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A large number of signal processing protocols are
based on recording a spectral pattern via spectral hole-
burning in an inhomogeneously broadened absorption
profile. We present a simulation method specifically de-
signed for periodic excitation sequences leading to the
creation of a spectral pattern. This method is applica-
ble to any multilevel atomic structure. The atomic vari-
ables’ coherent dynamics is solved for a single tempo-
ral excitation step. The result is expressed as an equiv-
alent population transfer rate. This way, the whole se-
quence is described as a matrix product and the steady-
state of the system under periodic excitation is easily
derived. The propagation through the atomic medium
is fully decoupled from the temporal evolution. We ap-
ply this method to the engraving of a spectral grating in
a large absorption Tm:YAG sample for wideband spec-
tral analysis. © 2018 Optical Society of America

OCIS codes: (020.1670) Coherent optical effects; (160.5690) Rare-earth-
doped materials; (070.1170) Analog optical signal processing.
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1. INTRODUCTION

Because of the spectroscopic properties of rare earth ion-doped
crystals, a wide range of applications have been proposed in
these systems. Indeed, at low temperatures (typically 4 K), co-
herence and population lifetimes of rare earth ions can reach
tens to hundreds of microseconds and from milliseconds to sec-
onds, respectively. Besides, the inhomogeneous linewidth of the
absorption profile can be as broad as a few GHz. Using these
properties, complex spectral patterns can be imprinted on the
absorption spectrum via spectral hole-burning. Early experi-
ments performed in the 80’s involved pulsed lasers [1–4] and
validated the principle of spectro-temporal processing using or-
ganic molecules embedded in solids. The adequacy between the
development of optoelectronic components and the properties

of rare earth ion-doped materials fostered at the same time new
proposals based on frequency-swept laser for example [5–7] and
high-performance experimental demonstrations in crystalline
inorganic solids [8–10]. Applications emerge in the field of op-
tically carried radio-frequency signal processing leading to a
significant improvement of the readiness level [11, 12]. More
recently, using the same tools pushed at a higher spectral reso-
lution, many perspectives have been considered for quantum
information processing and primarily quantum memories [13].
In both cases, classical or quantum, the implementation and the
modeling of the programmed pattern is critical to evaluate the
overall processing efficiency.

The spectral patterns can be periodic spectral gratings as in
quantum memories based on the atomic frequency comb pro-
tocol [14] or chirped spectral gratings as in time-to-frequency
Fourier transform [15] and time-reversal architectures [16]. They
can be a juxtaposition of several periodic gratings with different
spacings, allowing for a configurable manipulation of optical
pulses including compression and stretching operations [17].
They can be spectro-spatial gratings as in the so-called “rain-
bow” spectral analyzer [18] or in true-time delay generators [19].
More simply, the spectral pattern can be one spectral hole as in
ultrasound-optical tomography-related architectures [20], quan-
tum memories based on slow light [21], or laser stabilization
architectures [22, 23].

The performance of all these architectures is directly linked
to the exact shape of the spectral pattern programmed in the
absorption profile. Therefore, an accurate representation of the
light-atom interaction during the programming step is necessary.
Besides, a large grating contrast or hole depth cannot be obtained
without accumulation due to the generally low optical pumping
efficiency [24]. In that case, coherence and population relaxation
must be first taken into account. Additionally, a narrow band
laser usually resolves the rare-earth hyperfine structure which
may be due to the nuclear-electric-quadrupole and/or Zeeman
interactions. The population redistribution between the different
subslevels cannot be neglected and has to be included explicitly
in the model. This point is critical [25, 26] and motivates us to
propose an accurate description including the hyperfine states
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Fig. 1. Chronogram of a periodic sequence of pulse pairs as
considered in [27] for example. T and τ are the inter- and intra-
spacing of the pairs, and τp is the duration of one pulse. MΠ
and AR refer to the excitation and relaxation matrices which
will be introduced in the present paper.

