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Abstract

We summarize the findings from an interlaboratory study conducted between ten international research groups and investigate the use of
the commonly used maximum separation distance and local concentration thresholding methods for solute clustering quantification. The
study objectives are: to bring clarity to the range of applicability of the methods; identify existing and/or needed modifications; and inter-
pretation of past published data. Participants collected experimental data from a proton-irradiated 304 stainless steel and analyzed Cu-rich
and Ni-Si rich clusters. The datasets were also analyzed by one researcher to clarify variability originating from different operators. The Cu
distribution fulfills the ideal requirements of the maximum separation method (MSM), namely a dilute matrix Cu concentration and con-
centrated Cu clusters. This enabled a relatively tight distribution of the cluster number density among the participants. By contrast, the
group analysis of the Ni-Si rich clusters by the MSM was complicated by a high Ni matrix concentration and by the presence of
Si-decorated dislocations, leading to larger variability among researchers. While local concentration filtering could, in principle, tighten
the results, the cluster identification step inevitably maintained a high scatter. Recommendations regarding reporting, selection of analysis
method, and expected variability when interpreting published data are discussed.
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Introduction irradiated materials that are difficult to describe by more broadly
applied electron microscopy techniques. For example, APT has
been used to clarify our understanding of microstructural evolu-
tion (Styman et al.,, 2015; Shu et al., 2018), irradiation-induced
hardening (Takeuchi et al., 2010), and inform models used in sur-
veillance programs (Auger et al., 2000; Miller et al., 2000; Miller &
Russell, 2007; Toyama et al., 2007; Meslin et al., 2010; Kuramoto
et al., 2013; Gurovich et al., 2015; Styman et al., 2015; Edmondson
et al,, 2016). Within the nuclear energy community, APT has not
only been used for fundamental understanding of microstructural
degradation, but also for large scale surveillance programs entail-
ing retrieval and analysis of samples from existing nuclear plants
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Atom probe tomography (APT) has become a technique of refer-
ence for compositional analysis of nanoscale phases, interfacial
segregation, and solute clustering. APT generates three-
dimensional reconstructions of atomic position and elemental
identity from needle-shaped specimens using a combination of
field evaporation, time-of-flight mass spectrometry, single-atom
and position-sensitive detection, and a tomographic reconstruc-
tion algorithm. With these attributes, APT has played an impor-
tant role in the characterization of microstructural changes in



issues associated with radioactive material handling that can be a
significant issue for irradiated stainless steel components that are
located closer to the core.

The continued value of APT as a core analysis technique
requires reliable and reproducible quantification of the collected
data. Nuclear plant safety and the design of future reactors rely
on accurate long-term prediction of, not only the microstructural
evolution during service, but also the corresponding mechanical
properties of the material. A major contribution to the evolution
of mechanical properties of most alloys in service within the
nuclear industry is the irradiation-induced formation of solute
clusters, and while mechanical properties can be challenging to
assess, APT analysis of these microstructures is a far simpler ave-
nue (Miller & Russell, 2007). Therefore, quantitative and accurate
clustering analysis from APT data is a key step in the establish-
ment of reliable microstructure/property relationships, as well as
microstructure evolution models. It is not a trivial step however.
As with any other experimental method, analysis of the APT
data requires an understanding of the mechanisms of data gener-
ation along with possible limitations and artifacts, a definition of
the objects of interest, and a data processing method to quantify
the objects. Data generation is beyond the scope of this paper, and
we will refer the reader to existing monographs (Gault et al.,
2012b). However, it is important to recognize that the physical
processes controlling movement and evaporation of atoms
under an applied electric field, and the limitations inherent to
the reconstruction algorithms, may result in artifacts and errors
in the reconstructed data, with significant consequences on the
outcome of the data analysis procedure. Obvious artifacts mani-
fest themselves as variations in the reconstructed atomic density
and variations in solute concentrations that depend on crystallo-
graphic orientation. Additional sources of uncertainty may be less
evident. A number of mechanisms have been identified with sig-
nificant effects on the spatial and chemical accuracy of the recon-
structed data, which includes localized hopping of atoms on the
sample surface prior to evaporation (roll-up motion) (Waugh
et al., 1876), longer range surface diffusion (Gault et al., 2012a),
local changes in the field distribution, particularly near terrace
edges (Rose, 1956; Vurpillot et al., 2000b), nonuniform evapora-
tion due to evaporation field differences between phases or crys-
tallographic orientations (Miller & Hetherington, 1991; Vurpillot
et al., 2000a), or detection biased against multiple events (Saxey,
2011). Beyond possible limitations due to the physics of the tech-
nique and algorithm by which data are reconstructed, treatment
of the data presents its own challenges.

