sensible requirement to discipline interaction in a reactive setting
with valued messages. Indeed, allowing participants to broadcast multiple messages (valued events) in
the same instant would amount to collect all their values at the end of the instant; then, an additional
mechanism would be required to handle these “flattened” values and dispatch them in the expected order
to the receivers.

Our semantics for MRS satisfies (bounded) reactivity, a standard soundness property of SRP which
requires that small-step execution converges to a suspension or termination point at every instant [23].
This property, also called instantaneous convergence or instant termination in the SRP literature [30], is
key for a reactive computation to evolve through a succession of instants and thus proceed as expected.

In session-based concurrency, protocol conformance typically follows from safety and liveness proper-
ties that stipulate how processes adhere to their session types, namely: session fidelity, communication
safety, and some progress/deadlock-freedom property. In MRS, we further target the following two
time-related properties:

P1. Output persistence: Every participant broadcasts exactly once during every instant;

P2. Input timeliness: Every unguarded input is matched by an output during the current instant, if not
preceded by another input with equal source and target, or during the next instant, if not preempted.

Our main contribution is a type system, based on multiparty session types [19], that enforces session
fidelity, communication safety, as well as output persistence and input timeliness for MRS processes. One
crucial technical challenge consists in properly handling explicit and implicit pauses in MRS processes.
Explicit (or syntactic) pauses correspond to occurrences of the pause construct in processes. In contrast,
implicit (or semantic) pauses are those induced by the synchronous reactive semantics between two
broadcasts by the same participant, or between two inputs by the same participant from the same source.

Our type system relies on the usual ingredients of multiparty session types: global types entirely
describe a multiparty protocol; local types stipulate the protocol associated to each participant; a projection
function relates global and local types. However, because of the interplay between sessions and SRP,
these ingredients have rather different definitions in our framework. In particular, we require a new
pre-processing phase over global types called saturation, which complements protocols with implicit
pauses. Unique to our setting, saturation is essential to conduct our static analysis on MRS processes and,
ultimately, to reduce the conceptual gap between SRP and session-based concurrency.

The rest of the paper is organised as follows.

- Section 2 illustrates our approach by means of the auction example discussed above;

- Section 3 introduces the syntax and semantics of MRS. We prove that our model is reactive, namely
that every reachable configuration instantaneously converges in a number of steps that is bounded
by the size of the process (Theorem 2).

- Section 4 presents our type system and proves that it ensures the correctness and time-related
properties mentioned above;

- Section 6 discusses further related work and Section 7 concludes by explaining some of our design
choices and sketching some directions for future work.

RR n° 9270
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2 Two Motivating Examples
We illustrate our typed process model by formalising the two examples mentioned in Section 1. We first
present a reactive variant of the well-known Buyer-Seller protocol; then, we model the Electronic Auction
protocol.

2.1 A Reactive Buyer-Seller Protocol
Consider a scenario involving three participants: a Smart Fridge (F), a Client (C), and a Supermarket (S).
These participants interact with the following goal: F acts on behalf of C to purchase groceries from S.
Being a smart, autonomous agent, F should react whenever a low level of groceries is detected, and initiate
a protocol with S and C so as to restore a predefined level of groceries. F should obtain authorization from
C before issuing a purchase order to S.

Before formalizing this protocol as a global type with reactive constructs, we introduce global types
informally (a formal description shall be given in Section 4):

• p↑〈S,Π〉.G denotes a global type in which participant p broadcasts a message of sort S1 which will
be fetched by the participants in set Π; after that, the protocol continues as specified by G.

• µt.G represents a recursive protocol given by G, which includes occurrences of variable t.

• Given event ev, we introduce watch ev do G1 else G2 as a reactive, event-dependent global type.
This type says that protocol G1 will be executed until termination or suspension. When G1 suspends
there are two possibilities: if ev has not occurred, then the remainder of G1 is invoked again as the
governing protocol in the next instant; otherwise, as a reaction to the occurrence of ev, the protocol
G1 is discarded and G2 is invoked in the next instant.

• pause.G is also peculiar to our reactive, timed setting: it says that all participants should move to
the next instant to execute protocol G.

• end represents the terminated protocol, as usual.

We then have the following global type G, which describes the multiparty protocol between the fridge,
the client, and the supermarket. We use two events, named lf (for low food) and ok, which stands for a
confirmation event:

G = µt1.watch lf do µt2.S↑〈stat, {F}〉.F↑〈stat, {C}〉.C↑〈stat, {F}〉.pause.t2

else

S↑〈stat, {F}〉.F↑〈lst, {C}〉.C↑〈lst, {F}〉.
watch ok do pause.µt3.S↑〈stat, {F}〉.F↑〈stat, {C}〉.C↑〈stat, {F}〉.pause.t3

else

C↑〈stat, {F}〉.F↑〈lst, {S}〉.S↑〈prc, {F}〉.pause.
C↑〈stat, {F}〉.F↑〈cc, {S}〉.S↑〈iv, {F}〉.pause.t1

To describe the protocol specified by G, we spell out the instants it involves. We assume that lf is emitted
at time tlf and that ok is emitted at time tok.

1Basic types are called “sorts” here, following the terminology introduced by Milner [24] and widely adopted in the session type
literature.
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Instant t ≤ tlf : the protocol enters the ‘do’ branch of the outermost watch, which is guarded by event
lf, indicating low food levels in the fridge, and it starts executing a loop. In the body of this loop,
S sends a status update (stat) to F indicating its availability for future purchases; next, F sends
an update to C with information about the current items in the fridge (say, expiration dates), and
C answer by updating his own status; finally, a pause is reached and the presence of event lf is
checked:

1. If lf has not yet been emitted, then the ‘do’ branch is executed again in the next instant.

2. If lf is present, then the ‘else’ branch will be executed in the next instant.

Instant tlf + 1: now the ‘else’ branch of the outermost watch is executed: once again, S updates his
status; then, F sends to C a list with grocery items to buy (lst) and C can update the list with more
items. Finally, the ‘do’ branch of the innermost watch is executed, guarded by event ok, indicating a
confirmation. The pause makes the protocol move to the next instant, ensuring that the event ok
may be immediately accounted for. If ok has not been emitted, then S, F and C keep issuing their
status. Upon the emission of event ok, the innermost watch is exited and its ‘else’ branch is selected
for the next instant.

Instant tok + 1: now the ‘else’ branch of the innermost watch is executed: C updates his status, F orders
the groceries from S and gets back their price. Then the protocol moves to the next instant.

Instant tok + 2: once again, C updates his status, F sends to S the information required to complete the
payment (e.g., credit card number), and S sends back the invoice iv to F.

As usual for multiparty session types, the global type G should be projected into local types for F, S, and C,
which will be used to type-check against process implementations. In MRS, the local types are as follows:

- Local types !S.T and ?(p,S).T, represent output and input. In the former type, a value of sort S is
broadcast and then the type continues as T. In the latter, a value of sort S is received from participant
p; the type then continues as T.

- Local types pause and 〈T1,T2〉
ev specify the reactive behaviour of participants, and they are similar

to the corresponding constructs for global types.

- Type µt.T represents a recursive type, where t may occur in T.

We write Gb p to denote the local type obtained from the projection of global type G into participant p.
This way, e.g., we have the following local type for C:

Gb C= µt1.〈µt2.?(F, stat).!stat.pause.t2, ?(F, lst).!lst.〈pause.µt3?(F, stat).!stat.pause.t3, !stat.t1〉
ok
〉

lf

In Fig. 1, we show a process implementation of our protocol; it allows us to introduce some salient
constructs in MRS:

- Process s[p]!〈v〉.P represents the broadcast of value v from participant p along session s; also,
s[p]?(q, x).P represents p receiving a message coming from q along session s.

- Process pause.P suspends for the current instant, and executes P in the next instant.

- Process emit ev.P emits an event ev, visible by all participants during the current instant, and then
continues as P within the same instant.

RR n° 9270
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System = Fridge | SMarket | Client
Fridge = rec X1 .watch lf do rec X2 . s[F]?(S, x1).s[F]!〈stat〉.s[F]?(C, x2).

if (status( f ood) = 0) then emit lf.pause.X2 else pause.X2

{s[F]?(s[S], x3).s[F]!〈 f̃ ood〉.s[F]?(C, x4).

watch ok do pause.rec X3 . s[F]?(S, x5).s[F]!〈stat〉.s[F]?(C, x5).X3

{s[F]?(C, x6).s[F]!〈x̃7〉.s[F]?(s[S, x8]).pause. s[F]?(C, x9).s[F]!〈cc〉.s[F]?(S, x10).X1}}

SMarket = rec Y1 .watch lf do rec Y2 . s[S]!〈stat〉.Y2{watch ok do pause.rec Y3 . s[S]!〈stat〉.Y3

{s[S]?(F, y1).s[S]!〈price(y1)〉.pause. s[S]?(F, y2).s[S]!〈invoice〉.Y1}}

Client = rec Z1 .watch lf do rec Z2 . s[C]?(F, z2).s[C]!〈stat〉.Z2

{s[C]?(F, z4).s[C]!〈z4〉.

watch ok do emit ok.pause.rec Z3 . s[C]?(F, z6).s[C]!〈stat〉.Z3{s[C]!〈stat〉.Z1}}

Figure 1: An MRS implementation of the Reactive Buyer-Seller Protocol.

- Process watch evdoP{Q} is defined in correspondence with the local type 〈T1,T2〉
ev. This process

executes P up to termination or suspension. In the former case, the whole process disappears. When
P evolves to P′ and suspends, there are two possibilities at the end of the instant, depending on ev: if
ev has not occurred then watch ev do P′{Q} is executed in the next instant; otherwise, as a reaction
to the occurrence of ev, watch ev do P′{Q} is discarded and Q is executed in the next instant.

The protocol implementation in Fig. 1 is given by process System, which is composed of three parallel
processes (Fridge, SMarket, and Client), implementing participants F, S, and C, respectively:

Process Fridge runs a recursive loop while there is enough food: it first receives a status update from S
and broadcasts its own updates (to be received by Client); it also receives and update from Client.
Then, it checks the current level of food: if there is enough food (status( f ood) , 0), then the
status update loop is repeated. Otherwise, it emits lf, thus triggering the alternative behavior, which
consists in sending the groceries list ( f̃ ood) to Client, which in turn should answer with possible
modifications to the list and then confirm the purchase by emitting ok. The status update loop will
execute as long as ok has not occurred; when Client confirms, Fridge will first receive and status
update from the client and then send the groceries list to SMarket, which will return the total price.
Finally, another status update from the client is received and Fridge exchanges payment information
and invoice with SMarket.

Process SMarket is engaged in the update loop with Fridge until lf is emitted. Once this event occurs, the
update loop will continue until ok is detected. After confirmation, SMarket and Fridge interact to
finalize the purchasing protocol.

Process Client is similar, and takes part in the status update loop until Fridge emits lf. When this occurs,
and after having received the groceries list from Fridge, Client simply resends the list it received
without modifications and confirms the purchase (clearly, more elaborate authorisation procedures
are possible). Once SMarket and Fridge have completed the purchase, Client engages again into
the status update loop.

RR n° 9270
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Auction = Auctioneer | Bidder1 | · · · | Biddern

Auctioneer = watch bis do
(
rec X(x̃) . s[A]?(B1, bidi). · · · . s[A]?(Bn, bidn).

if
∧

i∈I(bidi = xi) then emit bis. s[A]!〈b̃id〉.X(b̃id)

else s[A]!〈b̃id〉.X(b̃id)
)
( ˜initPrice)

{s[A]!〈max( ˜bid)〉.0}

Bidderi = watch bis do
(
rec Zi(zi) . s[Bi]!〈zi〉.s[Bi]?(A, w̃).

if ( max(w̃) , zi ∧ max(w̃) + ∆i ≤ budgeti) then Zi(max(w̃) + ∆i)

else Zi(zi)
)
(initBidi)

{s[Bi]?(A, z′i ).s[Bi]!〈eog〉.0}

Figure 2: An MRS implementation of the Electronic Auction Protocol.

2.2 An Electronic Auction Protocol
We now formalise the electronic auction protocol sketched in Section 1. This example exhibits again the
distinctive features of MRS: the slicing of computation into instants, broadcast communication, and the
synchronous preemption mechanism. In addition, it illustrates the specific treatment of recursion in MRS,
and it shows how parameterised recursion may be used to transmit values across instants.

Assuming n bidders (n ≥ 2), the protocol has n + 1 participants: participant A, which is the Auctioneer,
and participants B1, . . . , Bn, which are the Bidders. Bidding rounds are represented by instants: at the start
of each instant, all the bidders send their new bids to the auctioneer, which responds by broadcasting
the new tuple of bids, whose maximum represents the current price of the good. We suppose that the
starting price of the good is the same for all bidders, i.e., initPricei = initPrice j for any i, j ∈ {1, . . . ,n};
we also suppose that each Bidderi has a maximal budget budgeti and that her initial bid initBidi is such that
initPricei < initBidi ≤ budgeti and initBidi , initBid j for i , j. Moreover, we assume that each Bidderi
bids up by a fixed amount ∆i such that ∆i , ∆ j for i , j. The two above conditions initBidi , initBid j
and ∆i , ∆ j are used to prevent equal bids from different bidders, which would make the protocol
more involved2. Then, a session s of the protocol may be described by the Auction process in Figure 2,
where σ̃ represents the tuple (σ1, . . . , σn) and for any such tuple σ̃, the function max(σ̃) is defined by
max(σ̃) = max{σ1, . . . , σn}.

Note that Auctioneer and the Bidderi have a similar structure: they consist of a watch statement
guarded by the event bis, whose main branch executes a loop and whose alternative branch does an I/O
action and terminates. The event bis (standing for “bis repetita”) is emitted by Auctioneer to signal that
the same tuple of bids has occurred twice and hence the auction is over.

Supposing event bis is emitted at instant tbis, let us see how instants build up in our protocol.

Instant t ≤ tbis : At the beginning, all participants enter the main branch of the watch guarded by event
bis, and they start executing a loop. In the body of their loop, all Bidderi broadcast their new bids
(which in the first iteration are just their initial bids initBidi), and then wait for a new tuple of bids
from Auctioneer. Now, Auctioneer inputs all the new bids from the Bidderi and compares them with

2Since multiparty session protocols are usually deterministic, if equal bids were allowed there should be some predefined criterion
to choose between them. Moreover, in a physical auction all bids must be different, since they are issued one after the other. The
requirement ∆i , ∆ j allows this to be mimicked using simultaneous bids.
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their previous bids (which in the first iteration of Auctioneer are just the initPricei). If the new bid
from each Bidderi is equal to her previous bid, then a standstill is reached and Auctioneer emits the
event bis to trigger the alternative behaviour of all participants at the next instant; then Auctioneer
broadcasts the same tuple of bids (this broadcast is required to match the expectations of the Bidderi).
Otherwise, Auctioneer simply broadcasts the new tuple of bids. In both cases, Auctioneer suspends
before starting the next iteration, because the semantic rule for recursion inserts a pause before
the next occurrence of the recursive call. After the broadcast from Auctioneer, all Bidderi fetch
the tuple of new bids and check that the maximum max(z̃) of this tuple (the best offer so far) is a
bid different from their own, and that their budget allows them to bid up; if this is the case, they
increment max(z̃) by ∆i and suspend; otherwise, they issue again their previous bid zi and suspend.
The execution goes on similarly until the tuple of bids reaches a standstill (this is ensured by the
fact that each Bidderi bids upwards by a fixed amount ∆i, while not overriding budgeti), leading
eventually to the emission of event bis by Auctioneer. At this point, all participants are deviated
from their main behaviour and their alternative behaviour is triggered at the next instant.

Instant tbis + 1 : Now Auctioneer broadcasts the knock-down price, which is received by all the Bidderi,
who then react by sending an “end of game” message. Note that, because of our hypotheses, the
knock-down price uniquely identifies the winner.

The global type for the protocol is as follows (see Section 4 for the local types):

G = watch bis do µt.B1 ↑〈int, {A}〉. · · · . Bn ↑〈int, {A}〉.A↑〈ĩnt, {B1, . . . , Bn}〉.t
else A↑〈int, {B1, . . . , Bn}〉.B1 ↑〈string, ∅〉. · · · . Bn ↑〈string, ∅〉.end

Summing Up. This example illustrates some distinctive features of our framework:

- Messages are valued events which are broadcast, hence they are not consumed when they are read;
instead, they are consumed by the passage of time, since they are erased at the end of each instant;

- Our typed calculus imposes a strong common structure in protocol participants; while this may seem
contrived, it is the source of the correctness properties enforced by our type system. For instance,
bidders who wish to drop from the auction still have to issue their last bid until the end of the auction.
This is because the bidders must match the expectations of the Auctioneer, who waits for a bid from
all bidders at each instant since she cannot foresee at which point they will give up.

- In our calculus, as in most multiparty session frameworks, the set of participants is fixed and partici-
pants cannot dynamically enter or leave a session. It is possible however that some participants may
terminate before the others, and the output persistence property is only required for nonterminated
participants (although this does not appear in the above example).

Having illustrated informally MRS and its typed system, we now introduce them formally.

3 Our Process Model: MRS
We introduce MRS, our calculus of Multiparty Reactive Sessions. It integrates constructs from Syn-
chronous Reactive Programming and from multiparty session π-calculi.
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3.1 Syntax
We assume the following basic sets: values (booleans, integers), ranged over by v, v′; value variables,
ranged over by x, y, z; and expressions, ranged over by e, e′. Expressions are built from variables and
values via standard operators, and their evaluation is terminating. A set of process variables X,Y, . . . ,
possibly parameterised by a tuple of parameters (written in this case as X(x̃) or X(ẽ)), is assumed to define
recursive behaviours. We also use two sets that are specific to multiparty session calculi [19, 14]: service
names, ranged over by a, b, each of which has an arity n ≥ 2 (its number of participants), and sessions,
denoted by s, s′. A session represents a particular activation of a service. We use p, q, r to denote generic
(session) participants. In an n-ary session, participants will often be assumed to range over the natural
numbers 1, . . . ,n (in particular, we will use this assumption when defining the operational semantics). We
denote by Π a non empty set of participants, and by Parts the set of participants of session s. Finally,
we assume a set of events Events, ranged over by ev, ev′, which will be used for defining the reactive
constructs.

Each n-ary session s has an associated set of session channels {s[1], . . . , s[n]}, one per participant:
channel s[p] is the private channel through which p communicates with other participants in session s.
We also assume a set of channel variables, ranged over by α, β, γ; we use c to range over both channel
variables and session channels.

The syntax of processes, ranged over by P,Q . . . , is given in Fig. 4. A new session s on the n-ary
service a is opened when the initiator ā[n] synchronises with n processes of the form a[i](αi).Pi, whose
channels αi then get replaced by s[i] in the body of Pi. (This synchronisation will be made precise by our
operational semantics.) The initiator ā[n] simply marks the presence of the service a, therefore it has no
continuation behaviour. Processes of the form a[i](αi).Pi are called “candidate participants” for service a.

Rather than typical point-to-point communication, we consider communication based on broadcast and
directed input. The former is denoted c!〈e〉.P: this is an “undirected output” on c, for it does not mention
any intended recipient for message e. The latter, denoted c?(p, x).P, represents the input of a message sent
by p. For simplicity we do not consider branching/selection operators here. Constructs for conditional
expressions, parallel composition are standard. and have expected meanings.

With respect to usual calculi for multiparty sessions, the main novelty in MRS is the addition of three
reactive constructs typical of synchronous languages, given on the bottom right of Fig. 4. They are:

• pause.P, which postpones the execution of P to the next instant;

• emit ev.P, which emits event ev in the current instant and then executes P;

• watch ev do P{Q}, a construct that we call “watch-and-replace”. It executes P and, in the presence
of event ev, it replaces whatever is left of P by Q at the end of the instant. P and Q are respectively
the main behaviour and the alternative behaviour of the construct.

Our watching construct is slightly more general than similar constructs in synchronous languages. Without
a sequential composition operator—not present in MRS (nor in most session calculi), but common in
synchronous languages—this added generality is actually needed. Indeed, without sequential composition
a watching statement cannot be followed by another statement; therefore, if we were to use the standard
watch evdoP construct, this would just lead to termination at the end of the instant in case ev is present.

For recursion we assume the standard guardedness condition, adapted to our language:

Definition 1 (Guardedness). A variable X is guarded in P if it only occurs in subprocesses c!〈e〉.Q or
c?(p, x).Q or emit ev.Q or pause.Q of P.

Note that the syntax of MRS is quite liberal. In particular, it allows processes with interleaved com-
munications in different sessions, such as s[1]!〈e〉.s′[1]!〈e′〉.P. However, in the rest of this paper we
focus on processes without session interleaving, and our technical treatment is developed only for them.

RR n° 9270



Multiparty Reactive Sessions 12

v ::= true | false | 1 | . . . Value
e ::= x | v | not e | e and e′ | . . . | f (x1, . . . , xn) Expression
u ::= a | s Service/Session Name
c ::= α | s[p] Channel variable/Session channel

Π ::= {p} | Π ∪ {p} Set of participants

m ::= ε | (v,Π) Message (with set of readers)
M ::= ∅ |M ∪ {c : m} c < dom(M) Memory

Figure 3: MRS: Syntax of expressions, sessions, channels, messages and memories.

P ::= ā[n] Session initiator | pause.P Pause

| a[p](α).P Session participant | emit ev.P Emit

| c!〈e〉.P Broadcast Output | watch ev do P{Q} Watch & Replace

| c?(p, x).P Input

| if e then P else Q Conditional

| P | Q Parallel

| 0 Inaction

| X(ẽ) Variable

| (rec X(x̃) .P) (ẽ) Recursion

Figure 4: MRS: Syntax of processes.

The restriction to single sessions is standard in session calculi, as interleaving introduces inter-session
dependencies that cannot be captured by session types. Moreover, interleaving would raise new issues in
our setting, particularly as regards suspension of configurations involved in more than one session.

3.2 Semantics
We present now the semantics of MRS. In SRP, parallel components communicate via broadcast events,
which may be either valued, if they carry some content, or pure. We call valued events messages, and pure
events simply events. To model broadcast communication we assume that all processes share a message
set or memory M, recording the messages exchanged in ongoing sessions during the current instant, and
an event set E, recording the events emitted during the instant. Both sets are emptied at the end of each
instant.

A memory M is a finite set of named messages c : m, where c is the name of the channel on which the
message was sent, and m is the message content: this content may be either empty or of the form (v,Π),
where v is the carried value and Π is the set of current Readers of the value. We will see in the next section
why we need to record the set Π of readers for non-empty messages. A memory M may be viewed as a
partial function from channels to messages, whose domain dom(M) = {c | ∃m . c : m ∈M} is finite.

The session memory Ms of session s has the form
⋃

i∈Parts {s[i] : mi}, where each s[i] : mi represents
the (one-place) output buffer of participant i, which contains the empty message if participant i has not
yet broadcast in the current instant, and a proper message otherwise. We shall use the following auxiliary
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P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) watch ev do 0{Q} ≡ 0
P ≡ Q ⇒ 〈P,M,E〉 ≡ 〈Q,M,E〉 C ≡ C′ ⇒ (νs)C ≡ (νs)C′

Figure 5: Structural congruence.

notations: M∅s =
⋃

i∈Parts {s[i] : ε} and M∅ = {c : ε | c ∈ dom(M)}. Fig. 3 (bottom) summarises the notation
for memories.

