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a b s t r a c t

A constructive procedure to design a single linear functional observer for a time-invariant linear system is
given. The proposed procedure is simple and is not based on the solution of a Sylvester equation or on the
use of canonical state space forms. Both stable observers or fixed poles observers problems are considered
for minimality.

1. Introduction

Since Luenberger’s works (Luenberger, 1963, 1964, 1966) a
significant amount of research has been devoted to the problem
of observing a linear functional

v(t) = Lx(t), (1)

where L is a constant full row rank (l×n)matrix, and, for every time
t in R

+, x(t) is the n-dimensional state vector of the state space
system

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
(2)

where u(t) is the p-dimensional control, and y(t) is the m-
dimensionalmeasure. A(n×n), B(n×p) and C(m×n) are constant
matrices. For a survey of the main results see for instance (Aldeen
& Trinh, 1999; O’Reilly, 1983; Trinh & Fernando, 2007; Tsui, 1998)
and the references therein.

The observation of v(t) can be carried outwith the design of the
Luenberger observer

ż(t) = Fz(t) + Gu(t) + Hy(t),

w(t) = Pz(t) + Vy(t),
(3)

where z(t) is the q-dimensional state vector. Constant matrices
F ,G,H, P and V are determined such that

✩
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lim
t→∞

(v(t) − w(t)) = 0.

This asymptotic tracking is ensured if F is a Hurwitz matrix.
Namely, if all the eigenvalues of F are such that their real part is
negative.

We know from Fortmann andWilliamson (1972) that the linear
functional observer (3) exists if and only if there exists a (q × n)
matrix T such that:

G = TB,

TA − FT = HC, (4)

L = PT + VC, (5)

F is a Hurwitz matrix. (6)

Notice that a rigorous proof of this result has been established
in Fuhrmann and Helmke (2001) for the case V = 0. According to
the value of q, we distinguish several observers:

• q = n: the Kalman observer;
• q = n−m: the reduced-order observer or Cumming–Gopinath

observer (Cumming, 1969; Gopinath, 1971);
• l < q < n − m and q is such that no observer of v(t) with an

order less than q exists: theminimal-order observer orminimal
observer;

• l = q: the minimum-order observer or minimum observer.
With (Roman & Bullock, 1975; Sirisena, 1979), we know that
l is a lower bound for the order of the observer (3).

Until now the direct design of a minimal observer of a given linear
functional is an open question. Since (Fortmann & Williamson,
1972), design schemes have been proposed to reduce the order
of the observer (3) with respect to the reduced-order observer.
Mainly, these designs are based on the determination of the
matrices T and F such that the Sylvester equation (4) is fulfilled
(Trinh, Nahavandi, & Tran, 2008; Tsui, 2004). Unfortunately, the
problem rests in satisfying conditions (4)–(6) with the dimension(I. Zambettakis).
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of F minimal. Moreover the distinction between the fixed-pole
observer problem where the poles are specified at the outset and
the stable observer problem where the poles are permitted to
lie anywhere in the left half-plane is not well defined. Indeed, in
several cases, necessary and sufficient existence conditions for a
candidate observer to be minimal are obtained for the fixed-pole
observer problem only.

Apart from results on the multifunctional case (l > 1),
for simplification purpose several authors have considered the
observation of a single linear functional (l = 1). Luenberger
has shown in Luenberger (1966) that any specified single linear
functional of the state vector may be obtained by means of an
observer of order (ν − 1), with arbitrary dynamics, where ν is the
observability index of the system. Namely, ν is the smallest integer
for which the matrix

O(A,C),ν =









C
CA
...