The analysis of solute clustering from APT data obtained from
nuclear materials has largely relied on density based methods, and
more specifically the so-called maximum separation method (MSM)
approach (Heinrich et al., 2003; Vaumousse et al., 2003) and its
variation, local concentration thresholding (LCT) (Meslin et al.,
2013). Within the MSM, a solute cluster is defined as a region
where solute atoms are spatially closer to one another than they
would be when randomly distributed. The MSM relies on three
parameters: k, dpax and Ny, The order, k, defines the order of
the nearest neighbor considered. If the kth nearest neighbor is
within the critical distance, dp, of another solute atom, then
these atoms, and of course the lower order neighbors, are part of
the same cluster (Heinrich et al., 2003; Vaumousse et al., 2003;
Cerezo & Davin, 2007; Stephenson et al., 2007). A cluster requires
a minimum number of solute atoms, N,;,,, to reduce the count of
statistically random occurrences of a few solute atoms being close
together. The variant method with LCT employs an analysis of

the local solute concentration to reduce statistical noise from
random variations in the data. Clustered atoms require that the
local concentration or density of neighboring solutes being higher
than a critical threshold concentration, Cy, or number of atoms,
Ny, (Blavette & Chambreland, 1986; Radiguet et al., 2007; Hyde
et al., 2009), where “locality” is given as the volume defined by
a sphere, number of nearest neighbor, or voxel, and by a mini-
mum number of solute atoms, Np;,. A combination of both
methods, also called the “iso-position method” (IPM) as coded
within the proprietary software used by the University of
Rouen, filters solute atoms with a high local concentration before
applying an envelope algorithm [6] or MSM to increase the con-
trast between clusters and matrix (Meslin et al., 2013; Chen et al.,
2014; Lefebvre et al., 2016; Hyde et al., 2017).

In either of the two approaches described above, the selection
of the analysis parameters is an important step that can signifi-
cantly modify the outcome of the analysis. A number of studies
have been dedicated to defining objective methods of selection.
Using a small set of synthetic microstructures, Hyde et al.
found that dp,,, has the largest influence on the outcome (Hyde
et al., 2011). The selection of Ny, and the resulting error on
the number density of precipitates were addressed by Cerezo &
Davin (2007) by comparing the outcomes of the cluster search
algorithm performed on an experimental dataset and on a ran-
dom solid solution. The Ny,;, value should minimize the number
of random occurrences in the matrix (Vaumousse et al., 2003;
Cerezo & Davin, 2007) and Styman et al. refined this step by add-
ing a comparison of cluster compositions in the experimental and
randomized datasets (Styman et al, 2013). Shuffling the
mass-to-charge values is used to create a mass-randomized
atom probe dataset (Cerezo & Davin, 2007)—as this retains the
correct overall composition—while keeping the detected posi-
tions, although one should consider the multiplicity of possible
random datasets giving rise to a range of possible N, values
(Williams et al., 2013). Different methods have been proposed
for the objective selection of a d.x value. These have relied
largely on the interpretation of the distribution of nearest neigh-
bor distances (NND) to enable a selection of d,, that attempts to
minimize the inclusion of random clusters, and the errant split-
ting or merging of clusters (Marceau et al., 2011). As a variation
on this approach, Jagle et al. proposed to re-examine the NNDs by
fitting the part of the distribution pertaining to the matrix rather
than selecting a d,,, value based on the comparison with a ran-
domized dataset (Jaegle et al., 2014). Alternatively, Kolli &
Seidman suggested using the variations of the number of clusters
to find an optimum value (Kolli & Seidman, 2007). Following
observations that optimized values of dp,,x and Np;, are correlated
(Hyde et al, 2011), Williams et al. proposed to compare the
observed number of clusters with the expected number of cluster
in a randomized dataset by sweeping through a wide range of the
parameter space (Williams et al., 2013).