The sets of free names, bound names, and names of a process P, denoted respectively by fn(P), bn(P),
nm(P), are defined as usual. Assuming Barendregt’s convention, no bound name can occur free, and the
same bound name cannot occur in two different bindings.

The semantics of MRS is defined on configurations. In its simplest form, a configuration is a triple
C = 〈P,M,E〉, where P is a process, M is a memory, and E is a set of events. A configuration may also be
restricted with respect to a session name s, namely have the form (νs) C. Our semantics will not be defined
on arbitrary configurations, but only on those that may occur in the execution of a single session. Intuitively,
these are the configurations that may be reached in zero or more steps from an initial configuration, as
defined below (Def. 3). A formal definition of reachability will be given at the end of this section (Def. 4).

We first introduce the notion of sequential and session-closed process:

Definition 2 (Sequentiality and session-closedness). A process P is said to be sequential if it is built
without the parallel construct | , and session-closed if it is built without the constructs ā[n] and a[p](α).Q.

An initial configuration represents a state from which a single session may start:

Definition 3 (Initial configuration). A configuration C0 is initial if it is of the form

C0 = 〈a[1](α1).P1 | ... | a[n](αn).Pn | ā[n], ∅, ∅〉

where for each i = 1, . . . ,n, process Pi is sequential and session-closed, and c ∈ nm(Pi) implies c = αi.

We define two reduction relations on configurations, denoted −→ and ↪→E: while −→ describes the
evolution within an instant, ↪→E describes the evolution from one instant to the next one.

Reduction is defined modulo a structural congruence ≡, whose rules are given in Fig. 5 and are standard
[25]. The reduction relation −→ describes the step-by-step execution of a configuration within an instant.
It is defined by the rules in Fig. 6. Let us discuss some of them.

Rule [Init] describes the initiation of a new session s of service a among n processes of the required
form. After the initiation, participants share a private session name s, and the channel variable αp is
replaced by the session channel s[p] in each process Pp.

Rule [Out] allows a sender p to broadcast a message by adding it to the memory, if p has not already
sent a message in the current instant, namely if the output buffer of p has the form s[p] : ε. In the premise,
e ↓ v denotes the evaluation of expression e to value v. If the message can be added, its content is set to v
and its reader set is initialised to ∅.

Rule [In] allows a receiver q to fetch a message from sender p in the memory, if there exists one and if
q has not already read it, namely if q does not belong to the reader set Π of the message. If q can read the
message, then its value is substituted for the bound variable in the continuation process P, and the name q
is added to the reader set Π.

Rule [Rec] inserts a pause before each recursive call, as usual in SRP, in order to allow at most
one loop iteration at each instant and thus prevent the phenomenon known as instantaneous loop or
instantaneous divergence [30]. Although parameterised recursion is used in our examples, for the sake of
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[INIT]
〈a[1](α1).P1 | ... | a[n](αn).Pn | ā[n], ∅, ∅〉 −→ (νs)〈P1{s[1]/α1} | . . . | Pn{s[n]/αn},M∅

s , ∅〉

[OUT]
e ↓ v

〈s[p]!〈e〉.P,M∪ {s[p] : ε},E〉 −→ 〈P,M∪ {s[p] : (v, ∅)},E〉

[IN]
q < Π

〈s[q]?(p, x).P,M∪ {s[p] : (v,Π)},E〉 −→ 〈P{v/x},M∪ {s[p] : (v,Π ∪ q)},E〉

[EMIT]
〈emit ev.P,M,E〉 −→ 〈P,M,E ∪ {ev}〉

[IF-T]
e ↓ true

〈if e then P else Q,M,E〉 −→ 〈P,M,E〉

[REC]
〈P{ṽ/x̃}{(pause.rec X(x̃) .P)/X},M,E〉 −→ 〈P′,M,E〉 ẽ ↓ ṽ

〈(rec X(x̃) .P)(ẽ),M,E〉 −→ 〈P′,M,E〉

[CONT]
〈P,M,E〉 −→ 〈P′,M′,E′〉

〈E[P],M,E〉 −→ 〈E[P′],M′,E′〉
[RES]

〈P,M,E〉 −→ 〈P′,M′,E′〉

(νs)〈P,M,E〉 −→ (νs)〈P′,M′,E′〉

[STRUCT]
C ≡ C′ C′ −→ C′′ C′′ ≡ C′′′

C −→ C′′′

Figure 6: Reduction rules (with Rule [If-F] omitted).

simplicity we will focus on unparameterised recursion in the rest of the paper. Including parameters would
have no impact on our results, but it would be tedious to carry them throughout our technical development.

The evaluation contexts E used in Rule [Cont] are defined by:

E ::= [ ] | E | P | P | E | watch ev do E{Q}

Note that the watch construct behaves as a static context as far as the reduction relation is concerned:
the body of a watch process is executed up to the end of the instant, disregarding the event ev (which is
relevant only for the relation ↪→E across instants).

To define the tick transition relation ↪→E, we require two additional notions: the suspension predicate
and the reconditioning function.

The suspension predicate 〈P,M,E〉‡ (cf. Fig. 7) holds when all non-terminated components of P are in
one of the following situations:

• wanting to release the control explicitly via a pause.Q instruction;

• wanting to send a message after having already sent a message during the instant;

• awaiting a message from a participant who has not sent anything during the instant;

• awaiting a second message from the same participant during the same instant.

The reconditioning function (Fig. 8) “cleans-up” a process P and prepares it for the next instant: it
erases all guarding pauses from pause.Q processes, and triggers the alternative behaviour Q of all the
processes watch ev do P{Q} whose controlling event ev has been emitted.
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(pause)

〈pause.P,M,E〉‡

(outs)

〈s[p]!〈e〉.P,M ∪ {s[p] : (v,Π)},E〉‡

(pars)
〈P,M,E〉 ‡ 〈Q,M,E〉‡

〈P | Q,M,E〉‡

(watchs)
〈P,M,E〉‡

〈watch ev do P{Q},M,E〉‡

(ins)

〈s[q]?(p, x).P,M ∪ {s[p] : ε},E〉‡

(in2
s )

q ∈ Π

〈s[q]?(p, x).P,M ∪ {s[p] : (v,Π)},E〉‡

(recs)
〈P{ṽ/x̃}{(pause.rec X(x̃) .P)/X},M,E〉 ‡ ẽ ↓ ṽ

〈(rec X(x̃) .P)(ẽ),M,E〉‡
(congs)

C ≡ C′ C′‡

C‡

(restrs)
〈P,M,E〉‡

(νs)〈P,M,E〉‡

Figure 7: Suspension Predicate.

[P]E =



R if P = pause.R
[R]E | [Q]E if P = R | Q
Q if P = watch ev do R{Q}, ev ∈ E and R . 0
watch ev do [R]E{Q} if P = watch ev do R{Q}, ev < E
P otherwise

Figure 8: Reconditioning Function.

(TICK)
(νs)〈P,M,E〉‡

(νs)〈P,M,E〉 ↪→E (νs)〈[P]E,M∅, ∅〉

Figure 9: Tick transition.

The tick relation ↪→E applies only to suspended configurations: it formalises the passage of (logical)
time and delimits the duration of broadcast by clearing out the memory and the event environment at the
end of each instant. Formally, this relation is specified by the rule in Fig. 9, where [P]E is the reconditioning
of P with respect to E.

As usual, we use −→∗ for the reflexive and transitive closure of −→. We write{ to denote either −→
or ↪→E, and{∗ to stand for the reflexive and transitive closure of{.

The following definition of reachability characterises the configurations that may occur in the execution
of a single session.

Definition 4 (Reachable configuration). A configuration C is reachable if there exists an initial configura-
tion C0 such that C0 {∗ C.

Proposition 1. If C is a reachable configuration that is not initial, then C has the form C = (νs)〈P,M,E〉
and there exist an initial configuration C0 = 〈P0,M0,E0〉 and Pi,Mi,Ei for i = 1, . . . ,n such that
C0 { (νs)〈P1,M1,E1〉{ · · ·{ (νs)〈Pn,Mn,En〉 = (νs)〈P,M,E〉.

From now on we will focus only on reachable configurations, without explicitly mentioning it.
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3.3 Reactivity
In this section, we prove that single sessions are indeed reactive in our calculus, namely that every instant in
their execution terminates. The single-session assumption is required, as it is well-known that interleaved
sessions are subject to deadlock, and the possibility of deadlock would impair reactivity. On the other
hand, it would be easy to extend our reactivity result to a pool of disjoint sessions evolving in parallel.

We now introduce some preliminary notation. First, we define the multi-step transition relation C⇒ C′,
together with its decorated variant C⇒n C′ that keeps track of the number of execution steps between two
configurations within an instant.

Definition 5 (Multi-step transition relation). The decorated multi-step transition relation C⇒n C′ is
defined by:

C⇒0 C ( C −→ C′ ∧ C′⇒n C′′ ) ⇒ C⇒n+1 C′′

Then the multi-step transition relation C⇒ C′ is given by:

C⇒ C′ if ∃n .C⇒n C′

Next, we define the notion of instantaneous convergence, which formalises the fact that a configuration
may reach a state of termination or suspension in the current instant.

Definition 6 (Instantaneous convergence). The immediate convergence predicate is defined by:

〈P,M,E〉 ‡g if 〈P,M,E〉 ‡ ∨ (P ≡ 0)

(νs)〈P,M,E〉 ‡g if 〈P,M,E〉 ‡g

Then the instantaneous convergence relation and predicate are given by:

C ⇓ C′ if C⇒ C′ ∧ C′ ‡g C ⇓ if ∃C′ . C ⇓ C′

The annotated variants ⇓n may be defined in the obvious way:

C ⇓n C′ if C⇒n C′ ∧ C′ ‡g C ⇓n if ∃C′ . C ⇓n C′

By abuse of notation, if σ = C0 −→ · · · −→ Cn is a computation of C0 and Cn
‡

g, we shall say that the
computation σ converges (or converges to Cn).

We proceed now to prove reactivity. In fact, we shall prove a stronger property, bounded reactivity,
which says that every configuration 〈P,M,E〉 instantaneously converges in a number of steps that is
bounded by the instantaneous size of process P in memory M, denoted sizeM(P). Intuitively, sizeM(P) is
an upper bound for the number of steps that P can execute during the first instant when run in memory
M. Therefore, the idea for defining sizeM(P) is that it should not take into account the portion of P that
follows a pause instruction (a “syntactic pause”). Moreover, sizeM(P) should span at most one iteration
of recursive subprocesses, and ignore the alternative behaviour in watching subprocesses. Finally, in order
to account for implicit pauses (or “semantic pauses”), sizeM(P) should stop counting when it meets an
output on channel c, respectively an input on channel c from participant p, in both process P and memory
M.

LetM denote the set of memories.

Definition 7 (Communications and Fired channels of a memory). For any memory M ∈ M, we define:

Fired(M) = {(s, p) | ∃ v,Π. s[p] : (v,Π) ∈M}
Comm(M) = {(s, p, q) | ∃ v,Π. ( s[p] : (v,Π) ∈M ∧ q ∈ Π )}
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The above functions allow us to extract useful information from the memory: Fired(·) identifies the
participants that have sent a message in the current instant, and Comm(·) yields the pairs of participants
that have successfully communicated in the current instant.

Definition 8 (Instantaneous size). The partial function size : (P ×M)→ Nat is defined inductively by:

sizeM(0) = sizeM(X) = sizeM(pause.P) = sizeM(ā[n]) = 0
sizeM(emit ev.P) = 1 + sizeM(P)
size∅(a[p](α).P) = 1 + sizeM∅s

(P{s[p]/α}), for any s

sizeM(s[p]!〈e〉.P) =


0, if (s, p) ∈ Fired(M)

1 + sizeM′ (P),where if s[p] : ε ∈M
M′ = M{s[p] 7→ (val(e), ∅)}

sizeM(s[q]?(p, x).P) =


0, if either s[p] : ε ∈M or (s, p, q) ∈ Comm(M)
1 + sizeM′ (P{v/x}),where if s[p] : (v,Π) ∈M ∧ q < Π

M′ = M{s[p] 7→ (v,Π ∪ q)}

sizeM(if e then P1 else P2) = 1 + max{sizeM(P1), sizeM(P2)}
sizeM(P1 | P2) = sizeM(P1) + sizeM(P2)
sizeM(rec X .P) = sizeM(P)
sizeM(watch ev do P{Q}) = sizeM(P)

As mentioned previously, the function sizeM(P) yields a bound for the number of steps that a config-
uration 〈P,M,E〉 may execute before reaching a state of suspension or termination. Note that the set of
events E is irrelevant for this measure. Indeed, in our calculus (unlike in other SRP languages), the set of
events only plays a role at the end of instants, and does not affect the reduction relation.

Definition 9 (Configuration instantaneous size). The function sizeM(P) induces a function Size(C) on
configurations, defined by:

Size(〈P,M,E〉) = sizeM(P) Size((νs)C) = Size(C)

Although partial (because sizeM(P) is partial), the function Size(C) is always defined for reachable
configurations C, as established by the following lemma:

Lemma 1. Let C be a reachable configuration. Then Size(C) is defined.

Proof. We distinguish two cases, depending on whether C is initial or reachable in at least one step.

1. Let C = 〈P, ∅, ∅〉 where P = a[1](α1).P1 | ... | a[n](αn).Pn | ā[n]. Then it is immediate to see that
Size(〈P, ∅, ∅〉) = size∅(P) is defined.

2. Let C = (νs)〈P,M,E〉.There are only two possible cases where sizeM(P) may not be defined, namely
the I/O cases P = s[p]!〈e〉.Q and P = s[q]?(p, x).Q, when s[p] < dom(M). However, this cannot
happen, since C is derived from an initial configuration

C0 = 〈a[1](α1).P1 | ... | a[n](αn).Pn | ā[n], ∅, ∅〉

whose first reduction is necessarily of the form:

C0 −→ (νs)〈P1{s[1]/α1} | . . . | Pn{s[n]/αn},M∅s , ∅〉 = C1

By definition s[i] ∈ dom(Ms) for each i = 1, . . . ,n. Then we may conclude, since C1 −→
∗ C is

deduced using rules different from [INIT] and all these rules preserve dom(Ms).

�
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In the forthcoming proofs, we shall also use the following property:

Property 1. For any process P and memory M, sizeM(rec X .P) = sizeM(P{(pause.rec X .P)/X}).

Proof. Easy consequence of Def. 8, since sizeM(rec X .P) = sizeM(P) and for any process Q, we have
sizeM(pause.Q) = 0 = sizeM(X). �

Before proving reactivity we will present some auxiliary results. We first prove that sizeM(P) decreases
at each step of execution during an instant:

Lemma 2 (Size reduction during instantaneous execution). Let C be a reachable configuration. Then:

C −→ C′ ⇒ Size(C) > Size(C′)

Proof. We distinguish two cases, depending on whether C is an initial configuration or not.

1. Let C = 〈P,M,E〉. Then C −→ C′ = (νs)〈P′,M′,E′〉 is deduced by Rule [INIT]. Here C =
〈a[1](α1).P1 | ... | a[n](αn).Pn | ā[n], ∅, ∅〉 and C′ = (νs)〈P1{s[1]/α1} | . . . | Pn{s[n]/αn},M∅s , ∅〉. Then we
may conclude, since sizeM(P) =

∑n
i=1 sizeM(a[i](αi).Pi) = n+

∑n
i=1 sizeM∅s

(Pi{s[i]/αi}) = n+ sizeM∅s
(P′) >

sizeM∅s
(P′).

2. Let C = (νs)〈P,M,E〉. In this case we have (νs)〈P,M,E〉 −→ (νs)〈P′,M′,E′〉 if and only 〈P,M,E〉 −→
〈P′,M′,E′〉, and thus it is enough to prove the following statement:

If (νs)〈P,M,E〉 is reachable then 〈P,M,E〉 −→ 〈P′,M′,E′〉 implies sizeM(P) > sizeM′ (P′)

To prove this statement we proceed by induction on the inference of the transition 〈P,M,E〉 −→
〈P′,M′,E′〉, and case analysis on the last rule used in the inference. We examine the interesting cases.

• Basic cases

– Rule [OUT]. In this case we have 〈P,M,E〉 = 〈s[p]!〈e〉.Q,M′′ ∪ s[p] : ε,E〉 and 〈P′,M′,E′〉 =
〈Q,M{s[p] 7→ (v, ∅)},E〉 where e ↓ v. Then, since (s, p) < Fired(M), we have sizeM(P) =
1 + sizeM′ (Q) = 1 + sizeM′ (P′) > sizeM′ (P′).

– Rule [IN]. Here we have 〈P,M,E〉 = 〈s[q]?(p, x).P,M′′ ∪ s[p] : (v,Π),E〉 for some Π such
that q < Π, Moreover 〈P′,M′,E′〉 = 〈P{v/x},M{s[p] 7→ (v,Π ∪ q)},E〉. In this case we have
sizeM(P) = 1 + sizeM′ (P{v/x}) = 1 + sizeM′ (P′) > sizeM′ (P′).

• Inductive cases

– Rule [REC]. Here we have 〈P,M,E〉 = 〈recX .Q,M,E〉, and the reduction 〈recX .Q,M,E〉 −→
〈P′,M′,E′〉 is deduced from the reduction

〈Q{(pause.rec X .Q)/X},M,E〉 −→ 〈P′,M′,E′〉

by induction we have that sizeM(Q{(pause.rec X .Q)/X}) > sizeM′ (P′). Whence also:

sizeM(P) = sizeM(rec X .Q) = sizeM(Q{(pause.rec X .Q)/X}) > sizeM′ (P′).

– Rule [CONT]. Easy induction.
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�

We define now a specific notion of guardedness for recursive processes, which will be used in the
proofs of the next two lemmas. In the sequel, a recursive process will often be referred to as “recursive
call” or simply “call”. A recursive call that is guarded by a pause statement is said to be pause-guarded.
Formally:

Definition 10 (Pause-guardedness of recursive calls). A recursive call rec X .Q is pause-guarded in
process P if it appears within some subprocess pause.P′ of P. It is called pause-unguarded in P otherwise.

The following lemma establishes that that every reachable configuration 〈P,M,E〉 immediately con-
verges if and only if its size is equal to 0.

Lemma 3 (Immediate convergence of 0-size configurations). Let C be a reachable configuration. Then

(Size(C) = 0) ⇔ C ‡g

Proof. Note that C cannot be an initial configuration, since in this case we would have Size(C) > 0.
Hence C = (νs)〈P,M,E〉. Since Size((νs)〈P,M,E〉) = Size(〈P,M,E〉) = sizeM(P) and (νs)〈P,M,E〉 ‡g ⇔

〈P,M,E〉 ‡g, it is enough to prove the statement for C = 〈P,M,E〉.

We prove each side of the biconditional in turn:

(⇒) We proceed by simultaneous induction on the structure of P and on the number of pause-unguarded
recursive calls in P, considering only the cases for which sizeM(P) = 0. Note that the reachability
assumption rules out the cases P = X, P = ā[n] and P = a[p](α).Q, while the assumption
sizeM(P) = 0 rules out the cases P = emit ev.Q and P ≡ if e then P1 else P2.

Basic Cases

– P = 0. Then P ≡ 0 and thus 〈P,M,E〉 ‡g by definition.

– P = pause.Q. Then 〈P,M,E〉‡ by Rule (pause) in Fig. 7 and thus 〈P,M,E〉 ‡g by
definition.

– P = s[p]!〈e〉.Q. Since we assumed sizeM(P) = 0, we have (s, p) ∈ Fired(M), i.e., there
exist v,Π such that s[p] : (v,Π) ∈M. Then 〈P,M,E〉‡ by Rule (outs) in Fig. 7.

– P ≡ s[q]?(p, x).Q. Since sizeM(P) = 0, then either (s ∈ sn(M) ∧ (s, p) < Fired(M)) or
(s, p, q) ∈ Comm(M). In both cases we can deduce 〈P,M,E〉‡, respectively by Rule (ins)
and by Rule (in2

s ) in Fig. 7.

Inductive Cases

– P = P1 | P2. Since sizeM(P) = 0, we have sizeM(Pi) = 0 for i = 1, 2. By induction,
this implies 〈Pi,M,E〉‡ for i = 1, 2. Whence, by Rule (pars) in Fig. 7, we deduce
〈P1 | P2,M,E〉‡.

– P = rec X .Q. Since sizeM(P) = 0, also sizeM(Q{(pause.rec X .Q)/X}) = 0, by
Property 1. By induction on the number of pause-unguarded recursive calls, we have
therefore 〈Q{(pause.rec X .Q)/X},M,E〉‡. Whence we may conclude that 〈P,M,E〉‡,
using Rule (recs) in Fig. 7.

– watch evdoQ{R}. Since sizeM(P) = 0, we have sizeM(Q) = 0. By induction 〈Q,M,E〉‡.
Then 〈P,M,E〉‡ by Rule (watchs) in Fig. 7.
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(⇐) There are two possibilities for 〈P,M,E〉 ‡g:

1) If P ≡ 0, we proceed by induction on the definition of ≡. In essence, P ≡ 0 if and only if P is an
n-ary parallel composition whose components are either 0 or of the form watch ev doQ{R}, where
Q ≡ 0. In all cases, by Def. 8 we have sizeM(P) = 0.

2) If 〈P,M,E〉‡, we proceed by induction on the definition of the suspension predicate in Fig. 7. In
each case, the reasoning is dual to that for the (⇒) direction above.

�

There are two reasons why reactivity could fail in our calculus: 1) a process that loops forever during
an instant - what is generally called an instantaneous loop in SRP [30]; 2) a deadlock due to a mismatch
between a participant and the memory: this happens when a participant p in a session s wants to broadcast
a message while the output buffer s[p] : m is not in the memory, or to receive a message from participant
q while the output buffer s[q] : m is not in the memory. Our semantic rule for recursion is designed to
prevent instantaneous loops, and will be the key for proving Reactivity (Theorem 2). The absence of
mismatches between participants and the memory is guaranteed by the reachability assumption. The
following lemma establishes that reachable configurations are deadlock-free.

Lemma 4 (Deadlock freedom). Let C be a reachable configuration. Then either C ‡g or ∃ C′ . C −→ C′.

Proof. We distinguish two cases, depending on whether C is an initial configuration or not.

1. Let C = 〈P,M,E〉 be an initial configuration. Then there is a reduction C −→ C′ = (νs)〈P′,M′,E′〉
deduced by Rule [INIT].

2. Let C = (νs)〈P,M,E〉. Then C reduces if and only if 〈P,M,E〉 reduces and C ‡g if and only if 〈P,M,E〉 ‡g.
Hence it is enough to prove the property for 〈P,M,E〉.

We proceed by induction on the structure of P. Note that the reachability assumption rules out the
cases P = X, P = ā[n] and P = a[p](α).Q.

Basic Cases

• P = 0. Then 〈P,M,E〉 ‡g by definition.

• P = emit ev.Q. By Rule [EMIT], for any M,E we have 〈emit ev.Q,M,E〉 −→ 〈Q,M,E∪ {ev}〉.

• P = pause.Q. By Rule (pause), for any M,E we have 〈P,M,E〉‡.

• P = if e then P1 else P2. Since the evaluation of e terminates, for any M,E a reduction may be
inferred by either Rule [IF-T] or Rule [IF-F].

• P ≡ s[p]!〈e〉.Q. By the reachability condition, s[p] ∈ dom(M). There are then two possibilities:
(i) M = M′ ∪ {s[p] : ε}, in which case 〈P,M,E〉 can reduce by Rule [OUT];
(ii) M = M′ ∪ {s[p] : (v,Π)}, in which case 〈P,M,E〉‡ by Rule (outs).