CAν−1









has rankn. InMurdoch (1973), an effective design procedure is pro-
posed to design an observer of order (ν−1), with arbitrary dynam-
ics. Some constraints are imposed on the choice of the observer
poles or on structures of some matrices. In addition, a method to
apply this result to the multifunctional case has been proposed
in Murdoch (1974). Some years later, based on simplifications
brought about by considering (Roman & Bullock, 1975)

C =
[

0m×(n−m) Im
]

,

a necessary and sufficient condition is proposed in Gupta, Fair-
mann, and Hinamoto (1981) for the design of a single functional
observer in a fixed-pole problem. Another condition for the ex-
istence of a q-order observer can be found in Kondo and Sunaga
(1986) which can be related to the Fortmann–Williamson condi-
tion (Fortmann &Williamson, 1972). In the particular case of a sin-
gle functional, the minimum order observer is a one-order filter
and may not exist. Some conditions for the existence of a second
order observer are given in Trinh and Zhang (2005). Based on the
Duan procedure to solve a Sylvester equation (Duan, 1993), the de-
sign of a general order observer for a single functional is proposed
in Trinh, Tran, and Nahavandi (2006). To apply this method, which
is extended to the multifunctional observer in Trinh et al. (2008),
the poles of the observer have to bedistinct andmust be fixed at the
outset. Nevertheless, the proposed procedures are based on the so-
lution of the Sylvester equation and somenumerical algorithms ex-
ist to increase the numerical robustness in the design (Datta, 2004;
Datta & Sarkissian, 2000).

The present paper describes a direct and iterative procedure to
get a minimal order for a single linear functional observer. On the
one hand the word direct means that the design method is not
based on the solution of the Sylvester equation (4). It has been
underlined in Tsui (1998), that the calculus of the matrix T is not
a necessary step. This point is a specific feature of the procedure
we propose. On the other hand the word iterative indicates that
we test an increasing sequence for the orders of the observers to
obtainminimality.Moreover, the procedure points out if we face to
the stable observer case or if some poles can be fixed at the outset.

The paper is organised as follows. In the first place, a necessary
and sufficient condition is outlined for the existence of a single
functional observer. From these conditions, in the second section a
designmethod for the observer is proposed. An example illustrates
the procedure and points out that the minimal order depends on
constraints on the poles of the observer.

Notice that, in all the following, we suppose

rank

[

C
L

]

= m + 1.

This condition rules out the design of an obvious nondynamic
observer and can be verified easily.

2. Minimal observers existence condition

Let us define q as the smallest integer such that

rank Σq = rank

[

Σq

LAq

]

, (7)

with

Σq =























C
L
CA
LA
...

CAq−1

LAq−1

CAq























.

After q derivatives of v(t) = Lx(t) we obtain

v(q)(t) = LAqx(t) +

q−1
∑

i=0

LAiBu(q−1−i)(t). (8)

From (7) there exist Γ(i), for i = 0 to q, andΛi, for i = 0 to q−1,
such that

LAq =

q
∑

i=0

Γ(i)CA
i +

q−1
∑

i=0

ΛiLA
i. (9)

Thus (8) can be written

v(q)(t) =

q
∑

i=0

Γ(i)CA
ix(t) +

q−1
∑

i=0

ΛiLA
ix(t) +

q−1
∑

i=0

LAiBu(q−1−i)(t).

To eliminate the state x(t) we have the equalities

Lx(t) = v(t),

LAx(t) = v̇(t) − LBu(t),

...

LA(q−1)x(t) = v(q−1) −

q−2
∑

i=0

LAiBu(q−2−i)(t),

Cx(t) = y(t),

CAx(t) = ẏ(t) − CBu(t),

CA2x(t) = ÿ(t) − CABu(t) − CBu̇(t),

...

CA(q)x(t) = y(q) −

q−1
∑

i=0

CAiBu(q−1−i)(t).