(under magnetic field for Tm:YAG). Finally, a large absorption,
meaning an optically thick medium is generally required to
provide large diffraction efficiency. This latter defines as the
intensity of the detected echo with respect to the incoming signal
scales the performance of the architecture. Therefore, in the
purpose of determining the technical and physical limitations
of a given architecture, an adequate model should therefore
account for coherent evolution, population accumulation, and
field propagation.

Many simulations of accumulated photon echoes or accu-
mulated spectral hole-burning were published over the past 15
years, stimulated by the new architectures [26–30]. All of them
deal with a repetitive sequence of pulse pairs interleaved with
a free evolution step (see Fig. 1 for notations). Although the
free evolution step is always accurately described by a transfer
matrix [27], the analytic modeling of the excitation systemati-
cally requires hypotheses that potentially limit the case studies.
In [27] the excitation pulses are assumed to be weak, square,
and short: τp � τ and τp � 1/Γinh where Γinh is the inhomo-
geneous broadening of the optical transition. In [28] the pulses
are assumed shorter than all the relaxation times including the
optical coherence lifetime of the excited transition T2 and 1/Γinh.
In [29], the material is assumed optically thin (low absorption)
and the excited level empty at the beginning of each new cycle.
In [30], the authors consider an optically thin medium, square
pulses, and neglect the coherence decay within each pulse pair
(τ � T2). Finally, in [26], a weak excitation is assumed and the
coherence decay within each excitation is neglected. In all these
papers [26–30], the coherence is assumed to be lost after one
cycle: TR � T2.

In [31], DeVries et al. numerically solve the optical Bloch
equations in a two-level system within one temporal excitation
step, ie a pair of pulses, and translate the action of this pulse as
a rate equation onto the population difference. This is justified
if T � T2. The excitation is therefore modeled via a matrix
product, just like relaxation, which makes it possible to derive
the steady state of the system after a large number of periods.
Still, they assume that τ � T1 � T, where T1 is the population
lifetime of the excited state.

In this paper, we propose an extension of the simulation
method developed in [31]. The method we propose is applica-
ble to the protocols based on periodic excitation, whatever the
temporal excitation step (including single pulse, pairs of pulses,
chirped pulses, etc). We generalize our approach to a multilevel
atomic structure, with no restriction in terms of level number,

relaxation paths, or number of optically excited transitions, and
with no limitation on the excitation power. We assume that all
the atomic coherences are lost after one cycle (T � T2) but make
no other assumption on population lifetimes, coherence lifetimes
and the period of the excitation. The full evolution of the system
under periodic excitation is expressed as a matrix product and
the steady-state is derived as the limit of a geometric sequence.
The propagation of the excitation in the volume of the atomic
medium is performed separately.

This approach is frugal in terms of computational power.
The coherent excitation is solved numerically only once and is
then only expressed as a population transfer matrix. The global
evolution is solely modeled by matrix products which can be
implemented efficiently using standard linear algebra libraries.

This method is applicable to any protocol involving a periodic
sequence of spectral hole-burning which leads to a steady state
of the atomic population distribution. Therefore it is relevant to
all of the programmable filters cited above [14–23], provided the
filter is periodically refreshed.

Despite a clear motivation to model the hole-burning dynam-
ics in rare earth ion-doped crystals for optical signal processing,
our model could certainly be used in other domains where the
interplay between coherent evolution and accumulation appear
under pulsed excitation. This is the case for multilevel atomic
vapors under femtosecond pulses where the internal dynam-
ics is driven by the accumulation of many pulses described by
an abundant bibliography [32–39] finding application in opti-
cal metrology, or for complex molecules and semiconductor
structures whose fast response can be studied by coherent spec-
troscopy [40]. We first present our method and give the explicit
formulation of the steady state in the general case. As a testbed,
we apply it to a two-level atom under a periodic excitation made
of Gaussian pulse pairs whose dynamics can be partially de-
rived analytically. Then we apply our method to the creation of
a steady-state wideband spectral grating in a Tm:YAG crystal
under magnetic field. We also present in the appendix a general,
practical formulation of Bloch vector equations that will help to
apply this method to a general atomic structure with an arbitrary
number of levels and transitions.

