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A constructive procedure to design a single linear functional observer for a time-invariant linear system is given. The proposed procedure is simple and is not based on the solution of a Sylvester equation or on the use of canonical state space forms. Both stable observers or fixed poles observers problems are considered for minimality.

Introduction

Since Luenberger's works [START_REF] Luenberger | Determining the state of a linear system with observers of low dynamic order[END_REF][START_REF] Luenberger | Observing the state of a linear system[END_REF][START_REF] Luenberger | Observers for multivariable systems[END_REF] a significant amount of research has been devoted to the problem of observing a linear functional v(t) = Lx(t), (1) where L is a constant full row rank (l×n) matrix, and, for every time t in R + , x(t) is the n-dimensional state vector of the state space system ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t),

(2) where u(t) is the p-dimensional control, and y(t) is the mdimensional measure. A(n ×n), B(n ×p) and C (m×n) are constant matrices. For a survey of the main results see for instance [START_REF] Aldeen | Reduced-order linear functional observers for linear systems[END_REF][START_REF] O'reilly | Observers for linear systems[END_REF][START_REF] Trinh | On the existence and design of functional observers for linear systems[END_REF][START_REF] Tsui | What is the minimum function observer order?[END_REF] and the references therein.

The observation of v(t) can be carried out with the design of the Luenberger observer ż(t) = Fz(t) + Gu(t) + Hy(t), w(t) = Pz(t) + Vy(t),

(3) where z(t) is the q-dimensional state vector. Constant matrices F , G, H, P and V are determined such that ✩ * Corresponding author. Tel.: +33 056244 2763; fax: +33 056 244 2716. E-mail addresses: rotella@enit.fr (F. Rotella), izambettakis@iut-tarbes.fr lim t→∞ (v(t)w(t)) = 0. This asymptotic tracking is ensured if F is a Hurwitz matrix. Namely, if all the eigenvalues of F are such that their real part is negative.

We know from [START_REF] Fortmann | Design of low-order observers for linear feedback control laws[END_REF] that the linear functional observer (3) exists if and only if there exists a (q × n) matrix T such that:

G = TB, TA -FT = HC , (4) 
L = PT + VC , (5) 
F is a Hurwitz matrix.

Notice that a rigorous proof of this result has been established

in [START_REF] Fuhrmann | On the parameterization of conditioned invariant subspaces and observer theory[END_REF] for the case V = 0. According to the value of q, we distinguish several observers:

• q = n: the Kalman observer;

• q = nm: the reduced-order observer or Cumming-Gopinath observer [START_REF] Cumming | Design of observers of reduced dynamics[END_REF][START_REF] Gopinath | On the control of linear multiple input-output systems[END_REF]);

• l < q < nm and q is such that no observer of v(t) with an order less than q exists: the minimal-order observer or minimal observer;

• l = q: the minimum-order observer or minimum observer.

With [START_REF] Roman | Design of minimal orders stable observers for linear functions of the state via realization theory[END_REF][START_REF] Sirisena | Minimal order observers for linear functions of a state vector[END_REF], we know that l is a lower bound for the order of the observer (3).

Until now the direct design of a minimal observer of a given linear functional is an open question. Since [START_REF] Fortmann | Design of low-order observers for linear feedback control laws[END_REF], design schemes have been proposed to reduce the order of the observer (3) with respect to the reduced-order observer.

Mainly, these designs are based on the determination of the matrices T and F such that the Sylvester equation ( 4) is fulfilled [START_REF] Trinh | Algorithms for designing reducedorder functional observers of linear systems[END_REF][START_REF] Tsui | An overview of the applications and solution of a fundamental matrix equation pair[END_REF]. Unfortunately, the problem rests in satisfying conditions ( 4)-( 6) with the dimension of F minimal. Moreover the distinction between the fixed-pole observer problem where the poles are specified at the outset and the stable observer problem where the poles are permitted to lie anywhere in the left half-plane is not well defined. Indeed, in several cases, necessary and sufficient existence conditions for a candidate observer to be minimal are obtained for the fixed-pole observer problem only.