• P ≡ s[q]?(p, x).Q. In this case, there are three possibilities:
(i) there is a message sent by p that participant q has not read yet, in which case the configuration
can reduce by Rule [IN];
(ii) there is no message sent by p, in which case the configuration is suspended by Rule (ins);
(iii) there is a message sent by p that participant q has read already, in which case the configuration
is suspended by Rule (in2

s ).
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Inductive cases. Straightforward, by applying the inductive hypothesis.
�

We are now ready to prove two (increasingly strong) reactivity results for reachable configurations:

1) standard reactivity, which amounts to the convergence of all computations of C within an instant;
2) bounded reactivity, which gives a bound for the number of steps of such converging computations.

Theorem 1 (Reactivity). Let C be a reachable configuration. Then C ⇓.

Proof. Every sequence of consecutive reductions of C must be finite, because Size(C) is defined by
Lemma 1, and it strictly decreases along execution by Lemma 2. Moreover, no derivative of C may be
deadlocked, by Lemma 4. Hence the size of the configuration eventually becomes 0 and the resulting
configuration immediately converges by Lemma 3. �

We proceed now to prove bounded reactivity, namely that every reachable configuration C instanta-
neously converges in a number of steps that is bounded by Size(C).

Theorem 2 (Bounded reactivity). Let C be a reachable configuration. Then

∃n ≤ Size(C) . C ⇓n

Proof. We distinguish two cases, depending on whether C is an initial configuration or not. Since the latter
case depends on the former, we start by considering non initial configurations.

1. C is not initial. In this case, C has the form C = (νs)〈P,M,E〉, where P is a parallel composition of
sequential session-closed processes. Therefore we have:

Size((νs)〈P,M,E〉) = Size(〈P,M,E〉) = sizeM(P)

(νs)〈P,M,E〉 ‡g ⇔ 〈P,M,E〉 ‡g
(νs)〈P,M,E〉 −→ (νs)〈P′,M′,E′〉 ⇔ 〈P,M,E〉 −→ 〈P′,M′,E′〉

Therefore it is enough to prove the statement:

∃n ≤ sizeM(P) . 〈P,M,E〉 ⇓n

We proceed by simultaneous induction on the structure of P, on the size of P and on the number of
pause-unguarded recursive calls in P.

• Basic case: sizeM(P) = 0 and P has no pause-unguarded recursive calls.

By Lemma 3, if sizeM(P) = 0 then either P ≡ 0 or 〈P,M,E〉‡. By definition 〈P,M,E〉 ‡g ⇒
(〈P,M,E〉 ⇓ 0 〈P,M,E〉), Then we may conclude, since n = 0 = sizeM(P).

• Inductive cases: sizeM(P) ≥ 1 or P has pause-unguarded calls.

– P = emit ev.P′. In this case, by Rule [Emit] we have the reduction:

〈emit ev.P′,M,E〉 −→ 〈P′,M,E ∪ {ev}〉

By induction (on the size or on the structure), there exists n ≤ sizeM(P′) such that 〈P′,M,E ∪
{ev}〉 ⇓n. Then 〈emit ev.P′,M,E〉 ⇓n+1, where n + 1 ≤ sizeM(P′) + 1 = sizeM(emit ev.P′).
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– P = s[q]?(p, x).Q. By Lemma 4, there are two possibilities:

– 〈s[q]?(p, x).Q,M,E〉‡. This is inferred either using Rule (ins), if s ∈ sn(M) ∧ (s, p) <
Fired(M), or using Rule (in2

s ), if (s, p, q) ∈ Comm(M). Then 〈s[q]?(p, x).Q,M,E〉 ⇓ 0
〈Q,M,E〉 and we may conclude, since n = 0 ≤ sizeM(P).

– 〈P,M,E〉 = 〈s[q]?(p, x).Q,M′′ ∪ s[p] : (v,Π),E〉 for some M′′, v and Π such that
q < Π. Then Rule [In] can be applied, yielding 〈P′,M′,E′〉 = 〈Q{v/x},M{s[p] 7→
(v,Π ∪ q)},E〉. Then by induction there exists n ≤ sizeM(P′) such that 〈P′,M′,E′〉 ⇓n.
Hence 〈P,M,E〉 ⇓n+1, where n + 1 ≤ sizeM(P′) + 1 = sizeM(s[q]?(p, x).Q).

– P = s[p]!〈e〉.Q. This case is similar to the previous one, and slightly simpler.

– P = rec X .Q. By Lemma 4, there are two possibilities:

– 〈rec X .Q,M,E〉‡. Then 〈recX .Q,M,E〉 ⇓ 0 〈recX .Q,M,E〉 and we may conclude,
since n = 0 = sizeM(P).

– There exist P′,M′,E′ such that 〈P,M,E〉 −→ 〈P′,M′,E′〉. Then the reduction is inferred
by Rule [Rec], namely:

〈Q{(pause.rec X .Q)/X},M,E〉 −→ 〈P′,M′,E′〉

〈rec X .Q,M,E〉 −→ 〈P′,M′,E′〉
[Rec]

Since the call rec X .Q is pause-guarded in P′, the number of pause-unguarded calls
in P′ is strictly less than in P. Then by induction there exists n ≤ sizeM(P′) such that
〈P′,M′,E′〉 ⇓n. Whence 〈P,M,E〉 ⇓n+1. By Lemma 2, we know that sizeM(P′) <
sizeM(Q{(pause.rec X .Q)/X}). By Property 1, sizeM(Q{(pause.rec X .Q)/X}) =
sizeM(P). We may thus conclude that n < sizeM(P), that is to say, n + 1 ≤ sizeM(P).

– Conditional, parallel and watching constructs: these cases are straightforward, by induction on
the structure of the process.

2. C = 〈P,M,E〉 is initial. Thus we have C = 〈a[1](α1).P1 | ... | a[k](αk).Pk | ā[k], ∅, ∅〉. Then by Rule
[INIT] we have a reduction C −→ C′ = (νs)〈P′,M∅s , ∅〉, where P′ = (νs)P1{s[1]/α1} | . . . | Pk{s[k]/αk}.
By Definition 8 Size(C) =

∑k
i=1 size∅(a[i](αi).Pi) = k +

∑k
i=1 sizeM∅s

(Pi{s[i]/αi}) = k + sizeM∅s
(P′) >

sizeM∅s
(P′) = Size(C′). By Point 1. there exists m ≤ Size(C′) such that C′ ⇓m. Letting n = m + 1, we

conclude that C ⇓n and n ≤ Size(C).

�
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Sorts S ::= bool | int | . . .

Global types G ::= p↑〈S,Π〉.G communication
| pause.G explicit pause
| tick.G implicit pause
| watch ev do G else G global watch
| t recursive variable
| µt.G recursion
| end end

Local Types T ::= !S.T send
| ?(p,S).T receive
| pause.T explicit pause
| tick.T implicit pause
| 〈T,T′〉ev local watch
| µt.T recursion
| t recursive variable
| end end

Message Types ϑ ::= void | (S,Π)

Figure 10: Sorts, Global types, Local types and Message types.

4 Types for MRS
In this section we present the session type system for MRS. We show that typability implies the classical
properties of session calculi, namely the absence of communication errors (communication safety) and
the conformance to the session protocol (session fidelity). Furthermore, our type system enforces the
following properties, which are specific to our synchronous reactive setting and will be discussed in more
detail later:

P1. Output persistence: Every participant broadcasts exactly one message during every time instant.

P2. Input timeliness: Every unguarded input is matched by an output during the current instant, if not
preceded by another input with equal source and target, or during the next instant, if not preempted.

4.1 Global and Local Types
Our calculus allows multiparty communication [19, 14]. Hence, typing relies on global types to describe
communication protocols and on local types to describe the contributions of protocol participants.

Our type syntax, given in Fig. 10, uses sorts, ranged over by S,S′, . . . , global types ranged over by
G,G′, . . . , local types, ranged over by T,T′, . . . , and type variables, ranged over by t, t′, . . . . Sorts denote
basic types such as int and bool and type variables are used when defining recursive types. We recall
that participants are denoted by p, q, . . . or by natural numbers. Similarly, sets of participants are denoted
by Π,Π′. A peculiarity of our typing system is that for every sort S we assume a default value dS,
representative of the particular basic type S. We present the syntax of both global and local types below.
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Global types:

- Type p ↑ 〈S,Π〉.G represents a participant p broadcasting a message of sort S, with participants
in Π as intended receivers; subsequently, the interaction continues as specified by G. As a well-
formedness condition for the type above, we require p < Π.

- Type pause.G stipulates that all participants should jointly move to the next time instant in order to
execute protocol G.

- Type watch ev do G else G′ represents a protocol which has an alternative behaviour. Intuitively,
protocol G is executed until the end of the current instant; then, if event ev has been emitted, the
governing protocol at the next instant will be G′, otherwise it will be the continuation of G. Note
that if G′ becomes the governing protocol, protocol G is pre-empted.

- Type end represents the terminated protocol.

Local types:

- The send type !S.T indicates the broadcast of a value of sort S, followed by the behaviour described
by T.

- The receive type ?(p,S).T describes the reception of a value of sort S sent by participant p, followed
by the behaviour described by T.

- The pause type pause.T signals the change of time instant, followed by the behaviour described by
T.

- The local watch type 〈T,T′〉ev is meant to be assigned to a participant that behaves as specified by
type T until the end of instant; then, if event ev has appeared, it will behave according to type T′,
otherwise according to the continuation of T.

We assume recursive types µt.G and µt.T to be contractive (i.e., type variables only appear under the
prefixes). Moreover, we take an equi-recursive view of types, meaning that we do not distinguish between
µt.G (resp. µt.T) and its unfolding G{µt.G/t} (resp. T{µt.T/t}). As a consequence, we never consider
types of the form µt.T in typing rules. Indeed, whenever we find a type µt.T in a typing rule, we pick
another type equal to it (i.e., its unfolding T{µt.T/t}).

Finally, types tick.G and tick.T are introduced to represent the implicit pauses that arise from the
semantics of processes. In a sense, it can be said that tick is “runtime” type, which is added dynamically
when obtaining the local types of the process.

Example 1. We now present some examples of global and local types that can be written using the syntax
in Fig. 10. Assume participants p, q, r:

p↑〈S, {q, r}〉.pause.r↑〈S, {p, q}〉.end pause.r↑〈S, {p, q}〉.end
µt.r↑〈S, {p, q}〉.t µt.pause.t
!S.?(p,S′).end µt.!S.!S′.t
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SR(p↑〈S,Π〉.G′,P) = p↑〈S,Π〉.SR(G′,P ∪ {p}) if p < P

SR(p↑〈S,Π〉.G′,P) = p{1,n} ↑〈S, ∅〉.tick.p↑〈S,Π〉.SPart(G′)(G′, {p}) if p ∈ P and R \ P = {p1, . . . , pn}

SR(pause.G′,P) = p{1,n} ↑〈S, ∅〉.pause.SPart(G′)(G′, ∅) with R \ P = {p1, . . . , pn}

SR(tick.G′,P) = p{1,n} ↑〈S, ∅〉.pause.SPart(G′)(G′, ∅) with R \ P = {p1, . . . , pn}

SR(end,P) = p{1,n} ↑〈S, ∅〉.end with R \ P = {p1, . . . , pn}

SR(watch ev do G′ else G′′,P) = watch ev do SR(G′,P) else SPart(G′′)(G′′, ∅)

SR(µt.G′, ∅) = µt. SPart(G′)(G′, ∅)
SR(µt.G′,P) = p{1,n} ↑〈S, ∅〉.tick.µt. SPart(G′)(G′, ∅) with R \ P = {p1, . . . , pn}

SR(t,P) = p{1,n} ↑〈S, ∅〉.pause.t with R \ P = {p1, . . . , pn}

Figure 11: Saturation of global types.

4.2 Projection and Saturation
As usual in multiparty session calculi, global and local types are related by the notion of projection.
Intuitively, the projection of a global type G onto its participants generates the local types for every
participant using the information given by G.

In our reactive setting, however, projection requires a pre-processing phase in which the global type
is modified by adding the necessary implicit pauses. Indeed, as hinted before, tick represents implicit
pauses, which are induced by the semantics, rather than by a pause explicitly written in the protocol
specification. This pre-processing phase is called saturation and besides adding the necessary implicit
pauses, it adds outputs that may be missing to ensure output persistence.

Before formally introducing saturation and projection, we define some auxiliary notation. We write
Part(G) to represent the set of participants declared in G. We also find it useful to write p{1,n} ↑〈S,Π〉.G to
abbreviate the global type p1 ↑〈S,Π〉. · · · .pn ↑〈S,Π〉.G, describing n consecutive broadcasts of messages
of the same sort S from each of the participants p1, . . . , pn to the set of participants in Π. Moreover,
whenever n = 0, p{1,n} ↑〈S,Π〉.G denotes the global type G.

We now introduce saturation (cf. Fig. 11) and projection (cf. Fig. 12). As hinted above, the saturation
function makes the global type reflect precisely the slicing into instants of the protocol’s behaviour.
Intuitively, a global type is saturated as follows: first, the saturation function identifies the correct instant
slicing in the protocol adding the necessary tick. Next, the function saturates the global type with outputs,
guaranteeing that in each instant all participants broadcast a message (even if it is not received by anyone).
Formally, the function SR(G,P), takes a global type G, the set of currently active participants, written R,
and a set that collects the participants of R that have already sent a message in the current instant, denoted
P ⊆ R.

Our typing system will then require saturated projections, which simply stand for the projection of
the saturated global type. Intuitively, the saturated projection of G onto q, denoted Gb q, yields a local
type representing q’s involvement in the protocol described by G. It is obtained in two steps: first, G is
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(p↑〈S,Π〉.G′)� q =


!S.(G′ � q) if q = p

?(p,S).(G′ � q) if q ∈ Π,

G′ � q otherwise.

(pause.G′)� q =

end if q < Part(G′) ∧ t does not occur in G′

pause.(G′ � q) otherwise.

(tick.G′)� q =

end if q < Part(G′) ∧ t does not occur in G′

tick.(G′ � q) otherwise.

(watch ev do G1 else G2)� q = 〈G1 � q,G2 � q〉ev

(µt.G′)� q =

µt.(G′ � q) if q occurs in G′ ∧ t does not occur in G′,
end otherwise.

t� q = t end� q = end

Figure 12: Projection of global types onto participants.

saturated as described in Fig. 11; then the resulting global type is projected onto q as described in Fig. 12:

Gb q= (SPart(G)(G, ∅)� q) (1)

To illustrate our definitions of projection and saturation, let us look back at the auction example of
Section 2.

Example 2 (Types for the Auction process). Recall that the set of participants of the Auction process is
{A, B1, . . . , Bn}, where A represents the Auctioneer and Bi the process Bidderi (1 ≤ i ≤ n).

The global type G is as follows:

G = watch bis do µt.B1 ↑〈int, {A}〉. · · · . Bn ↑〈int, {A}〉.A↑〈ĩnt, {B1, . . . , Bn}〉.t
else A↑〈int, {B1, . . . , Bn}〉.B1 ↑〈string, ∅〉. · · · . Bn ↑〈string, ∅〉.end

Then, the saturated global type G = S(G, ∅) is built according to Fig. 11, as follows:

S(G, ∅) = watch bis do µt.B1 ↑〈int, {A}〉. · · · . Bn ↑〈int, {A}〉.A↑〈ĩnt, {B1, . . . , Bn}〉.pause.t
else A↑〈int, {B1, . . . , Bn}〉.B1 ↑〈string, ∅〉. · · · . Bn ↑〈string, ∅〉.end

The only difference with respect to G is the addition of a pause before the recursion variable t.

Finally, the saturated projections of G (i.e., the projections of G) onto participants are as follow:

Gb A = 〈µt1.?(B1, int). · · · .?(Bn, int).!ĩnt.pause.t1, !int.end〉bis

Gb Bi = 〈µt2.!int.?(A, ĩnt).pause.t2, ?(A, int).!string.end〉bis
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bSERVICEc Γ, a : G ` a : G bPROCVARc Γ,X : T ` X : S T

Figure 13: Typing rules for services and process variables.

4.3 Type System
Typing judgements for our type system rely on three kinds of typing environments: standard environments
ranged over by Γ,Γ′, . . . , session environments denoted by ∆,∆′, . . . , and message environments denoted
by Θ. Standard environments, map variables to sort types, service names to global types, and process
variables to local types. Formally:

Γ ::= ∅ | Γ, x : S | Γ, a : G | Γ,X : T

We write Γ, x : S only if x does not occur in dom(Γ), where dom(Γ) denotes the domain of Γ, i.e., the set of
identifiers occurring in Γ. We adopt the same convention for Γ, a : G and Γ,X : T.

Session environments assign local types to channels occurring in processes, while message environ-
ments, assign message types (cf. Fig. 10) to channels occurring in memories. More specifically, a message
environment assigns to a channel c in the memory the type ϑ of the message carried by c, namely the type
void if no message has been sent on c, and the type (S,Π) if a message of type S has been sent on c and
has been read by the participants in Π.

The syntax of message types ϑ is given in Fig. 10. Then, session and message environments are
formally defined by the following grammars:

∆ ::= ∅ | ∆, c : T Θ ::= ∅ | Θ, c : ϑ

For ∆, c : T and Θ, c : ϑ we use the same conventions as for Γ, meaning that a session environment ∆, c : T
(resp. a message environment Θ, c : ϑ) is only well-defined if c < dom(∆) (rep. c < dom(Θ)). Thus, a
session environment ∆1,∆2 is only well-defined if dom(∆1) ∩ dom(∆2) = ∅.

Following the same notation introduced for memories, we write Θ∅ to represent the message environ-
ment obtained from Θ by turning all message types to void. Intuitively, if Θ types memory M then Θ∅

types memory M∅. Formally, Θ∅ =def
⋃

c∈dom(Θ){c : void}.
Below, we give two auxiliary definitions. The first one introduces notations for referring to session

environments that contain only ended behaviours and environments that contains at least one “live”
behaviour. The second one defines a way to extract the “active” participants in the current instant from the
memory M and memory environment Θ.

Definition 11 (Live and terminated session environments). A session environment ∆ is said to be live if
c : T ∈ ∆ implies T , end, and terminated if c : T ∈ ∆ implies T = end. Any session environment ∆ may
be partitioned in two session environments ∆live and ∆end defined by:

∆live =def {c : T ∈ ∆ | T , end ∧ T , 〈end,T〉ev
}

∆end =def {c : T ∈ ∆ | T = end ∨ T = 〈end,T〉ev
}

Definition 12 (Visible domain of memories and message environments).
The visible domain of memories and message environments is defined by:

vdom(M) = {c | c : m ∈M ∧ m , ε}
vdom(Θ) = {c | c : ϑ ∈ Θ ∧ ϑ , void}
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bBOOLVALc Γ ` true, false : bool bINTVALc Γ ` 1, 2, . . . : int bDVALc Γ ` dS : S

bVARc Γ, x : S ` x : S
bANDc

Γ ` e1 : bool Γ ` e2 : bool

Γ ` e1 and e2 : bool
bSUMc

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

Figure 14: Typing rules for expressions.

bVOIDMSGc Γ ` c : ε . c : void
bFULLMSGc

Γ ` v : S

Γ ` c : (v,Π) . c : (S,Π)

bEMPTYMEMc Γ ` ∅ . ∅
bMERGEMEMc

Γ `M .Θ Γ ` c : m . c : ϑ

Γ `M ∪ {c : m} .Θ, {c : ϑ}

Figure 15: Typing rules for memories.

Our type system uses three kinds of type judgements. The first one, used for typing expressions, is
defined by the rules in Fig. 14 and has the form:

Γ ` e : S

where Γ represents a standard environment, e and expression and S a sort. The second one, used for typing
memories, is defined by the rules in Fig. 15 and has the form:

Γ `M .Θ

where Θ is a message environment associating a message type with each channel in M. Finally, the third
kind of judgement is used for typing configurations and has the form:

Γ ` C . 〈∆ �Θ〉

where 〈∆ �Θ〉 is called a configuration environment. The reason for using configuration environments is
because the state of the memory directly impact the behaviour of the process. Thus, it becomes necessary
for types to have knowledge about the memory at every point of the typing derivation.

Intuitively, if Γ ` 〈P,M,E〉 . 〈∆ � Θ〉, then ∆ is a session environment typing the channels of P in
memory M, and Θ is a message environment typing the messages of M.

Before presenting the typing rules for configurations, we introduce some auxiliary notions and results.
We say that a local type is output granting if the first pause in it (if any) is preceded by an output.

Definition 13 (Output-granting type). A local type T is output-granting if it satisfies the predicate OG(T)
defined by:

OG(T) =


true if T =!S.T′

OG(T′) if T =?(p,S).T′ ∨ T = 〈T′,T′′〉ev
∨ T = µt.T′

false otherwise

The predicate is extended to session environments by letting OG(∆) if OG(T) for all c:T in ∆.
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We can then show that local types that come from the projection of a saturated global type are output
granting.

Lemma 5 (Correctness of saturation with respect to OG(T)). Let G be a global type with |Part(G)| ≥ 2, p
be a participant, and P be a set of participants such that (1) P ⊆ Part(G), and (2) Part(G) \ P , ∅. Then,
OG(SPart(G)(G,P)� p) holds for every p ∈ Part(G) \ P.

Proof. By induction on the structure of G. The base cases are G = end and G = t, which are vacuously
true since |Part(end)| = |Part(t)| = 0. For the inductive step we assume that the property holds for a
global type G′ and prove the statement for every type that contains G′ as a sub-expression. There are 5
inductive cases.

Case G = pause.G′:

(1)
SPart(G)(G,P)� p = SPart(G)(pause.G′,P)� p

= p{1,n} ↑〈S, ∅〉.pause.SPart(G′)(G′, ∅)� p
(Assumption, Fig. 11)

(2) Part(G) \ P = {p1, . . . , pn} (Assumption, Fig. 11)

(3)
∀pi ∈ {p1, . . . , pn}.(p{1,n} ↑〈S, ∅〉.pause.SPart(G′)(G′, ∅)� pi

= !Si.pause.(SPart(G′)(G′, ∅)� p))
((1), (2), Fig. 12)

(4) OG(!Si.pause.(SPart(G′)(G′, ∅)� p)) is true (Def. 13, (3))

Case G = tick.G′: Analogous to the case above.

Case G = r↑〈S,Π〉.G′: There are two cases depending on whether r ∈ P or not:

Case r < P:
(1) SPart(G)(r↑〈S,Π〉.G′,P) = r↑〈S,Π〉.SPart(G)(G′,P ∪ {r}) (Def. 11)
(2) ∀p ∈ P.(OG(SPart(G)(G′,P)� p)) (IH)
(3) OG(r↑〈S,Π〉.SPart(G)(G′,P ∪ {r})� r) is true (Def. 12, (2), (1))

Case r ∈ P: By applying Fig. 11 to G, which adds an output for every r ∈ P.

Case G = watch ev do G′ else G′′: Follows directly from the IH. Notice that by Def. 13, OG(〈T1,T2〉
ev) =

OG(T1).

�

Corollary 1 (Projection implies OG). For any global type G such that Part(G) ≥ 2 and any participant
p ∈ Part(G), OG(Gb p) holds.