2. GENERAL DESCRIPTION OF THE METHOD

We consider a NL-level atomic system excited with a T-periodic
pulse sequence driving one or more atomic transitions. Each cy-
cle is composed of an excitation step followed by a free evolution
step. The atomic levels are written |i〉i=1...NL

.

A. Matrix formulation of the excitation
The effect of one excitation step on the atomic populations
ni (i = 1 . . . NL) can be expressed as a set of effective dimen-
sionless population transfer rates {Πij}(1≤i,j≤NL) such that:

n(+)
i − n(−)

i = −∑
j

Πij

2

(
n(−)

i − n(−)
j

)
, (1)

where (−) and (+) label the populations immediately before and
after one excitation step respectively. With this definition, the
population transfer rate lies between 0 (no change in the popu-
lation) and 2 (full population inversion). The transfer rates Πij
are calculated so that the optical excitation is equivalent to an
instantaneous modification of the population by fully neglecting
population relaxation during the excitation step. They are ob-
tained analytically in the perturbative regime, or by numerically
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solving optical Bloch equations, as further described in Sec. E.
If the excitation steps are separated by free evolution intervals
where the atomic coherences are lost, then Eq. (1) is sufficient
to describe any excitation step. We define the population vector
Ψ = (n1; n2; . . . ; nNL ) with ∑NL

i=1 ni = 1 and 0 ≤ ni ≤ 1. Eq. (1)
translates into a matrix product:

Ψ(+)
n = MΠΨ(−)

n , (2)

where Ψ(−)
n and Ψ(+)

n are the population vectors before and after
the nth excitation, and:

MΠ = INL + ∑
i

∑
j 6=i

Πi,j

2
(−ei,i + ei,j + ej,i − ej,j), (3)

ei,j are square matrices of size NL whose element (i, j) is one and
all the others are zero. INL stands for the identity matrix of size
NL.

B. Free evolution
The free evolution is described with a linear differential system
with constant coefficients acting on the populations as relaxation
process: ∂tΨ = KΨ where the coefficients of the NL × NL matrix
K involve the population relaxation rates. The solution to this
differential system is given by the matrix exponential AR = eTRK

where TR is the free evolution duration, so that:

Ψ(−)
n+1 = ARΨ(+)

n . (4)

C. System evolution and steady state
Both steps of the periodic sequence are now written as matrix
products. This way, the temporal evolution over a large number
of cycles is accessible with very limited computational resources
involving standard algebra routines. The populations before the
nth excitation are given by a geometric sequence:

Ψ(−)
n = (AR MΠ)nΨ(−)

0 . (5)

Since both matrices MΠ and AR operate within the subensem-
ble of population vectors, we easily show that these matrices
are stochastic, ie the sum of the elements in each column equals
1. Therefore their product AR MΠ is a stochastic matrix as well,
and its eigenvalues are either 1 or within the open unit disk.

Therefore the sequence {Ψ(−)
n }n∈N converges towards a steady

state Ψ(−)
∞ , which is an eigenvector of AR MΠ with eigenvalue

1. Similarly, one may define the steady state Ψ(+)
∞ as the limit of

the geometric sequence {Ψ(+)
n }n∈N.

This steady state can be derived for any atom in the absorp-
tion profile, taking into account the detuning between the atomic
resonance and the excitation frequency when determining the
population transfer rates Πij. The atomic populations at fre-

quency ν oscillate between Ψ(−)
∞ (ν) and Ψ(+)

∞ (ν) with period
T. Therefore the shape of the spectral pattern imprinted in the
absorption spectrum oscillates at the excitation repetition rate.
In the prospect of classical or quantum information processing,
we are primarily interested in stable profiles. This implies that
the repetition rate of the excitation must be high enough to avoid
significant population relaxation between two successive exci-
tations. We point out that the atomic state at any intermediate
time between excitations can be predicted if necessary, using

Ψ(+)
∞ (ν).