Apart from results on the multifunctional case (l > 1), for simplification purpose several authors have considered the observation of a single linear functional (l = 1). Luenberger has shown in [START_REF] Luenberger | Observers for multivariable systems[END_REF] that any specified single linear functional of the state vector may be obtained by means of an observer of order (ν -1), with arbitrary dynamics, where ν is the observability index of the system. Namely, ν is the smallest integer for which the matrix

O (A,C),ν =     C CA . . . CA ν-1    
has rank n. In [START_REF] Murdoch | Observer design for a linear functional of the state vector[END_REF], an effective design procedure is proposed to design an observer of order (ν -1), with arbitrary dynamics. Some constraints are imposed on the choice of the observer poles or on structures of some matrices. In addition, a method to apply this result to the multifunctional case has been proposed in [START_REF] Murdoch | Design of degenerate observers[END_REF]. Some years later, based on simplifications brought about by considering [START_REF] Roman | Design of minimal orders stable observers for linear functions of the state via realization theory[END_REF])

C = 0 m×(n-m) I m ,
a necessary and sufficient condition is proposed in [START_REF] Gupta | A direct procedure for the design of single functional observers[END_REF] for the design of a single functional observer in a fixed-pole problem. Another condition for the existence of a q-order observer can be found in [START_REF] Kondo | A systematic design of linear functional observers[END_REF] which can be related to the Fortmann-Williamson condition [START_REF] Fortmann | Design of low-order observers for linear feedback control laws[END_REF]. In the particular case of a single functional, the minimum order observer is a one-order filter and may not exist. Some conditions for the existence of a second order observer are given in [START_REF] Trinh | Design of reduced-order scalar functional observers[END_REF]. Based on the Duan procedure to solve a Sylvester equation [START_REF] Duan | Solutions of the equation AV + BW = VF and their application to eigenstructure assignment in linear systems[END_REF], the design of a general order observer for a single functional is proposed in [START_REF] Trinh | Design of scalar functional observers of order less than (ν -1)[END_REF]. To apply this method, which is extended to the multifunctional observer in [START_REF] Trinh | Algorithms for designing reducedorder functional observers of linear systems[END_REF], the poles of the observer have to be distinct and must be fixed at the outset. Nevertheless, the proposed procedures are based on the solution of the Sylvester equation and some numerical algorithms exist to increase the numerical robustness in the design [START_REF] Datta | Numerical methods for linear control systems[END_REF][START_REF] Datta | Block algorithms for state estimation and functional observers[END_REF]. The present paper describes a direct and iterative procedure to get a minimal order for a single linear functional observer. On the one hand the word direct means that the design method is not based on the solution of the Sylvester equation ( 4). It has been underlined in [START_REF] Tsui | What is the minimum function observer order?[END_REF], that the calculus of the matrix T is not a necessary step. This point is a specific feature of the procedure we propose. On the other hand the word iterative indicates that we test an increasing sequence for the orders of the observers to obtain minimality. Moreover, the procedure points out if we face to the stable observer case or if some poles can be fixed at the outset.

The paper is organised as follows. In the first place, a necessary and sufficient condition is outlined for the existence of a single functional observer. From these conditions, in the second section a design method for the observer is proposed. An example illustrates the procedure and points out that the minimal order depends on constraints on the poles of the observer.

Notice that, in all the following, we suppose

rank C L = m + 1.
This condition rules out the design of an obvious nondynamic observer and can be verified easily.