It yields

v(q)(t) = Γ(0)y(t) +

q
∑

i=1

Γ(i)

[

y(i) −

i−1
∑

j=0

CAjBu(i−1−j)(t)

]

+ Λ0v(t) +

q−1
∑

i=1

Λi

[

v(i) −

i−1
∑

j=0

LAjBu(i−1−j)(t)

]

+

q−1
∑

i=0

LAiBu(q−1−i)(t),

=

q
∑

i=0

Γ(i)y
(i) +

q−1
∑

i=0

Λiv
(i) +

q−1
∑

i=0

Φiu
(i)(t), (10)



where for i = 0 to q − 2

Φi =

[

LAq−1−i −

q
∑

j=i+1

Γ(j)CA
j−i−1 −

q−1
∑

j=i+1

ΛjLA
j−i−1

]

B,

and

Φq−1 =
[

L − Γ(q)C
]

B.

The input–output differential equation (10) can be realized as

the q-order state space observable system

ż(t) =











0 Λ0

1
. . . Λ1

. . . 0
...

1 Λq−1











z(t) +









Φ0

Φ1

...

Φq−1









u(t)

+









Γ(0) + Λ0Γ(q)

Γ(1) + Λ1Γ(q)

...

Γ(q−1) + Λq−1Γ(q)









y(t),

v(t) =
[

0 · · · 0 1
]

z(t) + Γ(q)y(t).

(11)

Theorem 1. Let us define q as the smallest integer such that there

exist Γi, for i = 0 to q, and Λi, for i = 0 to q − 1, such that

LAq =

q
∑

i=0

Γ(i)CA
i +

q−1
∑

i=0

ΛiLA
i,

and the matrix

F =











0 Λ0

1
. . . Λ1

. . . 0
...

1 Λq−1











is a Hurwitz matrix. Then the q-order Luenberger observer (11) is a

minimal observer of the single linear functional (1) for the system (2).

Proof. As G = TB, the form of the Φi leads to the matrix

T =













LAq−1 − Γ(1)C − · · · − Γ(q)CA
q−1

−Λ1L − · · · − Λq−1LA
q−1

...

LA − Γ(q−1)C − Γ(q)CA − Λq−1L
L − Γ(q)C













.

Somecalculations point out that (5) and (4) are verified. When F

is a Hurwitz matrix, the necessary and sufficient conditions for

the existence of a single functional observer of the single linear

functional (1) for the system (2) are fulfilled. To prove minimality

let us consider that there exists a p-observer solving the same

problem with p < q. Then there exist matrices such that

v(p)(t) =

p
∑

i=0

Riy
(i) +

p−1
∑

i=0

Siv
(i) +

p−1
∑

i=0

Tiu
(i)(t).

Taking into account

v(t) = Lx(t),

v̇(t) = LAx(t) + LBu(t),

...

v(p) = LA(p)x(t) +

p−1
∑

i=0

LAiBu(p−1−i)(t),

y(t) = Cx(t),

ẏ(t) = CAx(t) + CBu(t),

...

y(p) = CApx(t) +

p−1
∑

i=0

CAiBu(p−1−i)(t),

and supposing, for simplicity sake, that u(t) vanishes for every t ,
we get

LApx(t) =

p
∑

i=0

RiCA
ix(t) +

p−1
∑

i=0

SiLA
ix(t).

This relation must be fulfilled for all solutions of ẋ(t) = Ax(t).
Consequently LAp is linearly dependent on the rows CAi and LAi.
Let us suppose that the matrix











0 S0

1
. . . S1
. . . 0

...

1 Sp−1











is a Hurwitz matrix. This point is a contradiction, because q is the
smallest integer such that the writing (9) exists. �

For completeness, let us describe the existence condition of
a minimum order observer for a single linear functional. In this
case, it can readily be seen that the Theorem 1 gives: a one-order
observer for Lx(t) exists if and only if we can write

LA = Γ(0)C + Λ0L + Γ(1)CA, (12)

whereΛ0 is strictly negative. It can been shown that this condition
is equivalent to the condition established in Darouach (2000).