D. Propagation in an optically thick medium

A scalar electric field E(t,~r) whose central frequency is ν0 is
described by its slowly time-varying amplitude E(t,~r) such that
E(t,~r) = E(t,~r)e−2iπν0t + c.c.. Alternatively, it is described by
Ẽ(ν,~r) as the temporal Fourier transform of E(t,~r). In dielec-
tric medium, the Maxwell wave propagation equation for the
frequency domain function Ẽ(ν,~r) reads as (see for example
[41, 42]):

∆Ẽ(ν,~r) + k2
(

1− i
k
(1 + iH)α(ν,~r)

)
Ẽ(ν,~r) = 0, (6)

where k is the length of the wavevector~k and α(ν,~r) is the ab-
sorption coefficient of the medium at position~r and frequency
ν. The term (1 + iH)α(ν,~r) represents the medium susceptibil-
ity. This latter directly includes the causality (Kramers-Kronig
relations [42, 43]) whereH stands for the Hilbert transform [3].

We consider the excitation field propagating along ẑ. This will
be explained in the following paragraph. It is now possible to
define optically thin slices in the atomic medium orthogonal to
ẑ and use the input field Ẽ(ν, z = 0) to calculate the steady-state
populations in the first slice. The mean value of the populations

Ψ(−)
∞ + Ψ(+)

∞
2

provides the absorption coefficient α(ν, z = 0) to
be inserted in Eq. (6), which in turn yields the field that excites
the second slice. This procedure can be repeated to obtain the
absorption coefficient α(ν, z) over the whole depth of the crystal.
We will show in section C.3 how to avoid a new numerical
resolution of the optical Bloch equations at each iteration.

We now identify the conditions for which the propagation
axis ẑ is well defined. The atomic medium can be illuminated by
one laser beam or more, but all beams must enter the material
from the same face and there must exist a set of orthogonal
spatial coordinates (x, y, z) such that the slowly time-varying
envelope E(t,~r) can be written as:

E(t,~r) = E0(x, y) · f (z, t). (7)

With only one laser beam, Eq. (7) is directly satisfied when the ẑ
is the propagation axis (see Fig. 2a and d). With several beams,
the angles between the beams must satisfy θ � w/L (where w
is the smallest beam waist in the medium and L is the medium
thickness along the ẑ axis) in order to fulfill Eq. (7) (see Fig. 2b
and e).

Fig. 2. Beam arrangements on the crystal. The beams are rep-
resented in yellow. The crystal is drawn as a dotted rectangle,
and the propagation axis ẑ as a horizontal arrow. The config-
urations a), b), d) and e) fulfill Eq. (7) whereas the configura-
tions c) and f) do not.
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E. Calculating the population transfer rate

Let Ω̃ij(ν) be the Fourier transform of the time-dependent Rabi
frequency relative to the transition |i〉 → |j〉. In the case of
weak field excitation (|Ω̃ij(ν)|2 � 1) and ignoring population
relaxation during the excitation, the population transfer rate
is given by the excitation power spectrum, convoluted by the
atomic response:

Πij(ν) = 2|Ω̃ij(ν)|2 ⊗LΓh (ν), (8)

where LΓh (ν) is the normalized Lorentzian function whose
FWHM is the homogeneous linewidth of the transition Γh =
1/(πT2), and verifying

∫
R
LΓh (ν)dν = 1. Equation (8) is de-

duced from a second order expansion of the optical Bloch equa-
tions and has been derived in the early days of spectro-temporal
processing with hole-burning materials [5].

When coherence and population relaxations cannot be ne-
glected, under strong excitation [44], a numerical integration is
necessary. We use the Bloch vector formalism, so as to manip-
ulate only real variables. The transfer matrix MΠ is then real.
When the system is composed of more than 2 levels, the Bloch
vector equations get more complex [45]. In the appendix of
this paper, we give a practical method to write the Bloch vector
dynamics in an arbitrary level structure.