Proof. The proof follows from Lemma 5. Notice that in this case P = ∅, hence Part(G) \ P = Part(G).
�

Next, we define the pair composition of session types, which intuitively generates end or 〈T1,T2〉
ev,

depending on the value of T1.

Definition 14. The pair composition of session types T1 and T2 under event ev, written T1 ?ev T2, is
defined by:

T1 ?ev T2 :=

T1 i f T1 = end

〈T1,T2〉
ev otherwise.

Abusing notation, we extend this definition to session environments by writing ∆1 ?ev ∆2.

Given that our typing rules are defined over session environments and that our semantics induce
suspension points for all processes in parallel inside a configuration, we define functions pause(·) and
tick(·) to extract all the suspended sessions of a session environment.
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Definition 15. Given a session environment ∆, we write pause(∆) to denote the environment defined
as pause(∆) = {c : pause.T | c : T ∈ ∆}. Analogously tick(∆) denotes the environment defined as
tick(∆) = {c : tick.T | c : T ∈ ∆}.

We next introduce generalised types for session channels occurring in configurations. Note that in a
configuration, channels may occur on the process side, on the memory side, or on both sides. Since our
semantics allows at most one message to be sent on each channel during an instant, both our message types
and our generalised types are simpler than those of standard asynchronous multiparty session calculi [14].
In particular, in our calculus the syntax of generalised types coincides with that of local types.

Definition 16 (Generalised Types). A generalised type T is a local type T or a send type (extracted from
a message type ϑ) followed by a local type T.
Let 〈∆ �Θ〉 be a configuration environment and s[p] ∈ dom(〈∆ �Θ〉). Then the generalised type of s[p] in
〈∆ �Θ〉 is given by:

〈∆ �Θ〉(s[p]) =


T if s[p] : T ∈ ∆ ∧ s[p] < vdom(Θ),
!S.T if s[p] : (S,Π) ∈ Θ ∧ (s[p] : T ∈ ∆ ∨ (s[p] < dom(∆) ∧ T = end) ),
end if s[p] < dom(∆) ∧ s[p] : void ∈ dom(Θ)
undefined otherwise.

The generalised type 〈∆�Θ〉(s[p]) represents the usage of channel s[p] in the configuration environment
〈∆ �Θ〉: it is the concatenation of the send type extracted from the message sent by p in the current instant,
if any, with the local type describing the remaining behaviour of p.

Example 3 (Generalised types).
Let ∆ = s[1] : end and Θ = ∅. Then 〈∆ �Θ〉(s[1]) = end.

Let ∆ = ∅ and Θ = s[1] : void. Then 〈∆ �Θ〉(s[1]) = end.

Let ∆ = s[1] : end and Θ = s[1] : void. Then 〈∆ �Θ〉(s[1]) = end.

Let ∆ = s[1] :!S.end and Θ = s[1] : void. Then 〈∆ �Θ〉(s[1]) =!S.end.
Let ∆ = s[1] : end and Θ = s[1] : (S,Π). Then 〈∆ �Θ〉(s[1]) =!S.end.
Let ∆ = s[1] :!S.end and Θ = s[1] : (S′,Π). Then 〈∆ �Θ〉(s[1]) =!S′.!S.end.

Generalised types may be projected on participants (notation T � q ), as described in Fig. 16. These
projections are anonymous local types (local types where sender names are omitted), defined as follows:

τ ::= end | !S.T | ?S.T | pause.T | tick.T | 〈T,T′〉ev
| µt.T | t

Intuitively, the projection of the generalised type 〈∆�Θ〉(s[p]) on q, namely 〈∆�Θ〉(s[p])� q, describes
the part of p’s contribution to 〈∆ �Θ〉 that concerns q.

We may now define a duality relation ./ between projections of generalised types. Informally, duality
holds when the inputs offered by one side are matched by the outputs offered by the other side. The
requirement is weaker in the other direction, since outputs do not need to be matched by inputs in a
broadcast setting (the actual receivers may range from none to all participants except the sender). Hence,
two types may be dual although not completely symmetric. In this respect, we depart from standard
session calculi, where the requirement is symmetric for inputs and outputs. Dual types are expected to
have matching explicit and implicit pauses, as well as matching watching statements, whose types are
required to be pairwise dual.
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(!S.T)� q = !S. (T� q) (?(p,S).T)� q =

?S.(T� q) if q = p,

T� q otherwise.

(pause.T)� q = pause.(T� q) (tick.T)� q = tick.(T� q) (〈T1,T2〉
ev)� q = 〈T1 � q,T2 � q〉ev

(µt.T)� q =

µt.(T� q) if q occurs in T ∧ t does not occur in G′

end otherwise.
t� q = t end� q = end

Figure 16: Projection of generalised types on participants.

Definition 17. The duality relation between projections of generalised types is the minimal symmetric
relation which satisfies:

end ./ end t ./ t T ./ T′ ⇒ µt.T ./ µt.T′ T ./ T′ ⇒ !S.T ./ ?S.T′

T ./ T′ ⇒ !S.T ./ T′ T ./ T′ ⇒ pause.T ./ pause.T′ T ./ T′ ⇒ tick.T ./ tick.T′

〈end,T〉ev ./ end T1 ./ T3 and T2 ./ T4 ⇒ 〈T1,T2〉
ev ./ 〈T3,T4〉

ev

end ./ T ⇒ end ./ pause.T end ./ T ⇒ end ./ tick.T

Notice that terminated types may be dual to non terminated ones, due to the clause T ./ T′ ⇒ !S.T ./
T′ and to the last two clauses of the definition. However, such non terminated types can only be sequences
of send types or explicit/implicit pauses followed by send types, as for instance in end ./ pause.!S.!S′.end.

Example 4 (Dual projections of generalised types).

1. Let ∆ = s[1] : !S. end, s[2] :?(1,S).end and Θ = s[1] : void, s[2] : void.
Then 〈∆ �Θ〉(s[1])� 2 = !S.end ./ ?S.end = 〈∆ �Θ〉(s[2])� 1

2. Let ∆ = s[1] : end, s[2] :?(1,S).end and Θ = s[1] : (S, ∅), s[2] : void.
Then 〈∆ �Θ〉(s[1])� 2 =!S.end ./ ?S.end = 〈∆ �Θ〉(s[2])� 1

3. Let ∆ = s[1] : end, s[2] :?(1,S).end and Θ = s[1] : (S, {2}), s[2] : void.
Then 〈∆ �Θ〉(s[1])� 2 =!S.end ./ ?S.end = 〈∆ �Θ〉(s[2])� 1

4. Let ∆ = s[1] : !S. end, s[2] :?(1,S).!S′. end and Θ = s[1] : void, s[2] : void.
Then 〈∆ �Θ〉(s[1])� 2 = !S.end ./ ?S.!S′.end = 〈∆ �Θ〉(s[2])� 1
Note that here the mutual projections are dual although not symmetric.

5. Let ∆ = s[1] : pause.!S1. end, s[2] : pause.?(1,S1).?(3,S3).!S2. end, s[3] :?(1,S1).pause.!S3. end,
and Θ = s[1] : (S1, {2}), s[2] : (S2, ∅), s[3] : (S3, ∅). Then:

〈∆ �Θ〉(s[1])� 2 =!S1.pause.!S1.end and 〈∆ �Θ〉(s[2])� 1 =!S2. pause.?S1.!S2. end

〈∆ �Θ〉(s[1])� 3 =!S1.pause.!S1.end and 〈∆ �Θ〉(s[3])� 1 =!S3.?S1.pause.!S3. end

〈∆ �Θ〉(s[2])� 3 =!S2.pause.?S3.!S2. end and 〈∆ �Θ〉(s[3])� 2 = !S3. pause.!S3. end
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We are now ready to define coherence of configuration environments. Besides the usual compatibility
condition between the types of participants, our notion of coherence also requires output persistence:

Definition 18 (Coherence). A configuration environment 〈∆ �Θ〉 is coherent, written Co 〈∆ �Θ〉, if:

1. For any s[p] ∈ dom(〈∆ �Θ〉), if s[p] < vdom(Θ) then s[p] : T ∈ ∆live implies OG(T);

2. For any p, q, if s[p] ∈ dom(∆) ∪ vdom(Θ) and s[q] ∈ dom(∆) ∪ vdom(Θ) then:

〈∆ �Θ〉(s[p])� q ./ 〈∆ �Θ〉(s[q])� p

In Definition 18, Condition 2. is the standard duality requirement for any pair of present participants
in 〈∆ �Θ〉 (i.e., participants whose session channel in s has some type in ∆ or a non-void message type
in Θ): it essentially requires that p and q make dual communications offers to each other. Note that any
configuration environment whose domain is a singleton {s[p]} trivially satisfies this condition. Condition 1.
is specific to our calculus and is meant to ensure output persistence: it says that if a participant has not
yet sent a message in the current instant, then it better do so before the next suspension point is reached.
The fact that the type of p is saturated, with all suspension points represented by explicit pauses, plays an
essential role here.

It is easy to see that the first three configuration environments in Example 4 are not coherent, because
they violate Condition 1. (while they satisfy Condition 2.). On the other hand, the last two configuration
environments are coherent.

We prove now that any two projections of the same global type have dual mutual projections:

Lemma 6. If (SR(G,P)� p)� q ./ (SR(G,P)� q)� p, P ⊆ P′, Part(G) ⊆ R ⊆ R′, P ⊆ R and P′ ⊆ R′

then (SR′ (G,P′)� p)� q ./ (SR′ (G,P′)� q)� p.

Proof. By induction on the structure of G. There are two base cases and five inductive cases.

Base Cases: The cases are G = end and G = t. We only show G = end, as the other is similar. Let P,P′,
R, and R′ be sets of participants satisfying satisfying the following assumptions:

Case G = end:
(1) Part(G) ⊆ R ⊆ R′ (Assumption)
(2) P ⊆ R (Assumption)
(3) P

′
⊆ R

′ (Assumption)
(4) (SR(end,P)� p)� q ./ (SR(end,P)� q)� p (Assumption)
(5) P ⊆ P

′ (Assumption)
Then, we distinguish cases depending on whether p, q belong to P′ or not.

(a) p ∈ P′ and q ∈ P′.
(b) p < P′ and q < P′.

(c) p ∈ P′ and q < P′.
(d) p < P′ and q ∈ P′.

All the cases proceed similarly, hence we only show (a):

Sub-Case (a):
(i) ∀r ∈ P.(SR′ (end,P′) = SR′ (end,P′) = r{1,n} ↑〈Sd, ∅〉.end (Fig. 11)

(ii) (r{1,n} ↑〈Sd, ∅〉.end� p)� q = (!Sd.end)� q = !Sd.end (Fig. 12, Fig. 16, (i))
(iii) (r{1,n} ↑〈Sd, ∅〉.end� q)� p = (!Sd)� p = !Sd.end (Fig. 12, Fig. 16, (i))
(iv) !Sd.end ./ !Sd.end (Def. 17, (ii), (iii))
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Inductive Cases: There are five cases. As in the base cases, let P,P′, R, and R′ be sets of participants
satisfying satisfying the following assumptions:

(1) Part(G) ⊆ R ⊆ R′ (Assumption)
(2) P ⊆ R (Assumption)
(3) P

′
⊆ R

′ (Assumption)
(4) (SR(G,P)� p)� q ./ (SR(G,P)� q)� p (Assumption)
(5) P ⊆ P

′ (Assumption)
Then, we distinguish cases depending on the shape of G. The IH states that the property holds for
all the subterms G′ of type G.

Case G = r↑〈S,Π〉.G′: IH: (SR(r↑〈S,Π〉.G′,P)� p)� q ./ (SR(r↑〈S,Π〉.G′,P)� q)� p implies
that
(SR′ (r↑〈S,Π〉.G′,P′)� p)� q ./ (SR′ (r↑〈S,Π〉.G′,P′)� q)� p for every R′,P′ such
that R ⊆ R′ ∧ P ⊆ P′.

We then further distinguish two cases depending on whether r ∈ P or r < P:

Case r ∈ P: By Fig. 11, SR(r↑〈S,Π〉.G′,P′) = r↑〈S,Π〉.SR(G′,P ∪ {r}). We then further
distinguish eight sub-cases depending on the conditions satisfied by p and q:
Sub-case r = p ∧ q ∈ Π: Then G = p↑〈S,Π〉.G′:

(i)
p↑〈S,Π〉.SR(G′,P ∪ {p})� p
= !S.(SR(G′,P ∪ {p}))� p

(Fig. 12)

(ii)
p↑〈S,Π〉.SR(G′,P ∪ {p})� p� q
= !S.((SR(G′,P ∪ {p}))� p)� q

(Fig. 16)

(iii)
p↑〈S,Π〉.SR(G′,P ∪ {p})� q� p
= ?(q,S).((SR(G′,P ∪ {p}))� q)� p

(Fig. 12 and Fig. 16)

By (1) and (5), R ⊆ R′ and P ⊆ P′. Thus, we distinguish two more sub-cases:
p < P′ and p ∈ P:
Sub-case p < P′: Notice that (i)p↑〈S,Π〉.SR′ (G′,P′∪{p})� p� q =!S.((SR′ (G′,P′∪
{p}))� p)� q by Fig. 12 and Fig. 16. Also, by assumption, Fig. 12 and Fig. 16 we
have (ii) p↑ 〈S,Π〉.SR′ (G′,P ∪ {p})� q� p =?(q,S).((SR(G′,P′ ∪ {p}))� q)� p.
Since by assumption, ((SR(G′,P ∪ {p}))� p)� q ./ ((SR(G′,P ∪ {p}))� q)� p
and that R′ ⊇ R ∧ P′ ⊇ P, we can apply the inductive hypothesis to obtain
(iii) ((SR′ (G′,P′ ∪ {p}))� p)� q ./ ((SR′ (G′,P′ ∪ {p}))� q)� p and then we can
conclude by Def. 17.

Sub-case p ∈ P′: Notice that (i) SR(p ↑ 〈S,Π〉.G′,P′) = r{1,n} ↑ 〈Sd, ∅〉.tick.p ↑
〈S,Π〉.SPart(G′)(G′, {r}) by Fig. 11. Then, we have that (ii) r{1,n} ↑〈Sd, ∅〉.tick.p↑
〈S,Π〉.SPart(G′)(G′, {p}) � p = tick.!S.(SPart(G′)(G, {p}) � p) by Fig. 12 and (iii)
tick.!S.(SPart(G′)(G, {p})� p)� q = tick.!S.((SPart(G′)(G, {p})� p)� q by Fig. 16
and Assumption. Also, by assumption, Fig. 12 and Fig. 16 we have (iv) (r{1,n} ↑
〈Sd, ∅〉.tick.p↑〈S,Π〉.SPart(G′)(G′, {p})� p)� q = tick.?(p,S).((SPart(G′)(G′, {p})�
q)� p. Finally, since {p} ⊆ P′ and the length of G′ has decreased we can apply the
IH and Def. 17 to show that duality holds.

Sub-case r = p ∧ q < Π: This proof proceeds similarly as above, while considering that
q is not a receptor from the broadcast done by p. Then, the case will conclude by Def.
17 and IH, since an output can be dual to any type.

Sub-case r = q ∧ p ∈ Π: Symmetrical to Case r = p ∧ q ∈ Π.
Sub-case r = q ∧ p < Π: Symmetrical to Case r = p ∧ q < Π.
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Sub-case p ∈ Π ∧ q ∈ Π: In this case r , p ∧ r , q, by Definition. Notice also, that
in this case both participants are receptors, and hence, by Fig. 16, the input prefix
obtained by Fig. 12 will disappear, hence the case will conclude by the IH.

Sub-case p < Π ∧ q ∈ Π: Analogous to the case above.
Sub-case p ∈ Π ∧ q < Π: Analogous to the case above.
Sub-case p < Π ∧ q < Π: Analogous to the case above.

Case r ∈ P: Then SR(r ↑ 〈S,Π〉.G′,P′) = r{1,n} ↑ 〈Sd, ∅〉.tick.r ↑ 〈S,Π〉.SPart(G′)(G′, {r})
by Fig. 11. The proof proceeds as shown above, the only difference being the fact that we
are adding a tick to the global type by projection. Hence, our IH will consider Part(G′)
and {r} as parameters.

Case G = pause.G′: This case is straightforward by applying the IH, since the size of the param-
eters of the saturation function will only affect the projections up to the number of outputs,
which are dual with any type.

Case G = µt.G′: There are two cases, but they are straightforward by applying the IH, notice that
projections do not affect the recursion, so they only work internally in the body of the recursive
type.

Case G = watch ev do G′ else G′′: This case again is straightforward by applying the inductive
hypothesis. Similarly to the recursive type, we have to consider that the IH is applied to both
the main body and alternative body. In the alternative body, it is necessary to consider that the
size of the parameters set will not affect duality.

�

Proposition 2. Let G be a global type and p , q. Then (Gb p)� q ./ (Gb q)� p.

Proof. By induction on G. Let p, q ∈ Part(G) and let Part(G) = R.

Case G = end:
(1) (endb p)� q = (SR(end, ∅)� p)� q (Fig. 12, Fig. 11)
(2) (endb q)� p = (SR(end, ∅)� q)� p (Fig. 12 and Fig. 11)
(3) Part(end) = R = ∅ (Definition of Part(G))
(4) R \ P = ∅ (algebra of sets)
(5) SR(end, ∅) = S∅(end, ∅) = end (Fig. 11)
(6) (S∅(end, ∅)� p)� q = (end� p)� q = end� q = end ((5), Fig. 12, Fig. 16)
(7) (S∅(end, ∅)� q)� p = (end� q)� p = end� p = end ((5), Fig. 12, Fig. 16)
(8) end ./ end (Def. 17)

Case G = t: As above.

Case G = r↑〈S,Π〉.G′: We have that (G′b p)� q ./ (G′b q)� p by IH. Moreover, (SPart(G′)(G′, ∅)� p)� q ./
(SPart(G′)(G′, ∅)� q)� p by Fig. 12 and Fig. 11. Then, We distinguish cases depending on r and the
memberships of p, q in Π. There are eight cases:

Case r = p ∧ q ∈ Π: Then G = p↑〈S,Π〉.G′:
(i) SPart(G)(p↑〈S,Π〉.G′, ∅) = p↑〈S,Π〉.SPart(G)(G′, {p}) (Fig. 11)

(ii) p↑〈S,Π〉.SPart(G)(G′, {p})� p =!S.(SPart(G)(G′, {p})� p) (Fig. 12)
(iii) !S.(SPart(G)(G′, {p})� p)� q =!S.((SPart(G)(G′, {p})� p)� q) (Fig. 16)
(iv) p↑〈S,Π〉.SPart(G)(G′, {p})� q =?(p,S).(SPart(G)(G′, {p})� q) (Fig. 12)
(v) ?(p,S).(SPart(G)(G′, {p})� q)� p =?S.((SPart(G)(G′, {p})� q)� p) (Fig. 16)

We conclude by Lemma 6 and IH that (SPart(G′)(G′, ∅)� p)� q ./ (SPart(G′)(G′, ∅)� q)� p
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implies !S.((SPart(G)(G′, {p})� p)� q) ./ ?S.((SPart(G)(G′, {p})� q)� p) which is the same as
saying SPart(G)(G′, {p}) ./ SPart(G)(G′, {p}).

Case r = p ∧ q < Π: Then G = p↑〈S,Π〉.G′:
(i) SPart(G)(p↑〈S,Π〉.G′, ∅) = p↑〈S,Π〉.SPart(G)(G′, {p}) (Fig. 11)

(ii) p↑〈S,Π〉.SPart(G)(G′, {p})� p =!S.(SPart(G)(G′, {p})� p) (Fig. 12)
(iii) !S.(SPart(G)(G′, {p})� p)� q =!S.((SPart(G)(G′, {p})� p)� q) (Fig. 16)
(iv) p↑〈S,Π〉.SPart(G)(G′, {p})� q = SPart(G)(G′, {p})� q (Fig. 12 and Assumption)
(v) (SPart(G)(G′, {p})� q)� p = (SPart(G)(G′, {p})� q)� p (Fig. 16)

We then conclude by Lemma 6 since (SPart(G′)(G′, ∅)� p)� q ./ (SPart(G′)(G′, ∅)� q)� p im-
plies !S.((SPart(G)(G′, {p})� p)� q) ./ ((SPart(G)(G′, {p})� q)� p) which means that SPart(G)(G′, {p}) ./
SPart(G)(G′, {p}).

Case r = q ∧ p ∈ Π: Symmetrical to Case r = p ∧ q ∈ Π.
Case r = q ∧ p < Π: Symmetrical to Case r = p ∧ q < Π.
Case p ∈ Π ∧ q ∈ Π: In this case r , p ∧ r , q, hence:

(i) SPart(G)(r↑〈S,Π〉.G′, ∅) = r↑〈S,Π〉.SPart(G)(G′, {r}) (Fig. 11)
(ii) r↑〈S,Π〉.SPart(G)(G′, {p})� p =?(r,S).SPart(G)(G′, {p})� p (Fig. 12 and Assumption)

(iii) ?(r,S).(SPart(G)(G′, {p})� p)� q = (SPart(G)(G′, {p})� p)� q (Fig. 16)
(iv) p↑〈S,Π〉.SPart(G)(G′, {p})� q =?(r,S).(SPart(G)(G′, {p})� q) (Fig. 12)
(v) ?(p,S).(SPart(G)(G′, {p})� q)� p = (SPart(G)(G′, {p})� q)� p (Fig. 16)

We then conclude by Lemma 6, since (SPart(G′)(G′, ∅)� p)� q ./ (SPart(G′)(G′, ∅)� q)� p im-
plies ((SPart(G)(G′, {r})� p)� q) ./ ((SPart(G)(G′, {p})� q)� p) which means that SPart(G)(G′, {r}) ./
SPart(G)(G′, {r}).

Case p < Π ∧ q ∈ Π: Analogous to the case above – concludes by Lemma 6.
Case p ∈ Π ∧ q < Π: Analogous to the case above – concludes by Lemma 6.
Case p < Π ∧ q < Π: Analogous to the case above – concludes by Lemma 6.

Case G = pause.G′:
(1) (pause.G′b p)� q = (SR(pause.G′, ∅)� p)� q (Fig. 12 and Fig. 11)
(2) (pause.G′b q)� p = (SR(pause.G′, ∅)� q)� p (Fig. 12 and Fig. 11)
(3) SPart(G)(pause.G′, ∅) = r{1,n} ↑〈Sd, ∅〉.pause.SPart(G′)(G′, ∅) (Fig. 11)

We then distinguish cases depending on the presence of p, q in {r1, . . . rn}. There are four cases:

Case p, q ∈ {r1, . . . rn}: This case follows from the Lemma 6.
Case p ∈ {r1, . . . rn} ∧ q < {r1, . . . rn}: This case follows from the Lemma 6.

Case p < {r1, . . . rn} ∧ q ∈ {r1, . . . rn}: This case follows from the Lemma 6.
Case p, q < {r1, . . . rn}:

Case G = µt.G′: There are two cases, but they proceed straightforward by the IH. Note that Part(µt.G′) =
Part(G′).

Case G = watch ev do G′ else G′′: This case follows by Lemma 6. This is because the duality of a
watch operator depends on the duality of its components.