3. Design procedure and pole placement

3.1. Design procedure

We develop in this section the procedure to design a q-order
single functional observer when the conditions for the existence
of a p-order single functional observer with 1 ≤ p < q are not
fulfilled. In order to examine if some of the poles of the observer
can be fixed at the outset we introduce the following partitions

C = C0 =

[

C1

C∗
1

]

=

[

C2

C∗
2

]

= · · · =

[

Cq

C∗
q

]

, (13)

where q is defined by (9) and for i = 1 to q, the rows of Ci and C∗
i

are such that

• CiA
i is linearly independent of C, L, CA, LA, . . . , CAi−1;

• C∗
i A

i is linearly dependent of C, L, CA, LA, . . . , CAi−1.

It is obvious that the previous partitions of C possibly necessitates
a permutation in the measure variables. Let us denote πi, i = 1 to
q, the number of rows in C∗

i . We have 0 ≤ π1 ≤ π2 ≤ · · · ≤ πq.
Associated with the partitions (13) we have the partitions, for

i = 1 to q, Γ(i) =
[

Γi Γ
∗
i

]

, where Γ ∗
i is a (l × πi) matrix. From

(9), it yields



LAq =

q
∑

i=0

ΓiCiA
i +

q
∑

i=1

Γ
∗
i C

∗
i A

i +

q−1
∑

i=0

ΛiLA
i. (14)

The matrix

Σ
∗
q =























C
L

C1A
LA
...

Cq−1A
q−1

LAq−1

CqA
q























,

is a full-row rank matrix with

rank Σ
∗
q = (q + 1)m + q −

q
∑

i=1

πi.

Thus, the matrices Πi and ∆i defined by

LAq =

q
∑

i=0

ΠiCiA
i +

q−1
∑

i=0

∆iLA
i, (15)

and the matrices Γi,j and Λi,j defined, for i = 1 to q, by

C∗
i A

i =

i
∑

j=0

Γi,jCjA
j +

i−1
∑

j=0

Λi,jLA
j, (16)

are unique. Taking into account (16) in (14) yields

LAq =

[

Γ0 +

q
∑

i=1

Γ
∗
i Γi,0

]

C0 +

q
∑

i=1

[

Γi +

q
∑

j=i

Γ
∗
j Γj,i

]

CiA
i

+

q−1
∑

i=0

[

Λi +

q
∑

j=i+1

Γ
∗
j Λj,i

]

LAi.

From the unique property in (15) we deduce the coefficients for
the minimal observer

Γ0 = Π0 −

q
∑

i=1

Γ
∗
i Γi,0,

for i = 1 to q, Γi = Πi −

q
∑

j=i

Γ
∗
j Γj,i,

for i = 0 to q − 1, Λi = ∆i −

q
∑

j=i+1

Γ
∗
j Λj,i,

where theΓ ∗
i are designparameters. Specifically, the characteristic

polynomial of the matrix

F =











0 Λ0

1
. . . Λ1

. . . 0
...

1 Λq−1











is given by

pF (λ) = λq −

q−1
∑

i=0

[

∆i −

q
∑

j=i+1

Γ
∗
j Λj,i

]

λi.

The total number of design parameters to obtain stable poles
for the observer or to solve the fixed-pole observer problem is
σ =

∑q
i=1 πi. When σ ≥ q, all the poles can be fixed at the

outset. On the opposite side, when σ < q, σ indicates the number
of poles which can be fixed at the outset. In this case, when the

stable observer problem cannot be solved, the solution consists

in increasing the order of the observer. This step is performed

by taking the derivative of v(q). Namely, the procedure we have

detailed in this section is applied on

v(q+1)(t) = LAq+1x(t) +

q
∑

i=0

LAiBu(q−i)(t).

We can remark that the decomposition (9) yields

LAq+1 = LAqA =

[

q
∑

i=0

Γ(i)CA
i +

q−1
∑

i=0

ΛiLA
i

]

A,

=

q+1
∑

i=1

Γ(i−1)CA
i +

q
∑

i=1

Λi−1LA
i.

Thus this decomposition is immediate and the previous method

can be used to design a minimal observer with some constraints

on the poles.