Despite the number of proposed methods to objectively select
parameters, the challenge remains that no standardized approach
to the analysis of solute clusters can be applied, as no single
method works for all microstructures of interest (Ceguerra
et al,, 2010). As illustrated below, the MSM is well-suited for
microstructures where the solute density contrast between clusters
and matrix is significant, but fails when that contrast is reduced.
Therefore, not all microstructures will be amenable to this tech-
nique and its limitations require clarification. In addition, incom-
plete reporting of the analysis procedures is apparent in the open
literature, raising concerns for the interpretation, validity, and



reproducibility of the reported measurements. In particular, the
absence of details and error or variability analyses can limit the
reader’s assessment of data quality and of appropriateness for
comparison against other work or future work.

To address these concerns, the present interlaboratory study,
conducted among ten international research groups, aims at
bringing awareness about limitations of the commonly used algo-
rithms, the importance of community testing and vetting of data
analysis algorithms, and the ethical question about reproducibility
and transparency when reporting data. We feel that transparency
is a particularly important issue as APT grows as a core analytical
technique for nuclear materials with its corresponding financial
and social consequences. Through systematic testing of the tradi-
tional cluster search methods when applied to a prototypical
stainless steel microstructure, the study clarifies the range of appli-
cations suitable to the use of this algorithm, leading to recom-
mendations for best practices in the use of these methods, and
a template for reporting data that will assist future researchers
in need of re-interpretation of published data. Variations on
these cluster-finding algorithms, such as Fourier transform and
auto-correlation functions (Vurpillot et al., 2004), pair correlation
functions (De Geuser et al., 2006; Couturier et al., 2016),
Delaunay tessellation (Lefebvre et al., 2011), iso-concentration
surfaces and proximity histograms (Hellman et al., 2000), fre-
quency distributions (Moody et al, 2008), and more recently
Gaussian mixture models (Zelenty et al., 2017) have also been
developed for and/or applied to the detection and analysis of sol-
ute clusters in APT data; however these are beyond the scope of
this interlaboratory study.

In a first stage of the study, participants were provided with
synthetic datasets aimed at testing the algorithms and develop-
ment of a protocol for data reporting (Marquis et al., 2017).
Following the first round of analysis of synthetic datasets, partic-
ipants were then asked to collect and analyze experimental data.
Here we focused on proton irradiated 304 steel, selected for the
presence of two populations of clusters, namely Cu clusters and
Ni-Si clusters. To limit the number of sources of variables, one
operator performed multiple liftouts by conventional focused
ion beam (FIB) methods (Thompson et al, 2007) from one
grain and mounted APT blanks onto Si microposts. The blanks
were shipped to the participant laboratories who individually per-
formed final tip sharpening, data collection, and data analysis. All
of the collected data were also shared with and analyzed by a sin-
gle operator. The resulting measurements are presented after a
synopsis of the previous interlaboratory discussions on synthetic
data to give context for the current measurements. The analyses
by a single operator and by individual participants are organized
by features, namely Cu-rich clusters, Ni- and Si-rich clusters, and
dislocation loops as identified by Si segregation. Findings and rec-
ommendations that emerged from this interlaboratory study are
discussed.

Methods
Summary of Phase I

Participants independently analyzed four synthetic datasets cre-
ated to identify and measure number density, size, and composi-
tion of the cluster populations and to test the reproducibility,
accuracy, and validity of the MSM, LCT, and IPM methods.
The first stage of this round-robin experiment highlighted the
ability of the MSM to reliably find clusters in microstructures

with highly concentrated solute clusters in a solute dilute matrix.
For datasets with higher matrix solute concentrations, the IPM
was recommended—this method reduces the microstructure to
one with high contrast, where the maximum separation method
(MSM) can then be applied more reliably. Discussions among
participants emphasized the need for thorough reporting of the
analysis methods, including detailed justification of the method
and parameters used within scientific publications. The informa-
tion is not only essential for the reproducibility of the results, but
also ensures that the data presented can be accurately interpreted
by future researchers. Minimum information would include:

« Core atoms (or relevant ranges within the mass to charge state
ratio spectrum).

o Analysis method and any variation from the common
approach.

« Generation of a randomized dataset for comparison with exper-
imental data to select analysis parameters.

« Sensitivity analysis or some measure of the dependence of the
results with the parameters as an estimation of uncertainty.

o Method used to define N,;,.