�

We are now finally ready to introduce the typing rules for configurations. First of all, we mention that
our type system admits the following weakening and contraction rules:

bWEAKc
Γ ` C . 〈∆ �Θ〉

Γ ` C . 〈∆, c : end �Θ〉
bCONTRc

Γ ` C . 〈∆, c : end �Θ〉

Γ ` C . 〈∆ �Θ〉
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bRVARc
Γ ` X : pause.T Γ `M .Θ

Γ ` 〈X,M,E〉 . 〈c : pause.T �Θ〉
bINACTc

∆ = ∆end Γ `M .Θ

Γ ` 〈0,M,E〉 . 〈∆ �Θ〉

bMINITc

Γ ` a . G |Part(G)| = n

Γ ` 〈ā[n], ∅, ∅〉 . 〈∅ � ∅〉

bMACCc

Γ ` a . G Γ ` 〈P{s[p]/α},M∅s , ∅〉 . 〈s[p] : Gb p �Θ∅s 〉

Γ ` 〈a[p](α).P, ∅, ∅〉 . 〈∅ � ∅〉

bCONCc
Γ ` 〈Pi,M,E〉 . 〈∆i �Θ〉, i = 1, 2

Γ ` 〈P1 | P2,M,E〉 . 〈∆1,∆2 �Θ〉
bCRESc

Γ ` C . 〈∆ �Θ〉 Co 〈∆ �Θ〉

Γ ` (νs)C . 〈∅ � ∅〉

bEMITc

Γ ` 〈P,M,E ∪ ev〉 . 〈∆ �Θ〉

Γ ` 〈emit ev.P,M,E〉 . 〈∆ �Θ〉

bPAUSEc

Γ `M .Θ Γ ` 〈P,M∅, ∅〉 . 〈c : T �Θ∅〉 OG(T)

Γ ` 〈pause.P,M,E〉 . 〈c : pause.T �Θ〉

bRECc

Γ,X : pause.T ` 〈P,M∅, ∅〉 . 〈c : T �Θ∅〉
Γ,X : pause.T ` 〈P,M,E〉 . 〈c : T �Θ〉

Γ ` 〈(rec X .P),M,E〉 . 〈c : T �Θ〉

bSENDFIRSTc
Γ ` e : S Γ ` 〈P,M ∪ s[p] : (dS, ∅),E〉 . 〈s[p] : T �Θ, s[p] : (S, ∅)〉

Γ ` 〈s[p]!〈e〉.P,M ∪ s[p] : ε,E〉 . 〈s[p] :!S.T �Θ, s[p] : void〉

bSENDMOREc

Γ `M .Θ Γ ` e : S Γ ` v : S′ OG(T)
Γ ` 〈P,M∅ ∪ s[p] : (dS, ∅), ∅〉 . 〈s[p] : T �Θ∅, s[p] : (S, ∅)〉

Γ ` 〈s[p]!〈e〉.P,M ∪ s[p] : (v,Π),E〉 . 〈s[p] : tick.!S.T �Θ, s[p] : (S′,Π)〉

bRCVFIRSTc
Γ, x : S ` 〈P,M ∪ s[p] : (v,Π ∪ q),E〉 . 〈s[q] : T �Θ, s[p] : (S,Π ∪ q)〉

Γ ` 〈s[q]?(p, x).P,M ∪ s[p] : (v,Π),E〉 . 〈s[q] :?(p,S).T �Θ, s[p] : (S,Π)〉

bRCVMOREc

Γ `M .Θ q ∈ Π Γ ` v : S′ OG(T)
Γ, x : S ` 〈P,M∅ ∪ s[p] : (dS, {q}), ∅〉 . 〈s[q] : T �Θ∅, s[p] : (S, {q})〉

Γ ` 〈s[q]?(p, x).P,M ∪ s[p] : (v,Π),E〉 . 〈s[q] : tick.?(p,S).T �Θ, s[p] : (S′,Π)〉

bRCVNEXTc
Γ, x : S ` 〈P,M ∪ s[p] : (v, {q}), ∅〉 . 〈s[q] : T �Θ, s[p] : (S, {q})〉

Γ ` 〈s[q]?(p, x).P,M ∪ s[p] : ε,E〉 . 〈s[q] :?(p,S).T �Θ, s[p] : void〉

bWATCHc

Γ ` 〈P,M,E〉 . 〈s[p] : TP �Θ〉

TP = end ∨ (Γ ` 〈Q,M∅, ∅〉 . 〈s[p] : TQ �Θ∅〉 ∧OG(TQ))

Γ ` 〈watch ev do P{Q},M,E〉 . 〈s[p] : TP ?ev TQ �Θ〉

bIFc
Γ ` e : bool Γ ` 〈P,M,E〉 . 〈∆ �Θ〉 Γ ` 〈Q,M,E〉 . 〈∆ �Θ〉

Γ ` 〈if e then P else Q,M,E〉 . 〈∆ �Θ〉

Figure 17: Typing rules for configurations.
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These structural rules will allow us to add and remove fresh channels with empty behaviors in the session
environment. They are included to allow simplifications on some of the typing rules in Fig. 17, which we
briefly describe below:

- Rule bRVARc types a process variable inside a configuration. It asks that environment Γ contains the
required process variable and that the current memory is typable.

- Rule bINACTc types a terminated configuration with any session environment containing only
elements of the form c : end or c : 〈end,T〉ev (condition ∆ = ∆end).

- Rule bEMITc has no effect on types, as event emission only affects the communication behaviour
via the watching construct, and the event set is not typed.

- Rules bMINITc and bMACCc require the standard environment to associate a global type G with
the service identifier a. Moreover, the last premise of Rule bMACCc guarantees that the type of p’s
channel in P is obtained as the p-th saturated projection of G.

- Rule bPAUSEc types a paused configuration, checking that the reconditioned configuration is well-
typed, and requiring that the reconditioned session environment is output-granting. The latter
condition will be required in all rules for suspended configurations.

- Rule bSENDFIRSTc types the first broadcast by participant p in the current instant (the fact that it
is the first is indicated by the presence of s[p] : ε in the memory). If S is the sort of the broadcast
value, the continuation P is required to be typable in the memory obtained by replacing s[p] : ε with
s[p] : (dS, ∅), where dS is the default value of sort S. This amounts to say that the continuation P
must be typable in the memory just after the broadcast.

- Rule bSENDMOREc types the broadcast of the value of an expression e when the sender p has
already sent some value v in the current instant (as witnessed by the presence of s[p] : (v,Π) in the
memory). In this case, we insert a tick in front of the send type of s[p], to indicate that the new
broadcast will take place at the next instant. The continuation P must be typable in the refreshed
memory M∅ updated with the new message sent by p, and the reconditioned environment must be
output-granting.

- Rule bRCVFIRSTc is analogous to Rule bSENDFIRSTc: it types an input by receiver q from sender p
if a message sent by p is present in the memory, and this message has not been read yet by q (namely,
q is not in its set of Readers Π). The continuation P needs to be typable in the updated memory.

- Rule bRCVMOREc is analogous to Rule bSENDMOREc: it types an input by receiver q from sender
p in case q has already read a message v from p in the current instant. In this case, a tick is
inserted in front of the receive type of channel s[q]. Again, the reconditioned environment must be
output-granting.

- Rule bRCVNEXTc is used to type an input by receiver q from sender p at the start of a new instant,
when no participant has sent any message yet. This rule is very similar to rule bRCVFIRSTc, except
that the output buffer of the sender is empty, and therefore it is typed with void.

- Rule bCONCc types the parallel composition of two processes with a given memory and set of events,
provided both components are typable with such memory and set of events and the obtained session
environments have disjoint domains.

- Rule bCRESc types a restricted configuration with the empty configuration environment provided
the session environment of its body is coherent. This is the only typing rule that requires coherence.
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- Rule bIFc requires, as usual in session type systems, that the two branches of the conditional be
typed with the same session environment ∆.

- Rule bWATCHc types the watching construct by creating a pair of types 〈T,T′〉ev for each participant.
Since the alternative process Q may only be launched at the start of a new instant, its session
environment is required to be output-granting.

- Rule bRECc types recursion, requiring each call to be isolated in its own time instant. To this end,
the type declaration X : pause.T is added to Γ.

4.4 Properties
The semantic properties P1 and P2 defined previously both rely on subject reduction (SR). To prove SR,
we need some preliminary definitions and results. The first property we prove ensures that the typing of
configurations ensures the typing of memories:

Lemma 7. If Γ ` 〈P,M,E〉 . 〈∆ �Θ〉 then Γ `M .Θ.

Proof. By induction on the height of the typing derivation Γ ` 〈P,M,E〉 . 〈∆ �Θ〉.

Base Cases:
Case 1. Rule bRVARc:
By assumption, Γ ` 〈P,M,E〉 . 〈∆ � Θ〉 with Rule bRVARc. Then, by inversion, we have
Γ `M .Θ, concluding the proof.

Case 2. Rule bINACTc:
By assumption, Γ ` 〈P,M,E〉 . 〈∆ � Θ〉 with Rule bINACTc. Then, by inversion, we have
Γ `M .Θ, concluding the proof.

Case 3. Rule bMINITc:
By assumption, Γ ` 〈P,M,E〉 . 〈∆ � Θ〉 with Rule bMINITc. Notice that the memories are
empty. Hence, the judgement Γ `M .Θ holds by Rule bEMPTYMEMc in Fig. 15.

Case 4. Rule bMACCc:
By assumption, Γ ` 〈P,M,E〉 . 〈∆ � Θ〉 with Rule bMACCc. Notice that the memories are
empty. Hence, the judgement Γ `M .Θ holds by Rule bEMPTYMEMc in Fig. 15.

Inductive Cases:
Case 1. Rule bWEAKc:
By assumption, Γ ` 〈P,M,E〉.〈∆�Θ〉 with Rule bWEAKc. By inversion, Γ ` 〈P,M,E〉.〈∆, c :
end �Θ〉. Then, by IH, Γ `M .Θ.

Case 2. Rule bCONTRc:
By assumption, Γ ` 〈P,M,E〉.〈∆�Θ〉with Rule bCONTRc. By inversion, Γ ` 〈P,M,E〉.〈∆\c :
end �Θ〉. Then, by IH, Γ `M .Θ.
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Case 3. Rule bCONCc:
By assumption, Γ ` 〈P,M,E〉 . 〈∆ � Θ〉 with Rule bCONCc. By inversion, P = P1 | P2,
Γ ` 〈P1,M,E〉 . 〈∆1, c : end � Θ〉, and Γ ` 〈P1,M,E〉 . 〈∆1, c : end � Θ〉, with ∆ = ∆1,∆2.
Then, by IH, Γ `M .Θ, concluding the proof.

Case 4. Rule bEMITc:
By assumption, Γ ` 〈P,M,E〉 . 〈∆ �Θ〉 with Rule bEMITc. As above, this case concludes by
applying inversion and the IH.

Case 5. Rule bPAUSEc:
By assumption, Γ ` 〈P,M,E〉 . 〈∆ � Θ〉 with Rule bPAUSEc. By inversion, we have that
Γ `M .Θ, which is what we wanted to prove.

Case 6. Rule bRECc:
By assumption, Γ ` 〈P,M,E〉 . 〈∆ �Θ〉 with Rule bRECc. By inversion, (1) Γ,X : pause.T `
〈P,M∅, ∅〉 . 〈c : T �Θ∅〉 and (2) Γ,X : pause.T ` 〈P,M,E〉 . 〈c : T �Θ〉. Then, by applying
the IH on (2), we conclude that Γ,X : pause.T ` M .Θ. Since Xis not used in typing M it
implies that Γ `M .Θ, which allows us to conclude this case.

Case 7. Rule bSENDFIRSTc:
By assumption, Γ ` 〈P,M,E〉 . 〈∆ � Θ〉 with Rule bSENDFIRSTc. From the rule it can be
deduced that M = M′ ∪ s[p] : ε, Θ = Θ′, s[p] : void. Then, by inversion on the Rule,
(1) Γ ` 〈P,M′ ∪ s[p] : (dS, ∅),E〉 . 〈s[p] : T � Θ′, s[p] : (S, ∅)〉. From IH applied to (1),
we have that (2) Γ ` M′ ∪ s[p] : (dS, ∅) . Θ′, s[p] : (S, ∅). Notice that the judgement in (2)
can only be deduced from Rule bMERGEMEMc in Fig. 15, thus, by inversion we have that
(3) Γ `M′ .Θ′. Then, applying Rule bVOIDMSGc, we have that (4) Γ ` s[p] : ε . s[p] : void.
Thus, applying Rule bMERGEMEMc, we can conclude that Γ `M′ ∪ s[p] : ε .Θ′, s[p] : void,
which concludes the proof.

Case 8. Rules bSENDMOREc, bRCVFIRSTc, bRCVMOREc, and bRCVNEXTc:
The proof for each of these cases proceeds similarly as above, by using inversion, applying the
IH and using the rules in Fig. 15, to deduce tha the memory is typable.

Case 9. Rule bWATCHc:
By assumption, Γ ` 〈P,M,E〉 . 〈∆ � Θ〉 with Rule bWATCHc. By inversion, we have that
Γ ` 〈P,M,E〉 . 〈s[p] : TP �Θ〉. Then, we conclude by applying the IH.

Case 10. Rule bIFc:
By assumption, Γ ` 〈P,M,E〉 . 〈∆ �Θ〉 with Rule bIFc. The proof proceeds by inversion and
applying the IH.

�

Before proving subject reduction and since the configuration environment changes along execution,
we now formalise a notion of reduction for configuration environments.
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Definition 19 (Reduction of configuration environments). Let⇒ be the reflexive and transitive relation
on configuration environments generated by:

1. 〈∆, s[p] :!S.T �Θ, s[p] : void〉 ⇒ 〈∆, s[p] : T �Θ, s[p] : (S, ∅)〉

2. 〈∆, s[q] :?(p,S).T �Θ, s[p] : (S,Π)〉 ⇒ 〈∆, s[q] : T �Θ, s[p] : (S,Π ∪ {q})〉 with q < Π

3. 〈∆ �Θ〉 ⇒ 〈∆′ �Θ′〉 implies 〈∆ ?ev ∆′′ �Θ〉 ⇒ 〈∆′ ?ev ∆′′ �Θ′〉

4. 〈∆ �Θ〉 ⇒ 〈∆′ �Θ′〉 implies 〈∆,∆′′ �Θ〉 ⇒ 〈∆′,∆′′ �Θ′〉

Similarly, we introduce a tick reduction for the configuration environments of suspended configurations.
This reduction relation is parameterised by the set of events E which is used to recondition the watch types.

We now argue that it is important for us to distinguish between implicit and explicit pauses in our
typing, specifically, when aiming to prove a subject reduction result. In particular, consider

C = 〈E[s[p]?(q, x).s[p]?(r, y).P],M,E〉

with s[r] : (v,Π) ∈M, p ∈ Π and (νs)C‡. Using the typing rules in Fig. 17, we can see that:

Γ ` C . 〈∆, s[p] :?(q,S).tick.?(r,S).T �Θ〉

Now, since C is suspended, the configuration reduces, via a tick transition (cf. Fig. 9), to (νs)D with

D = 〈E[s[p]?(q, x).s[p]?(r, y).P],M∅, ∅〉.

whose typing is:
Γ ` D . 〈∆′, s[p] :?(q,S).?(r,S).T � ∅〉

It is clear that in the above typing judgement, the tick has been deleted. Thus, it is necessary for us to
distinguish between implicit and explicit pauses when defining a reduction for typing environments, as
some of the implicit pauses may be removed. Formally, this situation happens whenever a suspension
occurs because of rule (ins) (cf. Fig. 7). We address the deletion of tick, using the trm(·) function defined
in Fig. 18. Intuitively, trm(·) parses the local type and recalculates where to put implicit pauses.

Definition 20 (Tick reduction of configuration environments). Let yE be the parameterised relation on
configuration environments generated by:

1. (Pause) 〈pause(∆) �Θ〉 y ∅ 〈∆ �Θ∅〉

2. (Tick) 〈tick(∆) �Θ〉 y ∅ 〈∆ �Θ∅〉

3. (In) Θ = Θ′, s[p] : void implies : for any E 〈s[q] :?(p,S).T �Θ〉 yE 〈s[q] :?(p,S).trm(T)0
{p}
�

Θ∅〉 where trm(·) is as in Fig. 18

4. (Par) 〈∆i �Θ〉 yE 〈∆
′

i �Θ′〉, i = 1, 2 implies 〈∆1,∆2 �Θ〉 yE 〈∆
′

1,∆
′

2 �Θ′〉

5. (Restr) 〈∆ �Θ〉 yE 〈∆
′
� Θ′〉 implies 〈∆ \ s � Θ \ s〉 yE 〈∆

′
\ s � Θ′ \ s〉

6. (Watch) 〈∆1�Θ〉 yE 〈∆
′

1�Θ′〉 implies

〈∆1 ?ev ∆2 �Θ〉 yE∪{ev} 〈∆2 � Θ′〉 i f ev ∈ E
〈∆1 ?ev ∆2 �Θ〉 yE∪{ev} 〈∆

′

1 ?ev ∆2 � Θ′〉 i f ev < E
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trm(T)0
Π =



!S.T′ if T = tick.!S.T′

!S.trm(T′)1
Π

if T =!S.T′

tick.?(p,S).T′ if T = tick.?(p,S).T′ and p ∈ Π

?(p,S).T′ if T = tick.?(p,S).T′ and p < Π

?(p,S).trm(T′)0
Π∪{p}

if T =?(p,S).T′ and p < Π

〈trm(T1)0
Π
,T2〉

ev if T = 〈T1,T2〉
ev

µt.T′ if T = µt.T′

pause.T′ if T = pause.T′

end if T = end

trm(T)1
Π =



tick.!S.T′ if T = tick.!S.T′

tick.?(p,S).T′ if T = tick.?(p,S).T′ and p ∈ Π

?(p,S).T′ if T = tick.?(p,S).T′ and p < Π

?(p,S).trm(T′)1
Π∪{p}

if T =?(p,S).T′ and p < Π

〈trm(T1)1
Π
,T2〉

ev if T = 〈T1,T2〉
ev

µt.T′ if T = µt.T′

pause.T′ if T = pause.T′

end if T = end

Figure 18: trm() function

We also let 〈∆ �Θ〉 y 〈∆′ � Θ′〉 if there exists E such that 〈∆ �Θ〉 yE 〈∆
′
� Θ′〉.

The predicate 〈∆�Θ〉 yE is defined by 〈∆�Θ〉 yE if there exist ∆′,Θ such that 〈∆�Θ〉 yE 〈∆
′
� Θ′〉,

and the predicate 〈∆ �Θ〉 y is defined similarly.

Note that y is defined also on the environments of suspended subconfigurations, which cannot
perform a tick transition.

Just like processes, local types and session environments should be reconditioned to properly reflect
the reconditioning of processes during tick reductions:

Definition 21 (Reconditioning of local types and session environments). Given a set of events E, the
reconditioning of a local type H (under E), written [T]E, is defined as:

[T]E =



T′ if T = pause.T′ or T = tick.T′

T if T = end or T = t
?(p,S).trm(T′)0

{p}
if T =?(p,S).T′

T2 if T = 〈T1,T2〉
ev and ev ∈ E

〈[T1]E,T2〉
ev if T = 〈T1,T2〉

ev and ev < E

where trm(·) is defined in Fig. 18. Given ∆, its reconditioning under E is defined as [∆]E = {c : [T]E | c :
T ∈ ∆}.

The following proposition is easy to show, by induction on Definition 20:

Proposition 3. If 〈∆ �Θ〉 yE 〈∆
′
� Θ′〉 then ∆′ = [∆]E and Θ′ = Θ∅.
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Definition 22 (Mixed reduction of configuration environments). Let e> stand for either⇒ or y , and
let e>∗ be its reflexive and transitive closure.

Hence 〈∆�Θ〉 〈∆′� Θ′〉 when 〈∆�Θ〉 can reduce to 〈∆′� Θ′〉 via a mixed sequence of reductions.
We prove now that types are preserved under ≡ (i.e., subject congruence) and substitution. Notice that
Rule bWEAKc is necessary for subject congruence, as it allows to add ended sessions to ∆.

Lemma 8 (Subject Congruence). If Γ ` C . 〈∆ �Θ〉 and C ≡ C′ then Γ ` C′ . 〈∆ �Θ〉.

Proof. By induction on the definition of structural congruence (cf. Fig. 5). There are two cases:

Case 1. Rule P ≡ Q ⇒ 〈P,M,E〉 ≡ 〈Q,M,E〉. Assume C = 〈P,M,E〉 and C′ = 〈Q,M,E〉. We
proceed by case analysis on the hypothesis P ≡ Q. There are 4 rules by which it may be deduced:

Case R | 0 ≡ R. Suppose P = R | 0 and Q = R. By assumption, Γ ` 〈P,M,E〉 . 〈∆ � Θ〉. This
judgement is necessarily deduced using Rule bCONCc. By inversion, (i) Γ ` 〈R,M,E〉.〈∆1�Θ〉,
and (ii) Γ ` 〈0,M,E〉 . 〈∆2 � Θ〉. Furthermore, the judgement in (ii) has to be necessarily
deduced using Rule bINACTc. Thus, applying inversion, (iv) ∆2 = ∆end. Thus, we conclude by
applying Rule bWEAKc to add ∆2 in (i), obtaining Γ ` 〈R,M,E〉 . 〈∆1,∆2 �Θ〉.
Let us now consider the inverse case, i.e. P = R and Q = R | 0. By assumption, we have
Γ ` 〈R,M,E〉 . 〈∆ � Θ〉, and we have to prove that Γ ` 〈R | 0,M,E〉 . 〈∆ � Θ〉. By Lem. 7,
(i) Γ ` M . Θ. Then, observe that ∆0 = ∅ implies that ∆0 = ∆end by Def. 11. We may then
apply Rule bINACTc, using ∆0 = ∅ and (i) to derive Γ ` 〈0,M,E〉 . 〈∅ �Θ〉, and subsequently
apply Rule bCONCc to obtain Γ ` 〈R | 0,M,E〉 . 〈∆ �Θ〉.

Case watch ev do 0{R} ≡ 0. Suppose P = watch ev do 0{R} and Q = 0. By assumption, Γ `
〈P,M,E〉 . 〈∆ � Θ〉. This judgement is deduced with Rule bWATCHc, hence ∆ = {s[p] :
T0 ?ev TR}. By inversion on Rule bWATCHc, we have (i) Γ ` M . Θ and (ii) Γ ` 〈0,M,E〉 .
〈s[p] : T0 � Θ〉. Since (ii) is deduced by Rule bINACTc, it must be T0 = end. Hence also
T0 ?ev TR = end (cf. Def. 14), and we may conclude that Γ ` 〈Q,M,E〉 . 〈∆ �Θ〉.
Conversely, suppose P = 0 and Q = watch evdo0{R}. By assumption, Γ ` 〈0,M,E〉.〈∆�Θ〉.
This judgement is deduced by Rule bINACTc. By inversion we have (i) ∆ = ∆end. Hence,
we distinguish two cases: (1) ∆ = ∅ and (2) ∆ , ∅. In Case (1), we apply Rule bWEAKc
to obtain Γ ` 〈0,M,E〉 . 〈c : end � Θ〉. Then, we apply Rule bWATCHc to deduce Γ `
〈watch ev do 0{R},M,E〉 . 〈s[p] : end �Θ〉. Finally, we apply Rule bCONTRc to conclude
Γ ` 〈watch ev do 0{R},M,E〉 . 〈∅ �Θ〉.
For Case (2), consider an arbitrary s[p] ∈ dom(∆). By (i), s[p] : end ∈ ∆. Then, using the
contraction rule bCONTRc, we may deduce (ii) Γ ` 〈0,M,E〉 . 〈s[p] : end �Θ〉. We may now
apply Rule bWATCHc to the judgement (ii) to obtain Γ ` 〈watch ev do 0{R},M,E〉 . 〈s[p] :
end � Θ〉. Then, by iteratively applying Rule bWEAKc to add ∆ \ s[p] : end to the session
environment, we finally obtain Γ ` 〈watch ev do 0{R},M,E〉 . 〈∆ �Θ〉.