3.2. Illustrative example

With (Trinh et al., 2006), let us consider the system (2) and the

single functional (1) defined by

A =











−1 0 0 1 −2
0 −5 3 4 0
1 1 −8 3 0

−4 0 2 −6 0
0 0 0 1 −1











, B =











0
0
0
0
1











,

C =
[

1 0 0 0 0
]

,

L =
[

1 14 42 79 2
]

.

(17)

The following steps illustrate the design procedure of minimal

observers.

(1) Test for the minimum observer. As

CA =
[

−1 0 0 1 −2
]

,

LA =
[

−275 −28 −136 −289 −4
]

,

we obtain rank (Σ1) = 3 and

rank

[

Σ1

LA

]

= 4.

Thus a first-order minimum observer cannot be designed.

(2) Tests for a second-order observer. As

CA2 =
[

−3 0 2 −9 4
]

,

LA2 =
[

1295 4 426 935 554
]

,

we get rank (Σ2) = 5 and

rank

[

Σ2

LA2

]

= 5.

As

LA2
Σ

−1
2 =

[

−1343.7 −16.6 −301 −8.4 −12.1
]

,

we deduce Λ0 = −16.6 and Λ1 = −8.4. It yields

F =

[

0 −16.6
1 −8.4

]

.

The eigenvalues of F are {−3.12, −5.22}. Thus a minimal

second-order observer can be designed.



(3) Design of the minimal second-order observer. From LA2Σ
−1
2

we get Γ(0) = −1343.7, Γ(1) = −301 and Γ(2) = −12.1. From
(11) we obtain

G =

[

22.29 90 218 389 −11.42
13.14 14 42 79 2

]

B =

[

−11.42
2

]

,

H =

[

−1142.5
−198.7

]

, P =
[

0 1
]

, V = −12.1.

The design of this observer is finished and the procedure
can be stopped. Nevertheless the poles are fixed. If the poles
{−3.12, −5.22} are not acceptable we have to augment the
order of the observer. In the next step we tackle this point.

(4) Design of a minimal third-order observer with partially fixed
poles. In order to illustrate the design procedure we detail
some calculations here. From

CA3 =
[

Γ20 Λ20 Γ21 Λ21 Γ22

]

Σ2,

LA2 =
[

Π0 ∆0 Π1 ∆1 Π2

]

Σ2,

we deduce, on the one hand

LA3 = LA2A = Π0CA + ∆0LA + Π1CA
2 + 1LA2 + Π2CA

3,

= Π0CA + ∆0LA + Π1CA
2

+ ∆1

[

Π0 ∆0 Π1 ∆1 Π2

]

Σ2

+ Π2

[

Γ20 Λ20 Γ21 Λ21 Γ22

]

Σ2,

= [∆1Π0 + Π2Γ20 ∆1∆0 + Π2Λ20 Π0 + ∆1Π1 + Π2Γ20

∆0 + ∆1∆1 + Π2Λ21 Π1 + ∆1Π2 + Π2Γ22]Σ2,

and on the other hand

LA3 = Γ0C + Λ0L + Γ(1)CA + Λ1LA + Γ(2)CA
2 + Λ2LA

2 + Γ(3)CA
3,

= [Γ0 + Λ2Π0 + Γ(3)Γ20 Λ0 + Λ2∆0 + Γ(3)Λ20

Γ(1) + Λ2Π1 + Γ(3)Γ21 Λ1 + Λ2∆1 + Γ(3)Λ21

Γ(2) + Λ2Π2 + Γ(3)Γ22]Σ2,

where Λ2 and Γ(3) are two design parameters. It yields

Γ0 = ∆1Π0 + Π2Γ20 − Λ2Π0 − Γ(3)Γ20,

Γ(1) = Π0 + ∆1Π1 + Π2Γ21 − Λ2Π1 − Γ(3)Γ21,

Γ(2) = Π1 + ∆1Π2 + Π2Γ22 − Λ2Π2 − Γ(3)Γ22,

and

Λ0 = ∆1∆0 + Π2Λ20 − Λ2∆0 − Γ(3)Λ20,

Λ1 = ∆0 + ∆1∆1 + Π2Λ21 − Λ2∆1 − Γ(3)Λ21.