« Specification of how edge clusters are counted and how many
are found.

These findings are comprehensibly presented in Marquis et al.
(2017).

Sample and Procedures

For the second round of experiments targeting experimental data,
small volumes were extracted by a liftout method, using a Thermo
Fisher (formerly FEI) Helios 650 Nanolab scanning electron
microscope (SEM) and FIB instrument, from a 304 stainless
steel that had been proton-irradiated at 360°C to 10 dpa. The
dpa value damage profiles for the irradiations had previously
been estimated using Stopping and Range of Ions in Matter
(SRIM) with the full cascade option (Jiao & Was, 2011). This
material was selected for the presence of two populations of clus-
ters, namely Cu clusters and Ni-Si clusters. Figure 1 confirms that
all specimens were extracted from one single grain. Each partici-
pant received two mounted specimens and was responsible for
sharpening and collecting APT data using the instrument avail-
able to them. All participants used Cameca LEAP 4000X HR
instruments, with the exception of two participants, one using a
Cameca LEAP 3000X HR, and another a Cameca LEAP 5000
XR instrument. Instructions specified data collection conditions,
nominally at a sample temperature of 50 K and use of voltage
pulsing. An additional dataset was collected in laser mode on a
LEAP 5000 XR instrument, using a sample temperature of 50 K
and a very high laser pulse energy of 0.2-0.3 nJ to simulate “non-
ideal” data collection conditions.

Datasets

Two sets of analyses were conducted. One set was performed by
the same operator analyzing all datasets collected in voltage
mode (13 in total). The other consisted of each operator analyzing
the dataset collected at their home institution (14 in total, includ-
ing the dataset collected in laser pulsing mode). In the case of the
single operator, reconstructed volumes were generated using
Cameca’s IVAS 3.8.0 software. Reconstruction parameters (kf
and ICF) were selected such that radial and axial density varia-
tions were minimized (Haley, 2010) and Ni clusters have close



Fig. 1. SEM images of the selected location before sample preparation (a) and show-
ing the positions of the two liftouts used to make samples distributed to the partic-
ipants within the same grain (b).

to a spherical shape. Reconstructions of the datasets by the differ-
ent operators were also performed within IVAS software, but fol-
lowed somewhat different criteria that included using SEM images
of the sample shape to inform the shank angle evolution, using
plane spacing assuming that a (111) pole is visible within the
data, so that Cu clusters would be spherical. Data collection and
reconstruction conditions are summarized in Table 1 and both
sets of reconstructions are displayed in Figure 2.

Results

It is worth reminding the reader that the analysis methods will
only focus on the MSM as implemented in the software package
IVAS, a LCT prior to the use of MSM, and IPM as implemented
in the University of Rouen software package.

Cu Clusters

The measured Cu concentration in the reconstructed datasets was
within the range 0.29-0.38 at% (Fig. 3a). The variations in con-
centration may be significant considering that counting errors
are of the order of 0.002-0.003 at%. As a result of irradiation, a
high number density of nanometer scale dense Cu clusters was
observed in all datasets. Here, we focus on the quantification of
the cluster number density and size in terms of the average num-
ber of Cu atoms per cluster and we do not address cluster dimen-
sion or composition. We note that cluster compositions would
require the definition of an interface and quantification of

trajectory artifacts. Similarly, a conversion to cluster dimension
(in nm) would require either a quantitative analysis of trajectory
aberrations or quantitative knowledge of the Cu cluster composi-
tions from which one can derive the total number of atoms in
each cluster and an equivalent cluster radius. Note that this calcu-
lation also requires an informed decision regarding the atomic
density of the clusters.

Starting with the single operator dataset, the MSM method was
applied using Cu as core (solute) atoms with no prior filtering. An
order of four was selected to generate NND distributions. The dis-
tributions exhibited two humps corresponding to the matrix and
the cluster concentrations. These were fitted with Gaussian func-
tions and the intercept between the two functions determined the
value of d,,,x. The minimum number of solutes in a cluster, Np,;,,
was established as the largest cluster size detected in the random
dataset. Five randomized distributions were generated and the
Nmin was determined by averaging the N,,;, values determined
from each randomized dataset, and an uncertainty range (full
range) was assigned to the number of clusters using the range
of Npn values. The d,,,, values were between 1.0 and 1.3 nm,
the Np,;, values were between 8 and 12 Cu atoms.