Case R1 | R2 ≡ R2 | R1. The proof of this case is straightforward by inversion, since the hypotheses
Γ ` 〈R1,M,E〉 . 〈∆1 �Θ〉 and Γ ` 〈R2,M,E〉 . 〈∆2 �Θ〉 are not ordered in Rule bCONCc.

Case (R1 | R2) | R3 ≡ R1 | (R2 | R3). Again, the proof is straightforward by inversion, considering
that (dom(∆1)∩ dom(∆2))∩ dom(∆3) = ∅ if and only if dom(∆1)∩ (dom(∆2)∩ dom(∆3)) = ∅.
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Case 2. Rule C1 ≡ C2 ⇒ (νs)C1 ≡ (νs)C2. Suppose that C = (νs)C1 and C′ = (νs)C2. By
assumption, Γ ` C . 〈∅ � ∅〉. This judgement is derived with Rule bCRESc. Then, by inversion,
Γ ` C1 . 〈∆ �Θ〉 and Co 〈∆ �Θ〉. By induction Γ ` C2 . 〈∆1 �Θ1〉, and we can apply Rule bCRESc
to this statement and to Co 〈∆1 �Θ1〉 to obtain Γ ` (νs)C2 . 〈∆1 �Θ1〉, namely Γ ` C′ . 〈∆ �Θ〉.

�

Lemma 9 (Substitution lemma). If Γ, x : S ` C . 〈∆ �Θ〉 and Γ ` v : S then Γ ` C{v/x} . 〈∆ �Θ〉.

Proof. By induction on the height of the type derivation. The base cases are rules bINACTc and bMINITc.
The thesis is easily derived observing that x does not occur free neither in 0 nor in the initiator.

For the inductive cases, the interesting ones are those of rules bSENDFIRSTc and bSENDMOREc. All
other cases follow by the fact that the process under consideration either do not contain free occurrences of
x or the conclusion follows by a direct application of the inductive hypothesis.

Let us consider the case of rule bSENDFIRSTc (the treatment for rule bSENDMOREc will be the same).
We know that:

Γ, x : S ` 〈s[p]!〈e〉.P,M ∪ s[p] : ε,E〉 . 〈s[p] :!S.T �Θ, s[p] : void〉

By inversion we have: (1) Γ, x : S ` e : S and (2) Γ, x : S ` 〈P,M∪s[p] : (dS, ∅),E〉.〈s[p] : T�Θ, s[p] :
(S, ∅)〉.

By an easy induction on the height of the type derivation of expressions, Fig. 14, and from (1) we
deduce Γ, v : S ` e{v/x} : S. From (2), by inductive hypothesis we conclude Γ, v : S ` 〈P{v/x},M ∪ s[p] :
(dS, ∅),E〉 . 〈s[p] : T �Θ, s[p] : (S, ∅)〉.

Finally using rule bSENDFIRSTc we conclude this case obtaining:

Γ, v : S ` 〈(s[p]!〈e〉.P){v/x},M ∪ s[p] : ε,E〉 . 〈s[p] :!S.T �Θ, s[p] : void〉

�

Lemma 10 (Reduction lemma). Let Γ ` 〈P,M,E〉 . 〈∆ � Θ〉 and 〈P,M,E〉 −→ 〈P′,M′,E′〉 via some
reduction rule different from [Cont] and [Struct]. Then 〈∆ �Θ〉 ⇒ 〈∆′ �Θ′〉 and Γ ` 〈P′,M′,E′〉 . 〈∆′ �
Θ′〉. Moreover, if 〈∆,∆0 �Θ,Θ0〉 is coherent, then 〈∆′,∆0 �Θ′,Θ0〉 is coherent.

Proof. By induction on length of the inference of the reduction 〈P,M,E〉 −→ 〈P′,M′,E′〉, with a case
analysis on the last applied rule. Notice that Case [Init] is not considered here, as we are only interested in
reductions that affect the processes inside a reachable non initial configuration.

Case 1. [Out]:

Let P = s[p]!〈e〉.P′, and M = M′′ ∪ {s[p] : ε} for some M′′. P is typed with rule bSENDFIRSTc and
by hypothesis we have: e ↓ v, M′ = M′′ ∪ {s[p] : (v, ∅)}, ∆ = s[p] :!S.T and Θ = Θ′′, s[p] : void.

By inversion on rule bSENDFIRSTc we know that Γ ` e : S and Γ ` 〈P′,M′′ ∪ {s[p] : (dS, ∅)},E〉 .
〈s[p] : T �Θ′′, s[p] : (S, ∅)〉.

Now since Γ ` e : S and e ↓ v we know that Γ ` v : S. Hence we can conclude that

Γ ` 〈P′,M′′ ∪ {s[p] : (v, ∅)},E〉 . 〈s[p] : T �Θ′′, s[p] : (S, ∅)〉

and by using item 1 of Def. (Def. 19) we have that

〈s[p] :!S.T �Θ′′, s[p] : void〉 ⇒ 〈s[p] : T �Θ′′, s[p] : (S, ∅)〉
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Finally by assumption we have, Co 〈s[p] :!S.T,∆0 �Θ′′, s[p] : void,Θ0〉. We know that Co 〈s[p] :
T,∆0 � Θ′′, {s[p] : (S, ∅),Θ0}〉. We only have to consider the impact of s[p]as the other members
of the environment are unchanged. Since s[p] ∈ vdom(Θ′′, s[p] : (S, ∅),Θ0) Condition 1 of Def.
18 holds. For Condition 2, duality is preserved, as the generalized type of s[p] in ∆ will lift the
necessary output from Θ to re-construct the correct type.

Case 2. [In]:

Let P = s[q]?(p, x).P′′ for some P′′ and M = M′′ ∪ {s[p] : (v,Π)} for some M′′, v,Π such that
q < Π.

P is typed with rule bRCVFIRSTc. By hypothesis we have: P′ = P′′{v/x}, M′ = M′′ ∪ {s[p] :
(v,Π ∪ q)}, ∆ = s[q] :?(p,S).T and Θ = Θ′′, s[p] : (S,Π).

By inversion on bRCVFIRSTc we know that

Γ, x : S ` 〈P′′,M′′ ∪ s[p] : (v,Π ∪ {q}),E〉 . 〈s[q] : T �Θ′′, {s[p] : (S,Π ∪ {q})}〉

Now by Lemma Lem. 9 we can conclude that

Γ ` 〈P′′{v/x},M′′ ∪ s[p] : (v,Π ∪ {q}),E〉 . 〈s[q] : T �Θ′′, {s[p] : (S,Π ∪ {q})}〉

and by item 2 in Def. 19

〈s[q] :?(p,S).T �Θ′′, s[p] : (S,Π)〉 ⇒ 〈s[q] : T �Θ′′, s[p] : (S,Π ∪ {q})〉

Finally, we prove Co 〈s[q] : T,∆0 � Θ′′, s[p] : (S,Π),Θ0〉. Let us check the first condition for
coherence; notice that Co 〈∆,∆0 �Θ,Θ0〉 implies that either s[q] ∈ vdom(Θ,Θ0) or OG(?(p,S).T).
In both cases coherence holds by assumption. Now, to check duality, let ∆0 = ∆′0, s[p] : T′ and
we know that s[p] : (S,Π) ∈ Θ. Hence, by assumption 〈∆,∆0 � Θ,Θ0〉(s[q]) =?(p,S).T and
〈∆,∆0 � Θ,Θ0〉(s[p]) =!S.T′. Furthermore, ?(p,S).T ./ !S.T′ implies T ./ T′ by Def. 17 and
therefore, T ./ !s.T′, which in turn, ensures that duality is preserved in 〈∆′,∆0 �Θ′,Θ0〉.

Case 3. [Emit]:

Immediate, since this rule does not change the memory nor the configuration environment.

Case 4. [Watch]:

Let P = watch ev do P′{Q}. By assumption we know 〈P,M,E〉 −→ 〈watch ev do P′{Q},M′,E′〉
and Γ ` 〈P,M,E〉.〈T′P?ev TQ�Θ〉 . By inversion on rule bWATCHcwe have Γ ` 〈P,M,E〉.〈TP′ �Θ〉,
Γ ` 〈Q,M∅,E〉.〈TQ�Θ

∅
〉 and OG(TQ). By inductive hypothesis we have Γ ` 〈P′,M′,E′〉.〈TP�Θ

′
〉

and 〈TP′ �Θ〉 ⇒ 〈T′P′ �Θ′〉. Hence, by item 3 in Def. 19 we conclude
〈TP′ ?ev TQ �Θ〉 ⇒ 〈T′P′ ?ev TQ �Θ′〉.

Finally, assume Co 〈TP′?evTQ,∆0�Θ,Θ0〉. This implies Co 〈TP′ ,∆0�Θ,Θ0〉 and hence, by inductive
hypothesis we have Co 〈T′P′ ,∆0 �Θ′,Θ0〉, which in turn implies Co 〈T′P′ ?ev TQ,∆0 �Θ′,Θ0〉.

Case 5. [Rec]:

The proof proceeds as above by using the inductive hypothesis.
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�

To prove subject reduction, we first need to prove that tick reduction for configuration environments
preserves duality and that suspension preserves typing. This is useful for ensuring that the semantics given
to environment configurations works correctly.

Lemma 11 (Tick reduction of configuration environments preserves duality). If 〈∆ �Θ〉 yE 〈∆
′
�Θ′〉

then ∆′ = [∆]E, dom(∆′) ⊆ dom(∆) and Θ′ = Θ∅. Moreover, if 〈∆ � Θ〉 satisfies duality then also
〈∆′ � Θ′〉 satisfies duality and for any s[p], s[q] ∈ dom(∆′), if s[p] : Tp ∈ ∆ and s[q] : Tq ∈ ∆ , then
〈∆ �Θ〉(s[p])� q ./ 〈∆ �Θ〉(s[q])� p if and only if [Tp]E � q ./ [Tq]E � p.

Proof. By induction on the definition of y . There is only one basic case, corresponding to Rule (Pause).

Case 1. (Pause):

In this case 〈∆ �Θ〉 yE 〈∆
′
�Θ′〉 is deduced by Rule 1. of Def. 20 and we have ∆ = pause(∆′),

E = ∅, ∆′ = [∆]E and Θ′ = Θ∅. Moreover dom(∆′) = dom(∆).

Assume now s[p] : Tp ∈ ∆ and s[q] : Tq ∈ ∆ . Then, letting T′p = [Tp]E and T′q = [Tq]E, we have:

Tp = pause.T′p Tq = pause.T′q s[p] : T′p ∈ ∆′ s[q] : T′q ∈ ∆′

We want to prove the duality of 〈∆′�Θ∅〉 assuming the duality of 〈∆�Θ〉. Note that 〈∆′�Θ∅〉(s[p]) =
T′p and 〈∆′ �Θ∅〉(s[q]) = T′q. On the other hand, there are two possibilities for 〈∆ �Θ〉(s[p]): either
〈∆ �Θ〉(s[p]) = Tp, in case s[p] < vdom(Θ), or 〈∆ �Θ〉(s[p]) = !Sp.Tp, in case s[p] : (Sp,Πp) ∈ Θ.
Similarly, either 〈∆ �Θ〉(s[q) = Tq or 〈∆ �Θ〉(s[q]) = !Sq.Tq.

Let now τp = Tp � q, τq = Tq � p, and τ′p = T′p � q, τ′q = T′q � p. Since projection preserves pause,
we have τp = pause.τ′p and τq = pause.τ′q. Then:

〈∆′ �Θ∅〉(s[p])� q = T′p � q = τ′p 〈∆′ �Θ∅〉(s[q])� p = T′q � p = τ′q

Moreover, we have:

either 〈∆ �Θ〉(s[p)� q = τp or 〈∆ �Θ〉(s[p])� q = !Sp.τp
either 〈∆ �Θ〉(s[q)� p = τq or 〈∆ �Θ〉(s[q])� p = !Sq.τq

We want to show τ′p ./ τ
′
q. By assumption duality holds for 〈∆ �Θ〉, so we are in one of the four

cases:
τp ./ τq i.e. pause.τ′p ./ pause.τ′q

!Sp.τp ./ τq i.e. !Sp.pause.τ′p ./ pause.τ′q
τp ./ !Sq.τq i.e. pause.τ′p ./ !Sq.pause.τ′q

!Sp.τp ./ !Sq.τq i.e. !Sp.pause.τ′p ./ !Sq.pause.τ′q
Now, it is easy to see that any of the four statements on the right-hand side implies τ′p ./ τ

′
q. Hence we

have shown duality of 〈[∆]E �Θ∅〉 and more specifically that 〈∆ �Θ〉(s[p])� q ./ 〈∆ �Θ〉(s[q])� p
if and only if [Tp]E � q ./ [Tq]E � p.

Case 2. (Tick):

Analogous to the previous case.
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Case 3. (In):

This case is vacuously true, since ∆ = s[q] :?(p,S).T and hence it does not have any other type to be
compared to.

Case 4. (Par):

In this case 〈∆ �Θ〉 yE 〈∆
′
�Θ′〉 is deduced by Rule 4. of Definition 20. Therefore ∆ = (∆1,∆2)

and 〈∆i � Θ〉 yEi 〈∆
′

i � Θ′〉, for i = 1, 2. By induction ∆′i = [∆i]E, dom(∆′i ) ⊆ dom(∆i) and
Θ′ = Θ∅. Now, suppose 〈∆1,∆2 �Θ〉 satisfies duality. We want to show that also 〈[∆1,∆2]E �Θ∅〉 =
〈[∆1]E1 , [∆2]E � Θ∅〉 satisfies duality. Note that since the ∆i have disjoint domains, the duality
of 〈∆1,∆2 � Θ〉 entails the duality of each 〈∆i � Θ〉. Then by induction also each 〈[∆i]E � Θ∅〉
satisfies duality. Hence, to check duality of 〈[∆1]E, [∆2]E � Θ∅〉 we only have to look at pairs
s[p1], s[p2] such that s[p1] ∈ dom([∆1]E) and s[p2] ∈ dom([∆2]E), because the other cases (i.e.,
when pairs belong to only one single ∆i) conclude by IH. Let s[p1], s[p2] be such a pair. Recalling
that dom([∆i]E) ⊆ dom(∆i), this means that for each i = 1, 2, there exists Ti such that s[pi] : Ti ∈ ∆i.
By definition this implies s[pi] : [Ti]E ∈ [∆i]E. Let T′i = [Ti]Ei . Thus we have:

〈[∆1,∆2]E �Θ∅〉(s[p1]) = T′1 〈[∆1,∆2]E �Θ∅〉(s[p2]) = T′2

As regards 〈∆1,∆2 �Θ〉(s[pi]), we have:

either 〈∆1,∆2 �Θ〉(s[pi]) = Ti if s[pi] < vdom(Θ)
or 〈∆1,∆2 �Θ〉(s[pi]) = !Si.Ti if s[pi] : (Si,Πi) ∈ Θ

Let now τ1 = T1 � p2 and τ2 = T2 � p1 and τ′1 = T′1 � p2 and τ′2 = T′2 � p1. We need to prove that
τ1 ./ τ2 implies τ′1 ./ τ

′

2. There are then 4 cases to analyze:

τ1 ./ τ2

!S1.τ1 ./ τ2

τ1 ./ !S2.τ2

!S1.τ1 ./ !S2.τ2

this proceeds as follows:

Case τ1 ./ τ2: We need to apply induction on the structure of τ1, base case is τ1 = end:

Case τ1 = end ∨ τ1 = t ∨ τ1 =!S.τ′′1 ∨ τ
′′

1 =?S.τ′′1 : In this case, for τ2 = µt.τ′′2 and τ2 =
pause.τ′′2 the statement is vacuously true, since duality dos not hold, and for the other
case, duality proceeds simply by assumption, since the types do not change.

Case τ1 = pause.τ′′1 : Now, we apply a case analysis on τ2:
Case τ2 = pause.τ′′2 : In this case we have that pause.τ′′1 ./ pause.τ

′′

2 , and then [pause.τ′′1 ]E =
τ′′1 , as well as [pause.τ′′2 ]E = τ′′2 , and since we know that T′i = [Ti]E, then we know
that τ′′1 = τ′1 and τ′′2 = τ′2, and hence it is clear that τ′1 ./ τ

′

2 by Def. 17. All the other
cases are vacuously true.

Case τ1 = µt.τ′′1 : Again, we can only proceed for the case when τ1 = µt′.τ′′2 , other cases are
vacuously true. In this case, we proceed by applying the IH, since we are looking at the
bodies of the recursive types.
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Case τ1 = 〈ϕ1, ψ1〉
e: For this case we only need to look at τ2 = 〈ϕ2, ψ2〉

e, all the other cases
are vacuously true. For this case we have to consider two subcases depending on whether
e ∈ E or e < E:
Subcase e ∈ E: In this case, by assumption, we have that 〈ϕ1, ψ1〉

e ./ 〈ϕ2, ψ2〉
e. Also,

by Def. 21 we have that [〈ϕ1, ψ1〉
e]E = ψ1 and [〈ϕ2, ψ2〉

e]E = ψ2, hence τ′1 = ψ1
and τ2 = ψ2. Notice that by Def. 17, 〈ϕ1, ψ1〉

e ./ 〈ϕ2, ψ2〉
e implies ϕ1 ./ ϕ2 and

ψ1 ./ ψ2 and therefore, we conclude by assumption.
Subcase e < E: This case concludes by applying the IH hypothesis, since the recondi-

tioning is applied to the first part of the watch type.

Case !S.τ1 ./ τ2: As above, we apply induction on the structure of τ1 and obtain the same cases.
This is possible if we consider the fact that the duality of !S.τ1 ./ τ2 implies the duality of
τ1 ./ τ2.

Case τ1 ./ !S.τ2: As above.

Case !Sτ1 ./ !S′.τ2: As above, notice that the reasoning is: By Def. 17, !Sτ1 ./ !S.τ2 implies
τ1 ./ !S.τ2, which in turn implies !Sτ1 ./ τ2 and from here on, the reasoning is as the above
mentioned cases.

Case 5. (Watch):

In this case 〈∆ �Θ〉 y 〈∆′ �Θ′〉 is deduced by Rule 6. of Definition 20. Then ∆ = ∆1 ?ev ∆2.
There are two cases two consider, depending on the result of the composition operator in Def. 14:

Case ∆1 = ∆end: This case is vacuously true since there is no reduction for a terminated environ-
ment.

Case ∆1 , ∆end: In this case, again we have two cases to consider, depending on whether ev ∈ E or
not:

Case ev ∈ E: In this case, we have by Def. 21 that [∆1 ?e ∆2]E = ∆2, since by assumption
e ∈ E, also, by assumption we have that ∆′ = ∆2, hence ∆′ = [∆1 ?e ∆2]E, and applying
the IH we have that 〈∆ � Θ〉 y 〈∆′ � Θ∅〉, thus proving the first part of the Lemma.
Notice also that by Def. 14 we have that dom(∆1) = dom(∆2) or the function would
be undefined and hence dom(∆′) ⊆ dom(∆). Now, let us assume that 〈∆1 ?ev ∆2 � Θ〉
satisfies duality, we need to prove that 〈[∆1 ?ev ∆2]E �Θ∅〉 also satisfies duality. For this
we consider two arbitrary s[p] : Tp, s[q] : Tq ∈ ∆. This means then that, as above we have
two possibilities for each participant-type pair:

〈∆1 ?ev ∆2 �Θ〉(s[p]) = Tp ∨ 〈∆1 ?ev ∆2 �Θ〉(s[p]) =!S.Tp
〈∆1 ?ev ∆2 �Θ〉(s[q]) = Tp ∨ 〈∆1 ?ev ∆2 �Θ〉(s[q]) =!S′.Tq

Then, let Tp � q = τp and Tq � p = τq, then, as above, we have the following cases:

τp ./ τq
!Sp.τp ./ τq

τp ./ !Sq.τq
!Sp.τp ./ !S′q.τq

Lastly, the proof proceeds as above by cases. Notice, however, that by Def. 14, one has
that for all c : T ∈ ∆ the type T = 〈T1,T2〉

ev. Furthermore, since duality for the watch
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type is defined pairwise (cf. Def. 17) and considering the fact that the reconditioning in
the presence of ev does not change the environment ∆2, we can conclude that 〈∆2 �Θ〉
preserves duality, concluding this case.

Case ev < E: This case proceeds with a reasoning similar to the Case τ1 = µt.τ′′1 above: by
IH and case analysis. We need to consider the full environment, and check only ∆1, since
∆2 remains untouched.

�

Lemma 12 (Suspension lemma). Let 〈P,M,E〉‡ and Γ ` 〈P,M,E〉.〈∆�Θ〉. Then 〈∆�Θ〉 y 〈[∆]E�Θ∅〉
and Γ ` 〈[P]E,M∅, ∅〉 . 〈[∆]E �Θ∅〉. Moreover, if 〈∆ �Θ〉 is coherent then 〈[∆]E �Θ∅〉 is coherent.

Proof. By induction on the definition of 〈P,M,E〉‡. The basic cases correspond to the suspension rules
(pause), (outs), (ins) and (in2

s ), and the inductive cases to rules (pars), (watchs) and (recs).
We start with the basic cases.

Case 1. (pause):

Assume P = pause.P′. Hence [P]E = P′. By assumption Γ ` 〈P,M,E〉 . 〈∆ �Θ〉. This judgement
is derived by Rule bPAUSEc, hence ∆ = pause.T and [∆]E = T. By inversion on Rule bPAUSEc
we have Γ ` M .Θ, OG(T), and Γ ` 〈P′,M∅, ∅〉 . 〈T �Θ∅〉. The latter is the required judgement
Γ ` 〈[P]E,M∅, ∅〉.〈[pause.T]E�Θ∅〉. Moreover, 〈pause.T�Θ〉 y 〈[pause.T]E�Θ∅〉 = 〈T�Θ∅〉
by Clause 1. of Def. 20. Assume now that 〈∆ �Θ〉 is coherent. Then 〈[∆]E �Θ∅〉 is coherent, since
Condition 1. of Def. 18 follows from OG(T) and Condition 2. of Def. 18 follows from Lemma 11.

Case 2. (outs):

Assume P = s[p]!〈e〉.P′ and M = M0∪{s[p] : (w,Π)}. By assumption Γ ` 〈P,M,E〉 . 〈∆�Θ〉. This
judgement is deduced by Rule bSENDMOREc, therefore, assuming e ↓ v, Γ ` v : S and Γ ` w : S′, it
has the form:

Γ ` 〈s[p]!〈e〉.P′,M0 ∪ {s[p] : (w,Π)},E〉 . 〈s[p] : tick.!S.T �Θ0, s[p] : (!S′,Π)〉

where ∆ = s[p] : tick.!S.T and Θ = Θ0, s[p] : (!S′,Π). By reconditioning P and ∆ we obtain
[P]E = P = s[p]!〈e〉.P′ and [∆]E = s[p] :!S.T. By inversion on Rule bSENDMOREc we have
Γ ` 〈P′,M∅0∪ s[p] : (v, ∅), ∅〉 . 〈s[p] : T �Θ∅0∪ s[p] : (S, ∅)〉, where Γ `M0 .Θ0. This is the premise
we need to apply Rule bSENDFIRSTc to 〈s[p]!〈e〉.P′,M∅0 ∪ s[p] : ε, ∅〉 = 〈[P]E,M∅, ∅〉. By this rule
we deduce:

Γ ` 〈s[p]!〈e〉.P′,M∅0s[p] : ε, ∅〉 . 〈s[p] :!S.T �Θ∅0, s[p] : void〉

that is, Γ ` 〈[P]E,M∅, ∅〉 . 〈[∆]E � Θ∅〉, given that M∅ = M∅0 ∪ s[p] : ε, [∆]E = s[p] :!S.T and
Θ∅ = Θ∅0, s[p] : void (the latter follows from Θ = Θ0, s[p] : (!S′,Π)).