3. SIMPLE EXAMPLE : OPTICALLY THIN TWO-LEVEL
SYSTEM

In this section we explain our simulation method with a simple
comparative example for which the analytic expression of the
transfer rate is partially valid. We consider a two-level system
excited with a periodic pulse sequence. Each period of this
sequence is composed of a temporal excitation step (a pair of
monochromatic Gaussian pulses separated by τ) and a TR-long
free evolution.

A. Optical Bloch equations
The two levels are labeled |g〉 and |e〉. The transition frequency
is noted ν. The atomic populations verify ng + ne = 1. From
the density matrix (ρij)i,j∈{g,e} we define the slowly varying
quantities: 

σeg = ρege2iπν0t

σge = ρgee−2iπν0t

σee = ρee = ne

σgg = ρgg = ng

(9)

where ν0 is the excitation frequency. The Bloch vector is de-
fined as ~B = (U; V; W) where U and V represent the complex
coherence of the optical transition such that U = σge + σge,
V = i(σeg − σge), and W = σee − σgg is the population difference
between the two levels. The optical Bloch equations now read
as:

∂t~B = ~β× ~B + ~R, (10)

where × is the vector product. The control vector is defined as:
~β = (<(Ω(t));=(Ω(t));−2π(ν0 − ν)) where Ω(t) is the slowly
varying complex Rabi frequency (in rad.s−1). The relaxation
vector contains the population and coherence lifetimes T1 and
T2:

~R =

(
− U

T2
;− V

T2
;−W + 1

T1

)
. (11)

Fig. 3. Population transfer rate Πge in the case of a two-level
system excited with a pair of Gaussian pulses with τ = 4 µs,
τp = 0.5 µs and T2 = 40 µs. The simulation uses the full
optical Bloch equations (a) or the weak field approximation
(b). The white line represents the boundary |Ω̃(ν)|2 ≥ 0.5,
ie values of Ω0 and ν where the weak field approximation is
invalid.

B. Derivation of the effective population transfer rate based
on the optical Bloch equation

We numerically solve the Bloch vector equation (10) over one
excitation, starting from a pure population state (ie U = V =
0). Because, we neglect the population relaxation during the
excitation step, the pumping rate Πge doesn’t depend on the
initial population W(−). As a simple example, if the excitation
is a π-pulse, then Πge = 2 and we find W(+) = −W(−). In
other words, an atom in the ground state W(−) = −1 goes to
the excited state W(+) = 1 and vice versa (if W(−) = 1 then
W(+) = −1). Any intermediate value of W(−) between −1 et 1
would be inverted and verifies W(+) = −W(−). The fact that
the pumping rate Πge doesn’t depend on the initial population
ensures the converges of the matrix product toward the steady-
state as described in C.

For an excitation step composed of a pair of monochromatic
Gaussian pulses, we introduce the effective population transfer
rate Πge(ν) as defined in Eq. (1). Πge depends on the detuning
∆ = 2π(ν0 − ν) and on the maximum Rabi frequency Ω0. It is
deduced from the simulation by: Πge = 1− (W(+)/W(−)). We
compare these population transfer rates with the ones obtained
from the weak field approximation using Eq. (8). The results of
the simulation are shown in Fig. 3. We confirm that under the
weak field condition, the population transfer rate is close to the
excitation power spectrum, as expected for a Gaussian envelope
modulated by 1/τ for Ω̃(ν)|2. This is expected when T2 � τ.
However, the weak field approximation is restricted to a very
small range of excitation parameters, since it significantly devi-
ates from the complete solution as soon as |Ω̃(ν)|2 ≥ 0.5. For
strong pulses, the modulation is still present. The population dy-
namics is more complex and can be seen as generalized Ramsey
fringes (usually restricted to π/2-pulse pair in textbook).