In the case of the results reported by the multiple operators,
Cu was also systematically chosen as the core atom. However, a
broader range of values were selected for the different parameters.
The k values were between 1 and 10, the d,,, values were between
0.7 and 1.52 nm, and N,,;, values were between 5 and 13 Cu
atoms. One should note that the values of k and d,,,, are not
independent, since, as k increases, so does dy,,,. Three of the anal-
yses relied on concentration thresholding with a threshold value
between 2.3 and 4 at% Cu. These threshold values were deter-
mined by comparing the mass-randomized local concentration
histogram with the real distribution.

The cluster number density measured by the single operator
averaged over the 13 datasets was (1.1 £0.2) x 10**/m> and the
average density averaged over the 14 datasets analyzed by multiple
operators was (0.8 £ 0.3) x 10**/m? (Fig. 3b). Here the uncertainty
is defined as one standard deviation of the distribution. The den-
sities were calculated from the reported number of clusters
divided by the estimated volume of the reconstructions that are
calculated from the number of ranged ions in the volume and
the detection efficiency of the instrument. The average sizes are
also comparable for the single operator (60 £ 10 Cu atoms) and
for the multiple operators (54 + 23 Cu atoms), where the numbers
of atoms were normalized by the detection efficiency of the
instrument (Fig. 3c).

Ni-Si Clusters

In addition to Cu clusters, irradiation also induced the formation
of dislocation loops decorated with Si and the formation and
Ni-Si clusters. The latter is the focus of this section. The
measured dataset concentrations of Ni and Si as reported by the
participants were higher than that of Cu: 8.40 and 1.55 at%,
respectively, with standard deviations of +0.43 at% and +0.07 at
%, respectively.

In the case of the single operator, Ni, rather than Si, was cho-
sen as the core atom. The cluster analysis with Si as the core atom
would potentially identify both Ni-Si clusters and Si-decorated
dislocation loops and introduce an additional step to separate
the two population. Considering the low-density contrast between
matrix and clusters and that the interface of the clusters is rela-
tively wide, the difference between the Ni-rich clusters and matrix



Table 1. Summary of Reconstruction Parameters Used for Each APT Dataset.

T Pulse amplitude Pulse frequency Detection rate

Dataset (K) (%) (kHz) (100 x atoms/pulse) n ICF, Ks ICF,, Km
1 56 20 200 0.2 0.37 1.05 33 1.65 4.5
2 56 20 200 0.6 0.37 1.05 32 1.65 4.5
3 50 20 200 0.4 0.36 1.1 3.6 1.65 33
4 50 20 200 0.4 0.36 11 32 1.65 33
5 67 15 200 0.25 0.36 13 35 1.55 4.2
6 54 20 200 0.8 0.36 1.6 5.2 1.65 4.5
7 54 20 200 0.6 0.36 1.6 5.4 1.65 4.1
8 44 20 200 0.5 0.37 1.35 4.4 1.65 33
9 71 15 200 0.15 0.36 1.2 4.2 1.65 4

10 50 20 200 0.2 0.52 1.6 4.4 1.45 33
11 50 20 200 0.1 0.52 11 3.4 1.45 33
12 45 20 200 0.3 0.36 1.6 4.8 1.12 33
13 54 15 200 1.2 0.37 11 2.8 12 33
14 50 0.2-0.3 nJ 255 2.5-5.5° 0.52 1.6 33 NA NA

The subscript s is used to denote the single operator data and m for multiple operator data. 7 is the detection efficiency, ICF is the image compression factor, and K is the field factor.

All participants used the default evaporation field value for Fe of 33 V/nm.

“Detection rate was adjusted automatically to account for the increase in evaporation area during the analysis.