Again, we have 〈∆ �Θ〉 y 〈[∆]E �Θ∅〉 by Clause 1. of Def. 20. What is left to show is coherence
of 〈[∆]E�Θ∅〉. It is easy to see that Condition 1. is satisfied, because OG(!S.T) implies OG([∆live]E).
As for Condition 2., it follows again from Lem. 11.
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Case 3. (ins):

Here P = s[q]?(p, x).P′ and M = M0 ∪ s[p] : ε. By assumption Γ ` 〈P,M,E〉 . 〈∆ � Θ〉. This
judgement is deduced by Rule bRCVNEXTc, hence it has the form:

Γ ` 〈s[q]?(p, x).P′,M0 ∪ s[p] : ε,E〉 . 〈s[q] :?(p,S).T �Θ0, s[p] : void〉

We will call the derivation tree obtained by the previous hypothesis D1.

Through reconditioning we obtain: [P]E = P = s[q]?(p, x).P′ and we show that Γ ` 〈P,M∅,E〉 .
〈∆′ �Θ∅〉. This judgement is again deduced by Rule bRCVNEXTc, hence it has the form:

Γ ` 〈s[q]?(p, x).P′,M∅ ∪ s[p] : ε,E〉 . 〈s[q] :?(p,S).T′ �Θ∅, s[p] : void〉

By inversion we have Γ ` 〈P′,M∅ ∪ s[p] : (v, {q}), ∅〉 . 〈s[q] : T′ � s[p] : (S, {q})〉 and Γ ` v : S. We
also have that Γ ` M∅ .Θ∅, by applying the Rules in Fig. 15. The previously obtained derivation
tree will be called D2. We now proceed by induction on the structure of P′: we will prove that
T′ = trm(T)0

{p}.

Case P′ = 0: By using Rule bINACTc we obtain that Γ ` 〈0,M∅ ∪ s[p] : (v, {q}), ∅〉 . 〈s[q] :
end � s[p] : (S, {q})〉 and by Fig. 18 we have that end = trm(end)0

{p}.

Case P′ = ā[n] or P′ = a[p](α).P′′: This case is vacuously true as we are considering single
session processes. Hence, there cannot be session initiations in a continuation.

Case P′ = s[q]!〈e〉.P′′: We distinguish the following two cases, depending on the memory M:

Case M0(s[q]) , ε: We have that on D1 we will have that T = tick.!S1.T1, since this
derivation is obtained by using Rule bSENDMOREc. For the D2 we need to show then
that T′ = trm(T)0

{p}
; for this is enough to observe that T′ = trm(T)0

{p} =!S1.T1, by Fig. 18,
and hence, we can apply Rule bSENDFIRSTc. Finally, we can conclude by IH.

Case M0(s[q]) = ε: We have that on D1 we will have that T =!S1.T1, since this derivation is
obtained by using Rule bSENDFIRSTc. By inversion we obtain:

Γ ` 〈P′′,M′0∪s[q] : (v′, ∅)∪s[p] : (v, {q}),E〉.〈s[q] : T1�Θ′, s[p] : (v, {q}, s[q] : (S1, ∅)〉

with M0 = M′0 ∪ s[q] : (v′, ∅) and Θ = Θ′, s[q] : (S1, ∅).
Notice now that on D2 we have that the judgment will also be deduced by Rule bSENDFIRSTc,
hence, by inversion: Γ ` 〈P′,M∅1 ∪ s[q] : (v′, ∅)∪ s[p] : (v, {q}), ∅〉 . 〈s[q] : T′1 �Θ∅1, s[q] :
(S1∅), s[p] : (S, {q})〉, with M∅ = M∅1 ∪ s[q] : (v′, ∅) and Θ∅ = Θ∅1, s[q] : (S1∅).
We know by Fig. 18 that T′ = trm(T)0

{p} =!S1.T′1. We need then to show that T′1 =

trm(T1)1
{p}

; this is done by induction on P′′:

Case P′′ = 0: In this case again, by Rule bINACTc on D1 we obtain that Γ ` 〈0,M∅1 ∪
s[q] : (v′, ∅) ∪ s[p] : (v, {p}), ∅〉 . 〈s[q] : end � Θ∅1, s[q] : (S1∅), s[p] : (S, {p})〉 and
since by Fig. 18, we have that trm(end)1

{p}
= end, then we can conclude in D2 with

Rule bINACTc.
Case P′′ = ā[n] or P′ = a[p](α).P′′: This case is vacuously true as we are considering

single session processes. Hence, there cannot be session initiations in a continuation.
Case P′′ = s[q]!〈e〉.P′′: In this case, on D1 we use Rule bSENDMOREc, therefore, we

have that T1 = tick.!S2.T2 and since trm(T1)1
{p}

= T1 = tick.!S2.T2 we have, by
Fig. 18, that T′1 = trm(T1)1

{p}
. Therefore, we can conclude D2 by applying Rule

bSENDMOREc and the IH.
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Case P′′ = s[q]?(r, x).P′′: In this case, on D1 we need to distinguish cases depending
on r:

Case r ∈ {p}: In this case we have that r = p and therefore, the judgment om D1
is deduced from Rule bRCVMOREc, which means that T1 = tick.?(p,S2).T2 and
therefore T1 = trm(tick.?(p,S2).T2)1

{p}
= tick.?(p,S2).T2, we then conclude by

applying IH.
Case r < {p}: In this case we need to distinguish cases depending on the memory

M0:
Case M0(s[r]) = ε: In this case we have that on D1 the judgment is deduced from
Rule bRCVFIRSTc and therefore T1 =?(r,S2).T2 and T′1 =?(r,S2).T′2. By IH
and Fig. 18 we have that T′2 = trm(T2)1

{p,r} and therefore, T′1 = trm(?(r,S2).T2)1
{p}

,
which is what we wanted to proof.

Case M0(s[r]) , ε: In this case we apply Rule bRCVMOREc on D1 and therefore
T1 = tick.?(r,S2).T2. Observe then that in D2 we will apply Rule bRCVFIRSTc
and T′1 =?(r,S2).T′2. Finally by IH and Fig. 18 we have that trm(T1)1

{p}
=

?(r,S2).T2 and T′2 = T2, hence concluding the proof.
Case P′′ = rec X .P′′′: This case concludes by inversion on Rule bRECc and

applying the IH on the premises.
Case P′′ = pause.P′′′: Note that since, by Fig. 18, function trm(pause.T)1

{p}
=

pause.T, the case is straightforward by IH.
Case P′′ = P′′′ | Q, P′′ = if e then P′′′ else Q, P′′ = emit ev.P′′′ and
P′′ = watch ev do P′′′{Q}: Again, these cases conclude by applying the IH on
the premises of the Rules, obtained by inversion.

Case P′ = s[q]?(r, x).P′′: We distinguish cases depending on r:

Case r ∈ {p}: This case proceeds as above, by considering that in D1 and D2 we apply
bRCVMOREc. The equality is preserved, since this type is not changed by function
trm(T)0

{p}
.

Case r ∈ {p}: We distinguish cases depending on the memory M0:
Case M0(s[r]) = ε: This case concludes by applying the IH, since we have that function
trm(·)0

{p,r}
is applied recursively on the continuation T1.

Case M0(s[r]) , ε: This case concludes as Case r ∈ {p}, since the judgment on D1 is
deduced from bRCVMOREc.

Case P′ = rec X .P′′: This case proceeds by applying the IH on the premises obtained by
inversion Rule bRECc.

Case P′ = pause.P′′: This case proceeds straightforward since function trm(·)0
{p}

does not
change type T = pause.T1 and both D1,D2 use Rule bPAUSEc and conclude by IH.

Case P′ = P′′ | Q, P′ = if e then P′′ else Q, P′ = emit ev.P′′ and watch ev do P′′{Q}:
These three cases are concluded by applying the IH on the premises obtained by inversion in
each of the respective Rules (i.e., bCONCc, bIFc,bEMITc, bWATCHc).

Note that once more, we have 〈∆ �Θ〉 y 〈[∆]E �Θ∅〉 by Clause 3. of Definition 20. Moreover,
〈[∆]E � Θ∅〉 is coherent: Condition 1. holds since, assuming that 〈∆ � Θ〉 is coherent since, by
assumption OG(?(p,S)).T is true, and Condition 2. follows from Lemma 11.
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Case 4. (in2
s ):

Here P = s[q]?(p, x).P′ and M = M0 ∪ {s[p] : (w,Π)} with q ∈ Π. By assumption Γ ` 〈P,M,E〉 .
〈∆ �Θ〉. This judgement is deduced by Rule bRCVMOREc, hence it has the form:

Γ ` 〈s[q]?(p, x).P′,M0 ∪ s[p] : (w,Π),E〉 . 〈s[q] : pause.?(p,S).T �Θ0, s[p] : (S′,Π)〉

Through reconditioning we obtain: [P]E = P = s[q]?(p, x).P′ and [∆]E = s[p] :?(p,S).T. By
inversion on Rule bRCVMOREc we have q ∈ Π, Γ ` v : S, Γ ` w : S′, Γ ` M0 .Θ0, OG(T), and
Γ, x : S ` 〈P′,M∅0 ∪ s[p] : (v, {q}), ∅〉 . 〈s[q] : T �Θ∅0, s[p] : (S, {q})〉.

These statements may now be used as premises for applying Rule bRCVNEXTc to the configuration
〈[P]E,M∅, ∅〉 = 〈s[q]?(p, x).P′,M∅0 ∪ s[p] : ε, ∅〉. By this Rule we obtain:

Γ ` 〈s[q]?(p, x).P′,M∅0 ∪ s[p] : ε, ∅〉 . 〈s[q] :?(p,S).T �Θ∅0, s[p] : void〉

This is the required judgement Γ ` 〈[P]E,M∅, ∅〉 . 〈[∆]E � Θ∅〉. Note that once more, we have
〈∆ �Θ〉 y 〈[∆]E �Θ∅〉 by Clause 1. of Def. 20. Moreover, 〈[∆]E �Θ∅〉 is coherent: Condition 1.
holds because OG(T), and Condition 2. follows from Lem. 11.

We now turn to the inductive cases, corresponding to rules (pars), (watchs) and (recs):

Case 5. (pars):

Here P = P1 | P2, and 〈P1 | P2,M,E〉‡ is deduced from 〈P1,M,E〉‡ and 〈P2,M,E〉‡. Notice that
the two components P1 and P2 are run in the same memory M and set of events E. By assumption
Γ ` 〈P,M,E〉 . 〈∆ � Θ〉. This judgement is deduced by Rule bCONCc, with M1 = M2 = M and
E1 = E2 = E, hence the deduction has the form:

Γ ` 〈Pi,M,E〉 . 〈∆i �Θ〉, i = 1, 2

Γ ` 〈P1 | P2,M,E〉 . 〈∆1,∆2 �Θ〉

By induction, 〈Pi,M,E〉‡ and Γ ` 〈Pi,M,E〉 . 〈∆i �Θ〉 imply Γ ` 〈[Pi]E,M∅, ∅〉 . 〈[∆i]E �Θ∅〉 for
i = 1, 2. Moreover, 〈∆i � Θ〉 y 〈[∆i]E � Θ∅〉 and coherence of 〈∆i � Θ〉 implies coherence of
〈[∆i]E �Θ∅〉. We want to show that Γ ` 〈[P1 | P2]E,M∅, ∅〉 . 〈[∆1,∆2]E �Θ∅〉, and that coherence
of 〈∆1,∆2 �Θ〉 implies coherence of 〈[∆1,∆2]E �Θ∅〉. From Fig. 15, we have that Γ `M∅ .Θ∅. We
may then apply Rule bCONCc to the premises Γ `M∅ .Θ∅ and Γ ` 〈[Pi]E,M∅, ∅〉 . 〈[∆i]E �Θ∅〉 for
i = 1, 2, to deduce Γ ` 〈[P1]E | [P2]E,M∅, ∅〉 . 〈[∆1]E, [∆2]E, �Θ∅〉. By definition of reconditioning,
[P1 | P2]E = [P1]E | [P2]E and 〈[∆1,∆2]E �Θ∅〉 = 〈[∆1]E, [∆2]E �Θ∅〉. Hence we have the required
judgement Γ ` 〈[P1 | P2]E,M∅, ∅〉 . 〈[∆1,∆2]E, �Θ∅〉. Let us check now coherence preservation.
Assuming Co 〈∆1,∆2�Θ〉, we want to show Co 〈[∆1,∆2]E�Θ∅〉. To prove Condition 1., observe that
Co 〈∆1,∆2 �Θ〉 implies Co 〈∆i �Θ〉 for each i = 1, 2. Then by induction we have Co 〈[∆i]E �Θ∅〉.

This implies OG([∆live
i ]E) for each i, from which we deduce OG([∆live

1 ]E, [∆live
2 ]E), which implies

OG([∆live
1 ,∆live

2 ]E).

Moreover, from 〈∆i �Θ〉 y 〈[∆i]E �Θ∅〉 for i = 1, 2 we deduce 〈∆1,∆2 �Θ〉 y 〈[∆1,∆2]E �Θ∅〉
by Def. 20(4.). Then we may use Lem. 11 again to obtain Condition 2.
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Case 6. (watchs): Here P = watch ev do P1{P2} and 〈watch ev do P1{P2},M,E〉‡ is deduced
from 〈P1,M,E〉‡. The judgement Γ ` 〈P,M,E〉 . 〈∆ �Θ〉 is deduced by Rule bWATCHc and has the
form:

Γ ` 〈watch ev do P1{P2},M,E〉 . 〈s[p] : T1 ?ev T2 �Θ〉

By inversion on rule bWATCHc we obtain Γ ` 〈P1,M,E〉.〈s[p] : T1�Θ〉, as well as Γ ` 〈P2,M∅,E〉.
〈s[p] : T2 � Θ∅〉 and OG(∆2). Note that it is not the case that T1 = end because in this case the
configuration 〈watch ev do P1{P2},M,E〉 would be terminated and not suspended.

Now, the form of [P]E and [∆]E will depend on the presence or absence of ev in E, namely:

1. If ev ∈ E then [P]E = P2 and [s[p] : T1 ?ev T2]E = s[p] : T2; in this case, by inversion on rule
bWATCHc we obtain the required judgement Γ ` 〈P2,M∅,E〉 . 〈s[p] : T2 �Θ∅〉. Now, assume
Co 〈∆ � Θ〉. We want to show Co 〈s[p] : T2 � Θ∅〉. Condition 1. follows immediately from
OG(T2). As for Condition 2., notice that it follows from Lem. 11.

2. If ev < E, then [P]E = watch ev do [P1]E{P2} and [s[p] : T1 ?ev T2]E = s[p] : [T1]E ?ev T2.
By inversion on Rule bWATCHc we get Γ ` 〈P1,M,E〉 . 〈s[p] : T1 �Θ〉, and by applying the
IH, we can obtain that Γ ` 〈P1,M,E〉 . 〈s[p] : [T1]E �Θ∅〉 and we can use this hypothesis to
conclude using Rule bWATCHc. Now, for the second part, assume Co 〈s[p] : T1 ?ev T2 �Θ〉,
we want to show that Co 〈s[p] : [T1]E ?ev T2 � Θ〉. By inversion and IH we know then that
Co 〈[s[p] : T1]E � Θ∅〉 and since T1 = end we also have that OG(T2). Hence, it is true that
Co 〈s[p] : [T1]E ?ev T2 �Θ∅〉, satisfying Condition 1.. The second condition follows directly
from Lemma 11.

Case 7. (recs):

Here P = (rec X .P′) and 〈(rec X .P′),M,E〉‡ is deduced from

〈P′{pause.rec X .P′/X}),M,E〉‡

The judgement Γ ` 〈P,M,E〉 . 〈s[p] : T �Θ〉 is obtained from Rule bRECc and is as follows:

Γ ` 〈(rec X .P),M,E〉 . 〈s[p] : T �Θ〉

by inversion, we have that Γ,X : pause.T ` 〈P,M∅,E〉 . 〈s[p] : T � Θ∅〉 and then by IH we have
that Γ,X : pause.T ` 〈P,M∅,E〉 . 〈[s[p] : T]E �Θ∅〉. Then, it is enough to apply Rule bRECc with
the previous hypothesis used twice to obtain:

Γ ` 〈(rec X .P),M∅,E〉 . 〈[s[p] : T]E �Θ∅〉

to proof the first part of the theorem. Supposing then Co 〈∆ � Θ〉 and supposing that 〈∆ �
Θ〉 y 〈[∆]E � Θ∅〉 then 〈[∆]E � Θ∅〉 is coherent. This follows directly by IH and Lem. 11
as the proof is reduced to checking each type inside ∆.

�

We can now finally prove the subject reduction theorem. As most of our previous results, this theorem
deals only with reachable configurations. Let{+ denote the transitive closure of the relation{.

Theorem 3 (Subject Reduction). Let C be a reachable configuration and C{+ C′. If Γ ` C . 〈∆ �Θ〉
then Γ ` C′ . 〈∆′ �Θ′〉 and 〈∆ �Θ〉 〈∆′ �Θ′〉 for some ∆′,Θ′. Moreover if 〈∆ �Θ〉 is coherent then
〈∆′ �Θ′〉 is coherent.
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Proof. By induction on the length n of the reduction sequence{+.

Case 1. n = 1.

We distinguish two more cases, depending on whether C is an initial configuration or not.

a) C = 〈P,M,E〉 is initial. In this case C = 〈a[1](α1).P1 | . . . | a[n](αn).Pn | ā[n], ∅, ∅〉 and C{
C′ is a reduction deduced by Rule [Init], hence C′ = (νs)〈P1{s[1]/α1} | . . . | P1{s[n]/αn},M∅s , ∅〉.
Moreover, the type judgement Γ ` C . 〈∆ � Θ〉 is deduced using Rules bMINITc, bMACCc
and bCONCc and thus it has the form (i) Γ ` C . 〈∅ � ∅〉. From (i), using inversion on Rules
bCONCc and bMACCc we obtain (ii) Γ ` 〈Pi{s[i]/αi},M∅s , ∅〉.〈s[i] : Gib i�Θ∅s 〉. By applying
Rule bCONCc to (ii) we deduce (iii) Γ ` 〈P1{s[1]/α1} | . . . | Pn{s[n]/αn},M∅s , ∅〉 . 〈∆ � Θ∅s 〉.
By Prop. 2 we get (iv) Co〈∆ �Θ∅s 〉. We may then apply bRESc to (iii) and (iv) to get
Γ ` (νc)〈P1{s[1]/α1} | . . . | Pn{s[n]/αn},M∅s , ∅〉 . 〈∅ � ∅〉. Since 〈∆ � Θ〉 = 〈∆′ � Θ′〉 we
trivially have 〈∆ �Θ〉 〈∆′ �Θ′〉 and there is nothing to prove about coherence.

b) C = (νs)〈P,M,E〉 and C{ C′ is either a reduction deduced by Rule [Restr], or a tick transition
deduced by Rule (tick). In both cases C′ has the form C′ = (νs)〈P′,M′,E′〉 by Prop. 1. In the
first case C −→ C′ is deduced by Rule [Restr] from 〈P,M,E〉 −→ 〈P′,M′,E′〉 and we get the
result by Lemma 10 (Reduction Lemma). In the second case C ↪→E C′ is deduced by Rule
(tick) from 〈P,M,E〉‡, and we get the result by Lemma 12 (Suspension Lemma).

Case 2. n > 1.

Let (C { (νs)〈P1,M1,E1〉{ · · ·{ (νs)〈Pn−1,Mn−1,En−1〉{ (νs)〈P′n,Mn,En〉 = C′.
By induction Γ ` 〈Pn−1,Mn−1,En−1〉 . 〈∆n−1 �Θn−1〉 and 〈∆ �Θ〉 〈∆n−1 �Θn−1〉. Moreover if
〈∆ �Θ〉 is coherent then 〈∆n−1 �Θn−1〉 is coherent. Consider now the last reduction:

(νs)〈Pn−1,Mn−1,En−1〉{ (νs)〈Pn,Mn,En〉

There are two possibilities:

1. {= ↪→E. In this case (νs)〈Pn−1,Mn−1,En−1〉 ↪→E (νs)〈[Pn−1]E,M∅n−1, ∅〉 = (νs)〈Pn,Mn,En〉.
Since (νs)〈Pn−1,Mn−1,En−1〉‡ if and only if 〈Pn−1,Mn−1,En−1〉‡ and Γ ` 〈Pn−1,Mn−1,En−1〉 .
〈∆n−1 �Θn−1〉, by Lem. 12 we deduce Γ ` 〈[Pn−1]En−1 ,M

∅

n−1, ∅〉 . 〈[∆n−1]En−1 �Θ∅n−1〉, 〈∆n−1 �

Θn−1〉 yEn−1 〈[∆n−1]En−1 �Θ∅〉 and Co 〈[∆]En−1 �Θ∅〉.

2. {=−→. In this case (νs)〈Pn−1,Mn−1,En−1〉 −→ (νs)〈Pn,Mn,En〉, and this reduction is
deduced by Rule [RES] from 〈Pn−1,Mn−1,En−1〉 −→ 〈Pn,Mn,En〉, which in turn is de-
duced by the contextual Rules [CONT] and [STRUCT] from a reduction 〈Q,Mn−1,En−1〉 −→

〈Q′,Mn,En〉 that is deduced by the computational rules only, where Pn−1 ≡ E[Q] and
Pn ≡ E[Q′] for some evaluation context E. This means that:

(νs)〈Pn−1,Mn−1,En−1〉 = (νs)〈E[Q],Mn−1,En−1〉

Then, assuming Γ ` 〈Q,Mn−1,En−1〉 . 〈∆Q �ΘQ〉, and Γ ` 〈E[0],Mn−1,En−1〉 . 〈∆′′ �Θ′′〉,
by the typing rules [Conc] and [CRes] we have ∆n−1 = (∆Q,∆′′) and Θn−1 = (ΘQ,Θ′′).
Since the reduction 〈Q,Mn−1,En−1〉 −→ 〈Q′,Mn,En〉 is deduced by computational rules only,
by Lem. 10 we have 〈∆Q �ΘQ〉 ⇒ 〈∆′Q �Θ′Q〉 and Γ ` 〈Q′,Mn,En〉 . 〈∆′Q �Θ′Q〉. Moreover,
the same lemma states that if 〈∆Q,∆′′ � ΘQ,Θ′′〉 is coherent, then 〈∆′Q,∆

′′
� Θ′Q,Θ

′′
〉 is

coherent. From this we deduce that if 〈∆n−1 �Θn−1〉 is coherent then also 〈∆′ �Θ′〉 is coherent.