Minimal observers existence condition

Let us define q as the smallest integer such that rank Σ q = rank Σ q LA q ,

with

Σ q =            C L CA LA . . . CA q-1 LA q-1 CA q            . After q derivatives of v(t) = Lx(t) we obtain v (q) (t) = LA q x(t) + q-1 i=0 LA i Bu (q-1-i) (t). (8) 
From (7) there exist Γ (i) , for i = 0 to q, and Λ i , for i = 0 to q -1, such that

LA q = q i=0 Γ (i) CA i + q-1 i=0 Λ i LA i . (9) 
Thus ( 8) can be written

v (q) (t) = q i=0 Γ (i) CA i x(t) + q-1 i=0 Λ i LA i x(t) + q-1 i=0 LA i Bu (q-1-i) (t).
To eliminate the state x(t) we have the equalities

Lx(t) = v(t), LAx(t) = v(t) -LBu(t), . . . LA (q-1) x(t) = v (q-1) - q-2 i=0 LA i Bu (q-2-i) (t), Cx(t) = y(t), CAx(t) = ẏ(t) -CBu(t), CA 2 x(t) = ÿ(t) -CABu(t) -CBu(t), . . . CA (q) x(t) = y (q) - q-1 i=0 CA i Bu (q-1-i) (t). It yields v (q) (t) = Γ (0) y(t) + q i=1 Γ (i) y (i) - i-1 j=0 CA j Bu (i-1-j) (t) + Λ 0 v(t) + q-1 i=1 Λ i v (i) - i-1 j=0 LA j Bu (i-1-j) (t) + q-1 i=0 LA i Bu (q-1-i) (t), = q i=0 Γ (i) y (i) + q-1 i=0 Λ i v (i) + q-1 i=0 Φ i u (i) (t), (10) 
where for i = 0 to q -2

Φ i = LA q-1-i - q j=i+1 Γ (j) CA j-i-1 - q-1 j=i+1 Λ j LA j-i-1 B,
and

Φ q-1 = L -Γ (q) C B.
The input-output differential equation ( 10) can be realized as the q-order state space observable system

ż(t) =      0 Λ 0 1 . . . Λ 1 . . . 0 . . . 1 Λ q-1      z(t) +     Φ 0 Φ 1 . . . Φ q-1     u(t) +     Γ (0) + Λ 0 Γ (q) Γ (1) + Λ 1 Γ (q) . . . Γ (q-1) + Λ q-1 Γ (q)     y(t), v(t) = 0 • • • 0 1 z(t) + Γ (q) y(t). ( 11 
)
Theorem 1. Let us define q as the smallest integer such that there exist Γ i , for i = 0 to q, and Λ i , for i = 0 to q -1, such that

LA q = q i=0 Γ (i) CA i + q-1 i=0 Λ i LA i ,
and the matrix

F =      0 Λ 0 1 . . . Λ 1 . . . 0 . . . 1 Λ q-1     
is a Hurwitz matrix. Then the q-order Luenberger observer (11) is a minimal observer of the single linear functional (1) for the system (2).

Proof. As G = TB, the form of the Φ i leads to the matrix

T =       LA q-1 -Γ (1) C -• • • -Γ (q) CA q-1 -Λ 1 L -• • • -Λ q-1 LA q-1 . . . LA -Γ (q-1) C -Γ (q) CA -Λ q-1 L L -Γ (q) C       .
Somecalculations point out that (5) and (4) are verified. When F is a Hurwitz matrix, the necessary and sufficient conditions for the existence of a single functional observer of the single linear functional (1) for the system (2) are fulfilled. To prove minimality let us consider that there exists a p-observer solving the same problem with p < q. Then there exist matrices such that

v (p) (t) = p i=0 R i y (i) + p-1 i=0 S i v (i) + p-1 i=0 T i u (i) (t). Taking into account v(t) = Lx(t), v(t) = LAx(t) + LBu(t), . . . v (p) = LA (p) x(t) + p-1 i=0 LA i Bu (p-1-i) (t), y(t) = Cx(t), ẏ(t) = CAx(t) + CBu(t), . . . y (p) = CA p x(t) + p-1 i=0 CA i Bu (p-1-i) (t),
and supposing, for simplicity sake, that u(t) vanishes for every t, we get

LA p x(t) = p i=0 R i CA i x(t) + p-1 i=0 S i LA i x(t).