Fig. 2. Reconstructed volumes by (a) single and (b) multiple operators showing 100% of Si in blue and Cu in orange. Note that, in addition to differences in recon-
struction parameters, the volumes selected for reconstruction may vary from one operator to the next.

cannot be well resolved by the traditional MSM approach. A fil-
tering approach, adapted from Chen et al. (2014), was applied,
based on the lower local Ni concentrations of nonclustered matrix
Ni atoms. The threshold concentration, defined as the concentra-
tion at which the difference between the concentration distribu-
tions from the experimental and the random datasets becomes
positive, was used to select Ni atoms with high Ni local concen-
trations. Values for the threshold concentrations were between
16 and 24 at% Ni. The order of ten was then used for cluster
searching on the filtered data. The value of d,,., between 0.94
and 1.10 nm, was selected as the distance where the distribution
of NNDs from the randomized filtered data becomes nonzero
(Fig. 4a). Since the matrix has already been removed by setting
the local concentration value above 16 at%, false clusters are

removed by Ny, based on the cluster size distribution. The
value of Ny, (typically smaller than 40 to 60 atoms) is chosen
so that any cluster containing no Si atoms is excluded (vertical
line in Fig. 4b). In addition, only clusters containing at least
three Si atoms are counted. Finally, an additional visual inspection
was conducted to remove the handful of potential large disloca-
tion fragments, identified by their size and elongated aspect
ratio. The Ni-to-Si ratios reported by the single operator were cal-
culated from a cluster radial concentration profile. The interface
between clusters and matrix was defined as the point where the
Ni concentration is mid-point between the matrix concentration
and the concentration at the center of the clusters. A sensitivity
analysis would involve varying the threshold concentration and
the values of diax, Nmin» and k. We note that there is a potential
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significant uncertainty (>20%) associated with the identification
of the Ni clusters and therefore their number density, given the
steepness of the dependence with some of these parameters.

In the case of multiple operators, four datasets were analyzed
using concentration filtering (#5, 10, 11, 14), while the other
ten were directly analyzed with the MSM method. In the case
of the MSM method, participants used either Si, Ni, or Ni+ Si
as core atoms and the selected order values were either 1 or 10,
the d.« values were between 0.4 and 1.1 nm, and N,,;, values
between 15 and 110 Si , Ni, or Ni+ Si atoms. When using one
of the variations based on concentration thresholding, partici-
pants used Ni or Ni+Si atoms as core atoms with Cy, values
between 16 and 24 at% and N,,;, values between 23 and 90 atoms.

The average number density of Ni-Si clusters for the single
operator across all datasets is 9 + 1 x 10?*/m>. For multiple oper-
ators, the average is 14 + 7 x 10°*/m’. The distribution of reported
cluster density exhibits two populations. The high number density
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Fig. 4. (a) Nearest neighbor distributions with Ni as core atom after filtering and (b)
selection of Niin.

values (>10**/m>) tend to correspond to the analyses with direct
application of the MSM method (Fig. 5). Exceptions are dataset
#3 and #4 for which a small d,,, value of 0.4 nm was used, lead-
ing to a conservative estimate of the number of clusters. Among
the analyses based on concentration filtering, the highest reported
density (dataset #5) was obtained using a relatively small N,
value (23) that could be associated with a generous identification
of the clusters. When only considering results leveraging concen-
tration filtering, the multiple operator average over the dataset
falls to 1.0+ 0.5 x 10*//m’>, versus 1.7 +0.7 x 10**/m’ for direct
application of MSM. The average size across datasets is 147 + 13
Ni atoms for the single operator data, 310 £ 160 Ni atoms for
all multiple operators results, and 240 + 175 Ni atoms for multiple
operators based on concentration filtering. The average Ni-to-Si
ratio, defined here as the ratio of the total number of Ni atoms
to the total number of Si atoms, is 3.0 + 1 for the single operator
data, and 2.3 +0.8 for all multiple operators results, and 2.3 + 1
for multiple operators based on concentration filtering. Results
are summarized in Figure 6. We note that the reported cluster
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sizes and Ni-to-Si ratios are less sensitive to the choice of the anal-
ysis method than is the cluster number density measurement.

Dislocation Loops

The most challenging aspect of the dataset was the analysis of dis-
location loops from the observed Si segregation patterns. Since the
focus of this interlaboratory study is the use of the MSM or LCT
methods, participants attempted to analyze dislocation loops via
these methods, while recognizing that they may not be appropri-
ate for such analysis. The single participant followed the method
described in Chen et al. (2014). Two users from the set of multiple
operators reported numbers from dislocation loop analysis, in
both cases based on the clustering analysis of Si or Ni and Si fol-
lowed by visual filtering. Results are summarized in Figure 7.