�
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5 Time-related properties
In this section we prove that our type system enforces some desirable “real-time” properties. More
precisely, we prove that any configuration that is reachable from an initial configuration and complies with
a global type G (the notion of G-compliance will be made precise below) satisfies the following properties:

P1. Output persistence: Every participant broadcasts exactly once during every instant;

P2. Input timeliness: Every unguarded input is matched by an output during the current instant, if not
preceded by another input with equal source and target, or during the next instant, if not preempted.

To formalise Property P1, we first define the auxiliary property of output readiness for reachable
configurations of the form C = (νs)〈P,M∅, ∅〉, which states that all participants occurring in P perform a
broadcast during the current instant. Intuitively, a reachable configuration C = (νs)〈P,M∅, ∅〉 represents
the state of a running session at the start of an instant (or more precisely, before any message exchange or
event emission within an instant).

Definition 23 (Output readiness). A reachable configuration C = (νs)〈P,M∅, ∅〉 is output-ready if when-
ever C ⇓ (νs)〈P′,M′,E′〉, then s[p] ∈ vdom(M′) for every s[p] ∈ nm(P).

Note that only the participants p whose behaviour is nonterminated at the beginning of the instant
(condition s[p] ∈ nm(P)) are required to perform an output before the end of the instant (condition
s[p] ∈ vdom(M′)). Then, output persistence for such configurations essentially amounts to requiring
output readiness at every instant. For an initial configuration 〈Q, ∅, ∅〉, output persistence amounts to
requiring output readiness for any configuration (νs)〈P,M∅, ∅〉 such that 〈Q, ∅, ∅〉{+ (νs)〈P,M∅, ∅〉.

Definition 24 (Output persistence). A reachable configuration C is output-persistent if whenever C{∗

(νs)〈P,M,E〉 ⇓ (νs)〈P′,M′,E′〉, then s[p] ∈ vdom(M′) for every s[p] ∈ nm(P).

Again, only nonterminated participants p at the beginning of the last instant (condition s[p] ∈ nm(P))
are required to perform an output. For instance, our auction protocol (cf. Section 2) satisfies output
persistence although the terminated participant Forwarder does not output anything during the last instant.

We now formalise Property P2, which again rests on an auxiliary property defined only on reachable
configurations of the form C = (νs)〈P,M∅, ∅〉, called input readiness.

Definition 25 (Input readiness). A reachable configuration C = (νs)〈P,M∅, ∅〉 is input ready if whenever
C ⇓ (νs)〈E[s[q]?(p, x).P′],M′,E′〉, then s[p] ∈ vdom(M′).

It is easy to see that s[p] ∈ vdom(M′) implies s[p] : (v,Π ∪ {q}) ∈ M′ for some v,Π, namely q
must have read a message from p in the current instant, otherwise the final configuration would not be
suspended.

Input timeliness amounts to input readiness at every instant. For an initial configuration C, input
timeliness amounts to requiring input readiness for the configurations derivable from C.

Definition 26 (Input timeliness). A reachable configuration C is input timely if whenever C {∗ (νs)
〈E[s[q]?(p, x).P],M,E〉 ⇓ (νs)〈P′,M′,E′〉, then s[p] ∈ vdom(M′).

Example 5. C = 〈(νs)(s[1]?(2, x).s[1]?(2, y).0 | s[2]!〈v〉.s[2]!〈v〉.0),Ms, ∅〉 satisfies input timeliness

C′ = 〈(νs)(s[1]?(2, x).0 | pause. s[2]!〈v〉.0),Ms, ∅〉 does not satisfy input timeliness

Indeed, in C the expectations of the two participants are dual and “well-timed”: their first communication
takes place in the first instant and their second communication takes place in the second instant.

In C′, on the other hand, participant 1 is ready to receive a message from participant 2 in the first
instant, and entitled to do so because she hasn’t read previously from participant 2, but there is no available
message from participant 2 in the first instant. In fact, C is G-compliant whereas C′ is not even typable.
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Φ(p↑〈S,Π〉.G) = p↑〈S,Π〉.Φ(G)

Φ(pause.G) = Φ(tick.G) = Φ(t) = Φ(end) = end

Φ(watch ev do G else G′) = Φ(µt.G) = Φ(G)

Φ(!S.T) =!S.Φ(T)

Φ(?(p,S).T) =?(p,S).Φ(T)

Φ(pause.T) = Φ(tick.T) = Φ(t) = Φ(end) = end

Φ(〈T,T′〉ev) = Φ(µt.T) = T

Figure 19: Flattening of saturated global and local types.

Observe that if Γ ` C = 〈P,M∅, ∅〉 . 〈∆ �Θ〉, the coherence of the configuration environment 〈∆ �Θ〉
is not sufficient to ensure input timeliness of (νs̃)C, because of the possibility of circular dependencies.
Indeed, duality is a binary property which does not exclude n-ary circular dependencies such as that of the
following process, which is reminiscent of the dining philosophers deadlock:

R = s[1]?(2, x).s[1]!〈v1〉.0 | s[2]?(3, y).s[2]!〈v2〉.0 | s[3]?(1, z).s[3]!〈v3〉.0 (2)

Note that the configuration (νs)C = νs〈R,M∅s , ∅〉 is not deadlocked but livelocked in MRS. Indeed,
as shown in Section 3.3, MRS is deadlock-free: thanks to our semantic rule (ins) (cf. Fig. 7), all
potential deadlocks due to missing messages are turned into livelocks. In fact, it is easy to see that
(νs)C = νs〈R,M∅s , ∅〉 does not satisfy input timeliness, because all participants are waiting for each other.
Since the configuration is reconditioned to itself at the following instant, it gives rise to a livelock.

In order to obtain input timeliness (and thus livelock-freedom), we need to require that the types of all
participants be projections of the same saturated global type in the initial configuration of the session. We
first define what it means for a configuration to implement a session specified by a saturated global type G.
From now on, we will consider only saturated global types. As a consequence we will use the standard
projection � defined in (Fig. 12) and not the saturated projection b .

Definition 27 (G-compliant configuration). Let G be a saturated global type. A reachable configuration
C = (νs)〈P,M,E〉 is G-compliant if there exist ∆,Θ such that Γ ` 〈P,M,E〉 . 〈∆ �Θ〉 and 〈∆ �Θ〉(s[p]) =
G� p for every p ∈ Part(G).

The key property for proving both output persistence and input timeliness is the absence of circular
dependencies in G-compliant configurations. The proof makes use of two flattening functions Φ(G)
and Φ(T) on saturated global and local types. These functions extract from a type the sequence of
I/O communications occurring in the first instant, forgetting about recursion and selecting the principal
behaviour in watch types.

Definition 28 (Flattening). The flattening functions Φ(G) and Φ(T) are defined in Fig. 19.

Since Φ(G) is again a global type, it can be projected on participants. It is easy to see that:

Lemma 13. Φ(G)� p = Φ(G� p)

Proof. By induction on G.
�
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We can now prove that G-compliant configurations are free of circular dependencies such as that
exhibited by the three-philosopher process (Example (2)).

Lemma 14 (Absence of circular dependencies). Let C = (νs)〈P,M,E〉 be a G-compliant configuration,
and let {p1, . . . , pn} ⊆ Part(G), with n ≥ 2. If s[pi] < vdom(M) for all i ∈ {1, . . . ,n}, then there cannot
exist E1, . . . ,En such that:

C ≡ 〈E1[s[p1]?(p2, x1).P1],M∅, ∅〉
C ≡ 〈E2[s[p2]?(p3, x2).P2],M∅, ∅〉

...
C ≡ 〈En[s[pn]?(p1, xn).Pn],M∅, ∅〉

(3)

Proof. By contradiction. Assume the situation in (3). By hypothesis C is G-compliant, hence Γ `
〈P,M,E〉 . 〈∆ � Θ〉 and 〈∆ � Θ〉(s[pi]) = G � pi for every pi. From s[pi] < vdom(M) it follows that
s[pi] < vdom(Θ), thus 〈∆ �Θ〉(s[pi] = ∆(s[pi]). Therefore for all i ∈ {1, . . . ,n} we have:

∆(s[pi]) = G� pi (4)

Observe now that C ≡ 〈Ei[s[pi]?(p(i+1) mod n, xi).Pi],M,E〉 implies that for some Ti

Φ(∆(s[pi])) =?(p(i+1) mod n,Si).Φ(Ti) (5)

Pick now an arbitrary k ∈ {1, . . . ,n}. It follows that

Φ(G)� pk = Φ(G� pk) by Lemma 13
= Φ(∆(s[pk])) by Equation 4
=?(p(k+1) mod n,Sk).Φ(Ti) by Equation 5

This means that Φ(G) is of the form:

Φ(G) = σk.p(k+1) mod n ↑〈Sk,Πk〉.Φ(Gk) (6)

where σk is a possibly empty sequence of communications not involving pk and not involving p(k+1) mod n
as a sender, and pk ∈ Πk. This implies:

Φ(G)� p(k+1) mod n = σ′k.!Sk.T

where σ′k is the projection of σk on p(k+1) mod n Now there are two possible cases:

1. σ′k is the empty sequence. Then

Φ(G)� p(k+1) mod n =!Sk.T
,?(p(k+2) mod n,Sk+1).T′ by Equation 5
= Φ(∆(s[p(k+1) mod n])) by Equation 4
= Φ(G� p(k+1) mod n) by Lemma 13

This inequality contradicts Lemma 13.

2. σ′k starts with ?(p(k+2) mod n,Sk+1).T′. Then we iterate the reasoning until we reach the pk we started
with (which we are sure to reach since the number of participants is finite), and at this point we have
a contradiction since by hypothesis σk does not contain pk in Equation (6).
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This concludes the proof.
�

Corollary 2. Let C = (νs)〈P,M,E〉 be a G-compliant configuration such that C‡. Then P = E[s[q]?(p, x).P′]
implies s[p] ∈ vdom(M).

Proof. By contradiction. Suppose that s[p] < vdom(M). Since C is G-compliant, we know that Γ `
〈P,M,E〉 . 〈∆ �Θ〉 and 〈∆ �Θ〉(s[r]) = G� r for all r ∈ Part(G). From s[p] < vdom(M) it follows that
s[p] < vdom(Θ), hence 〈∆�Θ〉(s[p] = ∆(s[p]). This means that ∆(s[p]) = G� p. On the other hand, given
the shape of P, we know that it must be Φ(G� q) = Φ(〈∆ �Θ〉(s[q])) = {!Sq.}?(p,S).Φ(T) for some Sq,S
and T, where the notation {!Sq.} means that the initial output is possibly missing (in case s[q] < vdom(M)).
By Lemma 13 Φ(G� q) = Φ(G)� q. This means that Φ(G) is of the form:

Φ(G) = σ.p↑〈S,Π〉.Φ(G′) (7)

where σ is a possibly empty sequence of communications not involving q as a receiver nor p as a sender,
and q ∈ Π. Now, consider the projection Φ(G)� p of Φ(G) on p. Note that the projection of σ on p cannot
be empty, because in this case we would have Φ(G)� p =!S.Tp for some Tp, contradicting the fact that
C is suspended. Then σ must consist of inputs by p. This means that P = E[s[p]?(r, x).R]. Since C is
suspended, we know that either s[r] < vdom(M) or s[r] : (v,Π ∪ {p}) ∈ M for some v,Π. In the latter
case, by Rule bRCVMOREc we would have ∆(s[p]) = pause.?(r,S′).Φ(T′) = G� p for some S′ and T′.
Then Φ(G� p) = Φ(G)� p would be end, and thus so would Φ(G), contradicting equation (7), where σ is
supposed to consist only of communications. Therefore it must be s[r] < vdom(M). But now we have for
participant r the same hypotheses that we had for p in the beginning. Hence we can iterate the reasoning
and since the number of participants is finite this leads us to the circular situation (3), which by Lemma 14
is impossible. �

We will prove now that the above lemma entails input readiness, and as a consequence, also input
timeliness. We first show that compliance with a global type is preserved along execution.

Lemma 15. Let C be a G-compliant configuration and 〈∆ � Θ〉 be the corresponding configuration
environment. If C −→ C′ (resp., C ↪→E C′), then there exists G′ with corresponding configuration
environment 〈∆′�Θ′〉 such that C′ is G′-compliant and 〈∆�Θ〉 ⇒ 〈∆′�Θ′〉 (resp., 〈∆�Θ〉 y E〈∆

′
�Θ′〉).

Proof. By induction on the inference of −→ (resp., ↪→E).
�

Lemma 16 (G-compliance implies input readiness). Every G-compliant configuration C = (νs)〈P,M∅, ∅〉
satisfies input readiness.

Proof. Let C ⇓ (νs)〈P′,M′,E′〉 = C′, where P′ = E[s[q]?(p, x).P′′]. By Lemma 15, C′ is G′-compliant
for some G′. Then s[p] ∈ vdom(M′) by Corollary 2.

�

Theorem 4 (G-compliance implies input timeliness). Every G-compliant configuration C = (νs)〈P,M∅, ∅〉
satisfies input timeliness.

Proof. Suppose C {∗ (νs)〈E[s[q]?(p, x).P′],M,E〉 = C′ and C′‡. The proof is by induction on the
number n of ↪→E steps in the execution{∗. If n = 0 then we are in the case C ⇓ C′ and we have the result
by Lemma 16.

If n > 0, the result follows again by Lemma 16, observing that by Lemma 15 G-compliance is preserved
by execution, and that every ↪→E step gives rise again to a configuration of the form (νs)〈Q,M∅, ∅〉. �
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We proceed now to prove output persistence.

Lemma 17 (G-compliance implies output readiness). Let C = (νs)〈P,M∅, ∅〉 be a G-compliant configura-
tion. If C ⇓ (νs)〈P′,M′,E〉, then s[p] ∈ vdom(M′) for every s[p] ∈ nm(P).

Proof. Let C′ = (νs)〈P′,M′,E′〉. Since C is G-compliant, by Lemma 15 C′ is G′-compliant for some
G′. Therefore there exist ∆,Θ such that Γ ` 〈P′,M′,E′〉 . 〈∆ �Θ〉 and 〈∆ �Θ〉(s[p]) = G′ � p for every
p ∈ Part(G′). Now, the statement (νs)〈P′,M′,E′〉‡ is deduced by Rule (restrs) from 〈P′,M′,E′〉‡.

The proof then proceeds by contradiction. Suppose there exists a s[p] ∈ nm(P) such that s[p] <
vdom(M′). We have 〈∆ �Θ〉(s[p]) = (∆(s[p])) = T and by coherence OG(T). This means that

Φ(T) = σ.!S.T′

for some σ,S,T′ and there are three possible cases for σ:

1. σ is empty, so T is derived using rule bSENDFIRSTc:

Γ ` 〈s[p]!〈e〉.R,M′′ ∪ {s[p] : ε},E〉 . 〈∆, s[p] :!S.T �Θ, s[p] : void〉

with P′ ≡ E[s[p]!〈e〉.R] and M′ = M′′∪ {s[p] : ε} but this is a contradiction since 〈s[p]!〈e〉.R,M′′∪
{s[p] : ε},E〉 cannot be suspended.

2. σ is a non empty sequence of inputs and T is derived using rule bRCVFIRSTc:

Γ ` 〈s[p]?(q, x).R,M′′ ∪ {s[q] : (v,Π)},E〉 . 〈∆, s[p] :?(q,S).T �Θ, s[q] : (S,Π)〉

with P′ ≡ E[s[p]?(q, x).R] and M′ = M′′ ∪ {s[q] : (v,Π)} with p < Π, but this is a contradiction
since 〈s[p]?(q, x).R,M′′ ∪ {s[q] : (v,Π)},E〉 cannot be suspended.

3. σ is a non empty sequence of inputs and T is derived using rule bRCVNEXTc:

Γ ` 〈s[p]?(q, x).R,M′′ ∪ {s[q] : ε},E〉 . 〈∆, s[p] :?(q,S).T �Θ, s[q] : void〉

with P′ ≡ E[s[p]?(q, x).R] and M′ = M′′ ∪ {s[q] : ε}. This is a contradiction since by Corollary 2
we should have s[q] ∈ vdom(M′).

Hence in all cases we reach a contradiction, concluding the proof.
�

Theorem 5 (G-compliance implies output persistence). Let C be a G-compliant configuration. If C{∗

(νs)〈P0,M0,E0〉 ⇓ (νs)〈P′,M′,E′〉, then s[p] ∈ vdom(M′) for every s[p] ∈ nm(P0).

Proof. Let C = (νs)〈P,M∅, ∅〉 {∗ (νs)〈P0,M0,E0〉 ⇓ (νs)〈P′,M′,E′〉. We want to show that s[p] ∈
vdom(M′) for every s[p] ∈ nm(P0). The proof is by induction on the number n of ↪→E steps in the
execution sequence{∗. If n = 0 then we are in the case C ⇓ C′ and we have the result by Lemma 17. If
n > 0, the result follows again by Lemma 17, since by Lemma 15 G-compliance is preserved by execution
and every ↪→E step gives rise again to a configuration of the form (νs)〈Q,M∅, ∅〉.

�
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6 Related Work
Most related work has been already mentioned in the introduction and throughout the paper. Here we
briefly discuss other relevant literature. In the realm of (multiparty) session types, forms of reactive
behaviours have been addressed via constructs for exceptions, events, and run-time adaptation. This
way, e.g., interactional exceptions for binary sessions were developed in [12]; an associated type system
ensures consistent handling of exceptions. The work [11] extends this approach to multiparty sessions.
In general, there is a tension between forms of (interactional) exceptions and behavioural type systems,
mainly due to the linearity enforced by such systems, which conflicts with the possibility of not (fully)
consuming behaviours abstracted by types. The works [26, 27] address this tension for binary sessions
by appealing to affinity rather than to linearity. A similar approach is adopted in [17] for a functional
programming language. The recent work [9] gives an alternative treatment of non-determinism and control
effects within a Curry-Howard interpretation of binary session types; the proposed framework allows to
represent exceptions. Concerning events and adaptation, the work [21] is the first to integrate events within
a session-typed framework, supported by dynamic type inspection (a type-case construct). This work,
however, is limited to binary sessions; the work [16] extends this framework to the multiparty setting, with
the aim of handling run-time adaptation of choreographies. None of these works supports declarative or
timed conditions, which are naturally expressible using synchronous programming constructs. To our
knowledge, the only prior work that considers (unreliable) broadcasting in session types is [20], which
focuses on binary sessions. The work in [15] develops run-time verification techniques for interruptible,
multiparty conversations. Also, the work [13] proposes protocol types for handling partial failures and
ensuring absence of orphan messages and deadlocks, among other properties.

The most closely related work is that in [2, 10], which encodes of a binary session π-calculus into the
synchronous reactive language ReactiveML. Exploiting the duality between the two partners in binary
sessions, this encoding simulates messages-over-channels in the session π-calculus by values-over-events
in ReactiveML, slicing every session into a sequence of atomic instants: each instant corresponds to exactly
one step in the protocol of the session. In contrast, instead of encoding a multiparty session calculus
into RML, here we pursue a different goal: devise a minimal extension of a multiparty session calculus
that accommodates reactive features, and provide a session type system that ensures the usual session
properties together with some new semantic properties of interest: output persistence, input lock-freedom,
safe event handling.

7 Conclusion
We have developed a typed framework for multiparty sessions by building upon MRS, a new process
calculus that integrates constructs from session-based concurrency with constructs from synchronous
reactive programming (SRP). The calculus MRS accounts for broadcast communication, logical instants,
and preemption – all of which are hard to represent in existing process languages for sessions, usually
based on the π-calculus. For instance, a session π-calculus with broadcasting has been studied in [20], but
it does not support time-dependent interactions nor reactivity. Indeed, there are useful interaction patterns,
such as hot-service replacement [1], which are representable in SRP but not in asynchronous calculi. The
semantics of MRS ensures typical properties of SRP, such as deadlock-freedom and reactivity.

Our type system for MRS crucially relies on saturation for global types, a notion that we developed
to address the subtle distinction between explicit and implicit pauses, and to capture the “timing” of a
protocol interaction within the global type itself. Another salient feature of our static analysis is a new
notion of duality, suited to our broadcast setting, in which outputs do not need to be matched by inputs.
Our notion of duality is also “time-aware” in that it requires dual participants to have matching pauses.
The benefits of our integration reflect also in the semantic properties enforced by our type system: besides
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classical session safety properties, our static analysis guarantees two new time-related properties that seem
to be desirable for sessions in a reactive setting: input timeliness and output persistence.

Design choices

• In our calculus MRS, the properties of deadlock-freedom and (bounded) reactivity are enforced by
the operational semantics, while the classical properties of sessions, as well as the new time-related
properties (input timeliness and output persistence), are enforced by our specific session type system.
It could be argued that with a type system at hand, a more liberal semantics could have been used for
the calculus, letting the type system take care also of the deadlock-freedom and reactivity properties.
The reason for our choice is that deadlock-freedom and reactivity are essential properties of SRP:
they are required for the synchronous reactive model to make sense. Hence they should be an
integral part of the calculus itself. This is the case also for real SRP languages such as ReactiveML.

• Saturation could have been conceived as a well-formedness property of types rather than as an
operation on them. In other words, our type system could have been designed so as to enforce
the explicit separation of instants rather than relying on it. For instance, we could have defined a
“well-timedness” predicate on global types requiring that subsequent broadcasts from the same sender
and recursion unfoldings be separated by pauses. This way, we could have omitted some suspension
rules ((outs) and (in2

s )) from the semantics, and the “More” typing rules from the type system.
However, we chose the latter solution to avoid blurring the readability of real-world programs
with the presence of too many pauses. The former solution would become an attractive option if
combined with a “pause inference” mechanism.

Future work Directions for future work include extending our model with mechanisms for run-time
monitoring, adaptation and interactional exceptions, as well as developing an implementation for our
model in a programming language such as ReactiveML (RML). Along these lines, the recent work [10]
proposes an encoding of a binary session calculus Sπ into RML. In essence, this encoding simulates
messages-over-channels in Sπ by values-over-events in RML, and slices every session into a sequence of
instants, each consisting of a single output by one partner and a single input by the other partner.

In particular, the send and recv constructs of Sπ are encoded as follows, where awaitevc(x)in~P�
is a program that waits for the valued event evc(v) and then replaces the value v for x in the continuation P:

(∗)
~send c 〈e〉.P� = emit evc(e);pause; ~P�

~recv c(x).P� = await evc(x) in ~P�

In RML, the evaluation of the expression carried by a valued event evc(e) only completes at the end of the
instant. Therefore, in the encoding of the recv construct, the continuation ~P�{val(e)/x} can only start at
the next instant. This is why a pause is inserted after emit evc(e) in the encoding of the send construct.

However, this encoding does not carry over to the multiparty case. Consider the following process,
where s[p]!〈q, v〉.P represents an output from participant p to participant q in session s, followed by P:

s[1]!〈2, v〉.0 | s[2]!〈3, v′〉.s[2]?(1, x).0 | s[3]?(2, y).0

If we used an encoding similar to (∗) for this process, then a pause would be inserted after the output in
the second participant, preventing the subsequent input to take place in the first instant. Hence the message
sent by the first participant would be lost. This means that the encoding would not preserve the Sπ process
behaviour, and in particular it would transform a lock-free Sπ process into an input-locked RML program.

By contrast, in the present work we adopted a different approach to the integration of multiparty
sessions and SRP, by trying to devise a minimal extension of multiparty Sπ that accommodates reactive
features, and by providing a session type system that ensures classical session properties together with
some time-related properties that seem to be of interest for “reactive sessions”.
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