This relation must be fulfilled for all solutions of ẋ(t) = Ax(t).

Consequently LA p is linearly dependent on the rows CA i and LA i . Let us suppose that the matrix

     0 S 0 1 . . . S 1 . . . 0 . . . 1 S p-1     
is a Hurwitz matrix. This point is a contradiction, because q is the smallest integer such that the writing (9) exists.

For completeness, let us describe the existence condition of a minimum order observer for a single linear functional. In this case, it can readily be seen that the Theorem 1 gives: a one-order observer for Lx(t) exists if and only if we can write CA, (12) where Λ 0 is strictly negative. It can been shown that this condition is equivalent to the condition established in [START_REF] Darouach | Existence and design of functional observers for linear systems[END_REF].

LA = Γ (0) C + Λ 0 L + Γ (1)

Design procedure and pole placement

Design procedure

We develop in this section the procedure to design a q-order single functional observer when the conditions for the existence of a p-order single functional observer with 1 ≤ p < q are not fulfilled. In order to examine if some of the poles of the observer can be fixed at the outset we introduce the following partitions

C = C 0 = C 1 C * 1 = C 2 C * 2 = • • • = C q C * q , ( 13 
)
where q is defined by (9) and for i = 1 to q, the rows of C i and C * i are such that

• C i A i is linearly independent of C , L, CA, LA, . . . , CA i-1 ; • C * i A i is linearly dependent of C , L, CA, LA, . . . , CA i-1 .
It is obvious that the previous partitions of C possibly necessitates a permutation in the measure variables. Let us denote π i , i = 1 to q, the number of rows in

C * i . We have 0 ≤ π 1 ≤ π 2 ≤ • • • ≤ π q .
Associated with the partitions (13) we have the partitions, for

i = 1 to q, Γ (i) = Γ i Γ * i , where Γ * i is a (l × π i ) matrix. From (9), it yields LA q = q i=0 Γ i C i A i + q i=1 Γ * i C * i A i + q-1 i=0 Λ i LA i . (14) 
The matrix

Σ * q =            C L C 1 A LA . . . C q-1 A q-1 LA q-1 C q A q           
, is a full-row rank matrix with rank Σ * q = (q + 1)m + qq i=1 π i .

Thus, the matrices Π i and ∆ i defined by

LA q = q i=0 Π i C i A i + q-1 i=0 ∆ i LA i , ( 15 
)
and the matrices Γ i,j and Λ i,j defined, for i = 1 to q, by

C * i A i = i j=0 Γ i,j C j A j + i-1 j=0 Λ i,j LA j , (16) 
are unique. Taking into account ( 16) in ( 14) yields

LA q = Γ 0 + q i=1 Γ * i Γ i,0 C 0 + q i=1 Γ i + q j=i Γ * j Γ j,i C i A i + q-1 i=0 Λ i + q j=i+1 Γ * j Λ j,i LA i .
From the unique property in (15) we deduce the coefficients for the minimal observer

Γ 0 = Π 0 - q i=1 Γ * i Γ i,0 , for i = 1 to q, Γ i = Π i - q j=i Γ * j Γ j,i , for i = 0 to q -1, Λ i = ∆ i - q j=i+1 Γ * j Λ j,i ,
where the Γ * i are design parameters. Specifically, the characteristic polynomial of the matrix