WhenΛ2 andΓ(3) are chosen, these five parameters are known
and we can implement the observer (11) for q = 3. The poles
of the matrix F are the roots of the characteristic polynomial
pF (λ) = λ3 − Λ2λ

2 − Λ1λ − Λ0 which depends on the
parameters Λ2 and Γ(3). In our example

CA3 =
[

41 2 −34 61 2
]

,

LA3 =
[

−4609 406 −1526 −2467 −3144
]

.

With CA3Σ
−1
2 and LA3Σ

−1
2 we obtain the values

Γ20 = 55.14, Γ21 = −26, Γ22 = −12.57,

Λ20 = 0.71, Λ21 = 0.29,

∆1Π0 + Π2Γ20 = 10 656,

Π0 + ∆1Π1 + Π2Γ21 = 1509,

Π1 + ∆1Π2 + Π2Γ22 = −46,

∆1∆0 + Π2Λ20 = 131,

∆0 + ∆1∆1 + Π2Λ21 = 51.

As ∆1 = −8.4 and ∆0 = −16.6, it can be read

Λ0 = 131 + 16.6Λ2 − 0.71Γ(3),

Λ1 = 51 + 8.4Λ2 − 0.29Γ(3),

Fig. 1. Simulation results for the implementation of the reduced order observers

for (17).

and the polynomial

pF (λ) = λ3 − 51λ − 131 − Λ2(λ
2 + 8.4λ + 16.6)

+ Γ(3)(0.29λ + 0.71).

In order to compare it with (Trinh et al., 2006) where the roots
of pF (λ) are {−3, −4, −5} we get Λ2 = −12, Λ1 = −47 and
Λ0 = −60. These equalities are consistent and yield Γ(3) =
−11. Despite this result it is not obvious to give three poles at
the outset such that the constraints are satisfied. In order to
compare with (Trinh et al., 2006) we can fix Λ2 = −12. We
are then led to

pF (λ) = λ3 + 12λ2 + 50.14λ + 67.86 + Γ(3)(0.29λ + 0.71).

The use of the root locus method yields to the poles
{−3.3, −3.3, −5.4} for Γ(3) = −12.56. For these values we
get the Luenberger observer defined by

G =

[

83.8 319.8 774.4 1381.3 −49.9
74.1 140 368 671.6 −5.1
13.6 14 42 79 2

]

B,

=

[

−49.92
−5.12

2

]

, F =

[

0 0 −58.88
1 0 −46.55
0 1 −12

]

,

H =

[

−4036.1
−1844.8
−198.9

]

, P =
[

0 0 1
]

, V = −12.56.

In Fig. 1 the simulation results are displayed showing the
performances of the second-order and the third-order designed
observers.

4. Conclusion

We have proposed a new and direct design procedure of a
minimal Luenberger observer for a single linear functional. Our
algorithm is based on linear algebraic operations in a state space
setting. With respect to other procedures the design procedure
does not require the solution of a Sylvester equation. Moreover,
the proposed solution exhibits design parameters for the candidate
observer to achieve asymptotic stability or pole placement when
some poles are fixed at the outset. Let us mention that we do
not suppose any canonical form either for the system or for the
observer. The proposed constructive procedure is simpler than
the Trinh procedure (Trinh et al., 2006) which is based on the
resolution of the Sylvester equation with the Duan method.



The proposed design principle can be extended twofold. On the
one hand to time-varying linear systems. On the other hand for the
multifunctional case. Such developments are under investigation
and will be the subjects of future works. Nevertheless it can been
shown that in the multifunctional case the existence condition of
a minimum observer can be given by an obvious extension of the
Theorem 1.
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