Once the transfer rate Πge(ν) is derived (analytically or nu-
merically), one writes the excitation and relaxation matrices MΠ
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Fig. 4. Steady-state ground state population ng,∞ in a two-
level system excited with a periodic pulse sequence whose
excitation is translated as a population transfer rate Πge. The

solid and dashed lines represent n(−)
g,∞ and n(+)

g,∞ before and
after the excitation, respectively. Various values of the ratio
T1/T are explored, keeping T1/T2 = 150.

and AR for each frequency ν according to Eq. (3):

MΠ =

 1−Πge/2 Πge/2

Πge/2 1−Πge/2

 , (12)

AR = exp

T

 0 1/T1

0 −1/T1

 . (13)

The population after n cycles of excitation and free evolution

is given by Eq. (5). The steady-state population Ψ(−)
∞ is the

eigenvector of AR MΠ with eigenvalue 1, defined as Ψ(+)
∞ =

MΠΨ(−)
∞ . In Fig. 4 we show the steady-state populations in the

ground state n(−)
g,∞ and n(+)

g,∞ for various population lifetimes as
a function of the transfer rate Πge. As expected, the two steady
states are closer to each other when T1/T is large.

4. CASE OF A WIDEBAND SPECTRAL GRATING IN OP-
TICALLY THICK TM:YAG

In this section we consider a programming sequence composed
of a pair of parallel linear chirps, in a Tm3+:YAG crystal under
magnetic field. This configuration is close to the situation of the
“rainbow” RF spectrum analyzer, where a wideband spectro-
spatial grating is burnt via a periodic sequence of frequency
chirped and angularly scanned beams [18, 46]. Here we sim-
plify the excitation sequence by considering collinear program-
ming beams, in order to be able to study the gratings in the
sole frequency domain. We first describe the programming
pulse sequence, then specify the energy level structure and relax-
ation mechanisms in Tm:YAG, and finally apply our simulation
method.

A. Excitation sequence
We consider a periodic pulse sequence that creates a wideband
spectral interference pattern (see Fig. 5). In one period, two
laser pulses are generated with duration ∆t and their frequency
is linearly chirped over ∆ν = 20 GHz. The chirp duration ∆t
is varied from 350 µs to 40 ms. The chirp rate is defined as
r = ∆ν/∆t. The two chirped pulses partially overlap, with a

Fig. 5. Chronogram for creating an accumulated wideband
spectral grating.

time separation τ = 100 ns. The corresponding time varying
phases can be written as

ϕ1(t) = 2π

(
ν0t +

∆ν

2∆t
(t + τ/2)2

)
and

ϕ2(t) = 2π

(
ν0t +

∆ν

2∆t
(t− τ/2)2

)
,

giving linear frequency sweeps of the instantaneous fre-

quencies ∂t ϕ1(t) = 2π
(

ν0 +
∆ν
∆t
(t + τ/2)

)
and ∂t ϕ2(t) =

2π
(

ν0 +
∆ν
∆t
(t− τ/2)

)
.

The repetition rate is set such that T = 2∆t. Therefore the
incident excitation field restricted to t ∈ [−∆t/2 + τ/2, ∆t/2−
τ/2] (see Fig. 5) reads as:

E(x, y, z, t) = E0(x, y)e−ikz ·
[
eiϕ1(t) + eiϕ2(t)

]
(14)

In the following, the transverse shape of the excitation will be
neglected: E0(x, y) = E0.

We focus on the atoms at least 100MHz from the edges of
the chirp span. This allows us to restrict the effective excitation
frequency span and duration to ν + [−100MHz, 100MHz] and
200MHz/r, respectively. This way, the effective excitation dura-
tion is only 1% of the total excitation sequence period. Therefore,
the rest of the sequence period can be regarded as a free evolu-
tion step with duration TR ' T � T2, so that our simulation
method is applicable.

B. Level structure and relaxation paths
We focus on the optical transition at 793 nm in Tm:YAG. The rel-
evant energy levels are shown in Fig. 6. Without magnetic field,
the system is composed of three levels 3H6, 3H4 and 3F4 that we
name ground |g〉, excited |e〉, and metastable |m〉, respectively.
An external magnetic field splits each electronic level into two
nuclear spin sublevels with frequency splittings ∆g and ∆e in
the ground and excited states, respectively [47].