F =      0 Λ 0 1 . . . Λ 1 . . . 0 . . . 1 Λ q-1      is given by p F (λ) = λ q - q-1 i=0 ∆ i - q j=i+1 Γ * j Λ j,i λ i .
The total number of design parameters to obtain stable poles for the observer or to solve the fixed-pole observer problem is σ = q i=1 π i . When σ ≥ q, all the poles can be fixed at the outset. On the opposite side, when σ < q, σ indicates the number of poles which can be fixed at the outset. In this case, when the stable observer problem cannot be solved, the solution consists in increasing the order of the observer. This step is performed by taking the derivative of v (q) . Namely, the procedure we have detailed in this section is applied on

v (q+1) (t) = LA q+1 x(t) + q i=0 LA i Bu (q-i) (t).
We can remark that the decomposition (9) yields

LA q+1 = LA q A = q i=0 Γ (i) CA i + q-1 i=0 Λ i LA i A, = q+1 i=1 Γ (i-1) CA i + q i=1 Λ i-1 LA i .
Thus this decomposition is immediate and the previous method can be used to design a minimal observer with some constraints on the poles.

Illustrative example

With [START_REF] Trinh | Design of scalar functional observers of order less than (ν -1)[END_REF], let us consider the system (2) and the single functional (1) defined by

A =      -1 0 0 1 -2 0 -5 3 4 0 1 1 -8 3 0 -4 0 2 -6 0 0 0 0 1 -1      , B =      0 0 0 0 1      , C = 1 0 0 0 0 , L = 1 14 42 79 2 . (17) 
The following steps illustrate the design procedure of minimal observers.

(1) Test for the minimum observer. As The eigenvalues of F are {-3.12, -5.22}. Thus a minimal second-order observer can be designed.

(3) Design of the minimal second-order observer. From LA 2 Σ -1 2 we get Γ (0) = -1343.7, Γ (1) = -301 and Γ (2) = -12.1. -1142.5 -198.7 , P = 0 1 , V = -12.1.

The design of this observer is finished and the procedure can be stopped. Nevertheless the poles are fixed. If the poles {-3.12, -5.22} are not acceptable we have to augment the order of the observer. In the next step we tackle this point. (4) Design of a minimal third-order observer with partially fixed poles. In order to illustrate the design procedure we detail some calculations here.

From

CA 3 = Γ 20 Λ 20 Γ 21 Λ 21 Γ 22 Σ 2 , LA 2 = Π 0 ∆ 0 Π 1 ∆ 1 Π 2 Σ 2 ,
we deduce, on the one hand

LA 3 = LA 2 A = Π 0 CA + ∆ 0 LA + Π 1 CA 2 + LA 2 + Π 2 CA 3 , = Π 0 CA + ∆ 0 LA + Π 1 CA 2 + ∆ 1 Π 0 ∆ 0 Π 1 ∆ 1 Π 2 Σ 2 Γ 0 = ∆ 1 Π 0 + Π 2 Γ 20 -Λ 2 Π 0 -Γ (3) Γ 20 , Γ (1) = Π 0 + ∆ 1 Π 1 + Π 2 Γ 21 -Λ 2 Π 1 -Γ (3) Γ 21 , Γ (2) = Π 1 + ∆ 1 Π 2 + Π 2 Γ 22 -Λ 2 Π 2 -Γ (3) Γ 22 ,
and

Λ 0 = ∆ 1 ∆ 0 + Π 2 Λ 20 -Λ 2 ∆ 0 -Γ (3) Λ 20 , Λ 1 = ∆ 0 + ∆ 1 ∆ 1 + Π 2 Λ 21 -Λ 2 ∆ 1 -Γ (3) Λ 21 .
When Λ 2 and Γ (3) are chosen, these five parameters are known and we can implement the observer (11) for q = 3. The poles of the matrix F are the roots of the characteristic polynomial 

p F (λ) = λ 3 -Λ 2 λ 2 -Λ 1 λ -Λ 0 which
= 0.29, ∆ 1 Π 0 + Π 2 Γ 20 = 10 656, Π 0 + ∆ 1 Π 1 + Π 2 Γ 21 = 1509, Π 1 + ∆ 1 Π 2 + Π 2 Γ 22 = -46, ∆ 1 ∆ 0 + Π 2 Λ 20 = 131, ∆ 0 + ∆ 1 ∆ 1 + Π 2 Λ 21 = 51.
As ∆ 1 = -8.4 and ∆ 0 = -16.6, it can be read 