Discussion

This experimental interlaboratory study on cluster analysis in a
proton irradiated 304 stainless steel builds upon discussions and
experience established in an earlier interlaboratory study that
focused on the analyses of synthetic data and led to a first set
of recommendations and methods summarized in Marquis
et al. (2017). Considering the discussions among participants
and the experience gained, this study revisits the analysis of real
experimental data where different sources of variability might
contribute to measurement scatter. These include the material
itself (compositional inhomogeneity and fluctuations), instru-
mentation sources (detector technology and data pre-processing
as performed by manufacturer), acquisition conditions and spe-
cific evaporation conditions (crystallography of selected grains,
sample temperature, and effect on surface migration), and opera-
tor sources (specimen preparation, data collection conditions,
reconstruction, mass ranging, and data analysis procedure).
Here, crystallographic effects were minimized by producing all
of the specimens from the same grain. The role of instrumenta-
tion was also minimized, with all data collected on similar
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sent the interquartile ranges. The results for each dataset are included in
Supplementary Appendix II.

instruments, LEAP 4000 XHR or 3000X HR, with the exception
of two datasets collected on a similar LEAP 5000 XR. The present
study was therefore designed to emphasize operator sources, specif-
ically, reconstruction, mass ranging, and data analysis procedure.
Reconstruction and scaling of the dataset introduces some var-
iability in the cluster detection, which should not be too surpris-
ing since the relative distances between atoms are modified. The
error introduced on the measurement of the number of Cu clus-
ters is of the order of 6%—smaller than the variability associated
with the selection of the data analysis parameters. The error was
estimated through the following example, where one of the data-
sets was reconstructed using two different sets of parameters
(Fig. 8a). The nearest neighbor distribution of Cu is not modified
significantly yielding values of d,,,,, of 1.18 and 1.13 nm (Fig. 8b)
and the detected numbers of clusters are 173 19 and 163 + 16,
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respectively (Fig. 8c), where the range values correspond to
changing Ny, by +1.

Mass ranging has a stronger effect on cluster identification. As
an extreme case, we compare the results from the same dataset
analyzed with either ranges extending to the noise level, or with
ranges defined by the full width at half maximum of each peak
(Fig. 9a). Significantly different measured Cu concentrations
result: 0.37 and 0.23 at%, respectively. While the nearest neighbor
distribution changes somewhat with slightly different selected
dpax values and the Ny, values are not affected, the detected
number of clusters changes more significantly: 173 +£19 and
135+ 18 (Fig. 9b).

Differences in mass ranging strategies among the participants
were not as dramatic as in the example above. Nonetheless, vari-
ations in ranging introduced nonnegligible variability in the
reported number of clusters. To illustrate this point, a third set
of Cu cluster analyses was conducted by the single operator
using the reconstructed datasets as generated by the single oper-
ator and the range files provided by the multiple operators. This
third set aimed at minimizing the variability coming from recon-
struction and cluster finding methods. The original single opera-
tor analysis, where ranges were systematically defined so as to
select the portion of the peak above the noise level, yielded a dis-
tribution of number densities that varied over a factor of two with
a standard deviation of ~17%. The multiple operator results var-
ied by a factor of four with a standard deviation of ~39%. The sec-
ond set of single operator analyses, using range files that varied
significantly in their definitions, was tighter, with results varying
within 40% and a standard deviation of 12%. Comparing the two
sets of single operator analyses that were conducted using the
same clustering analysis approach, the use of different range
files resulted in variations in the reported number density of clus-
ters by up to 33% for a given dataset.

Regarding the overall results, the first single operator results
were systematically higher than the measurements from the mul-
tiple operators and for the most part higher that the second single
operator results. We cannot exclude a potential bias of the single
operator to inadvertently “fit” subsequent measurement to the

initial ones. However, a similar dependence of the cluster number
density with Cu concentration within the dataset is found in both
sets of analyses (Fig. 10). Such a dependence may be rationalized
by an increase in driving force for clustering associated with a
higher solute concentration. This dependence is significantly
less expressed in the second single operator data (in green in
Fig. 10), which we attribute to the superimposition of two inde-
pendent contributions with high variabilities: ranging and cluster
detection. While the first single and the multiple operator datasets
suggest a discrepancy of factor 2 in the assessed Cu cluster num-
ber densities, the differences for a given dataset suggest discrepan-
cies up to a factor 4. The latter is a more relevant measure of the
overall variability between operators and is dominated by the var-
iability stemming from the cluster detection algorithm and
parameter choices.