Λ 0 = 131 + 16.6Λ 2 -0.71Γ (3) , Λ 1 = 51 + 8.4Λ 2 -0.29Γ (3) ,
F (λ) = λ 3 -51λ -131 -Λ 2 (λ 2 + 8.4λ + 16.6) + Γ (3) (0.29λ + 0.71).
In order to compare it with [START_REF] Trinh | Design of scalar functional observers of order less than (ν -1)[END_REF] where the roots of p F (λ) are {-3, -4, -5} we get Λ 2 = -12, Λ 1 = -47 and Λ 0 = -60. These equalities are consistent and yield Γ (3) = -11. Despite this result it is not obvious to give three poles at the outset such that the constraints are satisfied. In order to compare with (Trinh et al., 2006) we can fix Λ 2 = -12. , P = 0 0 1 , V = -12.56.

In Fig. 1 the simulation results are displayed showing the performances of the second-order and the third-order designed observers.

Conclusion

We have proposed a new and direct design procedure of a minimal Luenberger observer for a single linear functional. Our algorithm is based on linear algebraic operations in a state space setting. With respect to other procedures the design procedure does not require the solution of a Sylvester equation. Moreover, the proposed solution exhibits design parameters for the candidate observer to achieve asymptotic stability or pole placement when some poles are fixed at the outset. Let us mention that we do not suppose any canonical form either for the system or for the observer. The proposed constructive procedure is simpler than the Trinh procedure [START_REF] Trinh | Design of scalar functional observers of order less than (ν -1)[END_REF] which is based on the resolution of the Sylvester equation with the Duan method.

The proposed design principle can be extended twofold. On the one hand to time-varying linear systems. On the other hand for the multifunctional case. Such developments are under investigation and will be the subjects of future works. Nevertheless it can been shown that in the multifunctional case the existence condition of a minimum observer can be given by an obvious extension of the Theorem 1.
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 1 Fig. 1. Simulation results for the implementation of the reduced order observers for (17).and the polynomialp F (λ) = λ 3 -51λ -131 -Λ 2 (λ 2 + 8.4λ + 16.6)+ Γ (3) (0.29λ + 0.71).
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	With CA 3 Σ -1 2 and LA 3 Σ -1 2 we obtain the values
	Γ 20 = 55.14,	Γ 21 = -26,	Γ 22 = -12.57,
	Λ 20 = 0.71,	Λ 21	

+ Π 2 Γ 20 Λ 20 Γ 21 Λ 21 Γ 22 Σ 2 , = [∆ 1 Π 0 + Π 2 Γ 20 ∆ 1 ∆ 0 + Π 2 Λ 20 Π 0 + ∆ 1 Π 1 + Π 2 Γ 20 ∆ 0 + ∆ 1 ∆ 1 + Π 2 Λ 21 Π 1 + ∆ 1 Π 2 + Π 2 Γ 22 ]Σ 2 ,and on the other handLA 3 = Γ 0 C + Λ 0 L + Γ (1) CA + Λ 1 LA + Γ (2) CA 2 + Λ 2 LA 2 + Γ (3) CA 3 , = [Γ 0 + Λ 2 Π 0 + Γ (3) Γ 20 Λ 0 + Λ 2 ∆ 0 + Γ (3) Λ 20 Γ (1) + Λ 2 Π 1 + Γ (3) Γ 21 Λ 1 + Λ 2 ∆ 1 + Γ (3) Λ 21 Γ (2) + Λ 2 Π 2 + Γ (3) Γ 22 ]Σ 2 ,where Λ 2 and Γ (3) are two design parameters. It yields