The analysis of Cu clusters shows that the MSM works well
and is even able to detect subtle dependencies with minor solute
concentrations. The IPM method also provides consistent results.
The influence of local composition on somewhat larger precipi-
tates has been highlighted before in reactor pressure vessel steels
(Wells et al., 2014). Here the dependence with Cu concentration
is more subtle and was resolved. The preliminary comparison of
the voltage and laser mode data suggest that any potential effect
of the data acquisition conditions is within the range of variability
originating from other common sources: local concentration,
analysis methods, and parameter selection.

Regarding the analysis of Ni-Si clusters, additional consider-
ations come into play. One could chose Si, Ni, or Ni+Si as
core atoms. The use of the MSM method with Si as core atoms
posed some challenges. The segregation of Si to dislocations
potentially led to the detection of additional clusters that could
explain the systematic higher number density of clusters as well
as the low Ni-to-Si ratio reported by the MSM method. The selec-
tion of Ni or Ni + Si required the use of density filtering, since Ni
or Ni + Si remain relatively concentrated away from the clusters.
Similarly to the Cu clusters, the reported number density varied
by up to factor 5. We note here that the MSM tends to predict
twice as many clusters as a filtering method.

The limited clustering analysis steps, within the common IVAS
software package, can limit the exploration of alternative methods.
However, open-access platforms, e.g. 3Depict (Haley, 2010), and
the increasing number of freely accessible codes and methods,
e.g. London (2016), should lower the barrier of entry for new
users as well as increase the range of analysis methods available
to all. The analysis of solute clustering in APT data would cer-
tainly benefit from more advanced cluster search algorithms
that are less dependent on user input and more robust with
respect to density variations. It is important to note the existence
of previously published clustering data that might have resulted
from the use of methods that were either not appropriate for
the considered microstructures or biased by the complexity of
the analyzed microstructures.

Finally, it is clear that the analysis of dislocation loops beyond
qualitative observations and statements requires additional work,
primarily in the development of topological analysis methods. We
would also like to note that the selected microstructure was a par-
ticularly challenging one. In the case of neutron-irradiated 304
steel, some of the microstructural features typically develop with
larger characteristic length scales that would significantly ease
data analysis and interpretation. Yet other features, such as
Cu-rich or Al-rich clusters remain small and require careful anal-
yses. Other materials and microstructures, such as some reactor
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pressure vessel steels, exhibit fine scale clustering where the results
of this interlaboratory study are highly relevant.

Conclusions and Recommendations

As highlighted in many existing publications, the analysis of sol-
ute clustering is nontrivial. From this interlaboratory study, two
main sources of uncertainty need to be considered carefully.
The interpretation of the mass spectrum via “ranging”, as well
as the user selection of parameters inherent to the MSM and
LCT methods, can influence greatly the outcome of the cluster
analysis to the extent of a factor 3 on the detected number density
of Cu clusters. The use of the MSM remains problematic for con-
centrated solutes, such as Ni and Si in a typical 304 stainless steel.

The “correct” cluster distribution is an unknown piece of
information that cannot be represented via a single value, as
often done in the existing APT literature, but rather via a range

defined by an uncertainty level. Consequently, following similar
efforts within the APT community (Blum et al., 2017), we empha-
size again the need for thorough reporting of the analysis meth-
ods, which includes detailed justification of the method and
selection of relevant parameters. This information is not only
essential for the reproducibility of the results, but also ensures
that the data presented, including its likely biases, may be accu-
rately interpreted by future researchers. Minimum information
includes:

- Reconstruction method and parameter values (e.g., software
version and values for ICF, K, and the constant evaporation
field, F).

- Mass spectrum and range file including whether any peak over-
laps are present and how they are accounted for with overlap
diagrams.

- Name of method with specific algorithm made available.
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Justification as to why the selected method applies.

Values of all relevant parameters.

Justification for the parameter values that were selected.
Sensitivity analysis and estimation of variability with parameter
values.

An example of how such information may be organized and pre-
sented is provided as a downloadable supplementary document
(Supplementary material).

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/51431927618015581.
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