We assume the light polarization and magnetic field to be
parallel to the [111] axis of the crystal. Among the six differently
oriented Tm3+ sites in YAG, as defined in [48], the so-called sites
2, 4 and 6 do not participate in the light-atom interaction because
the transition dipole moment is orthogonal to the electric field.
For the magnetically and optically equivalent sites 1, 3, and 5,
the optical transitions that connect two levels of opposite nuclear
spin (namely |g1〉 → |e2〉 and |g2〉 → |e1〉) are forbidden so we
consider only two separate optical transitions (|g1〉 → |e1〉 and
|g2〉 → |e2〉) [47].

The nuclear spin is mostly preserved during the relaxation
process. Only 2% of the atoms in one of the excited states decay
directly to the ground state sublevel with the same nuclear spin
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Fig. 6. Atomic structure of Tm3+ ions without (left) and with
external magnetic field (right). Thick and thin arrows repre-
sent the optical transitions of interest and the relaxation paths,
respectively.

(e.g. from |e1〉 to |g1〉). The remaining 98% also decay to the
ground states but via the metastable state, with a 33% chance
to reach a ground state sublevel with a different nuclear spin.
The branching parameters mentioned here were measured ex-
perimentally in a 0.5%Tm:YAG crystal. The population lifetimes
are 500 µs for the excited state and 15 ms for the metastable
state at 3 K. The optical coherence lifetime along the two optical
transitions is T2 = 20 µs.

The presence of a magnetic field significantly increases the
hole-burning lifetime. In our configuration, the relaxation pro-
cess between the ground Zeeman sublevels has a lifetime of 26 s
at 3 K. Additionally, the Zeeman structure is now well-resolved
by the laser such as the redistribution between the different sub-
levels has be considered to fully model the imprinted pattern.
We adjust the magnetic field to have a ground state splitting
equal to half of the periodic pattern period. This so-called In-
terlaced Spin Grating configuration maximizes the accumulated
grating contrast as demonstrated in [26]: 2∆geτ = 1 where
∆ge = ∆g −∆e. This corresponds to a 127 G magnetic field along
the [111] axis. Finally, we consider a total optical depth α0L = 2.

C. Simulation
C.1. Bloch vector equations

Our system contains 6 atomic levels and 2 optical transitions
|g1〉 → |e1〉 and |g2〉 → |e2〉. We define two Bloch vectors
~B1 = (U1; V1; W1) and ~B2 = (U2; V2; W2) corresponding to the
two optically excited transitions. Since the 2 two-level systems
are not independent due to relaxation paths, we also include
the populations in states |g1〉 and |g2〉 as additional variables.
Finally, we include the two metastable state populations to form
the 10-component vector describing our 6-level system:

~B =
(
U1; V1; W1; U2; V2; W2; ng1 ; ng2 ; nm1 ; nm2

)
. (15)

The control vectors ~βg1,e1 and ~βg2,e2 act on the Bloch vectors
~B1 and ~B2, respectively. The optical frequencies of the transitions
|g1〉 → |e1〉 and |g2〉 → |e2〉 are νTm and νTm − ∆ge, respectively.
In the following, when there is no ambiguity, we replace couples
of indices (gi, ei) with i. The total incoming excitation field
reads as a sum of two chirps [see Eq. (14)]. Taken separately,

each of these chirps leads to a Rabi frequency Ω0. By using the
rotating wave approximation, for the two chirps average phase
ϕ1(t)+ϕ2(t)

2 the control vectors for the two optical transitions read
as:

~β1 =


2Ω0cosπrτt

0

−2π (rt + ν0 − νTm)

 (16)

~β2 =


2Ω0cosπrτt

0

−2π
(
rt + ν0 − νTm + ∆ge

)
 (17)

The Bloch vector equation during the excitation pulse reads
as:

∂t~B = ~P + ~R, (18)

where ~P contains the vector products:

~P =



~β1 × ~B1

~β2 × ~B2

β
(1)
1 V1−β

(2)
1 U1

2
β
(1)
2 V2−β

(2)
2 U2

2

0

0


, (19)

where β
(j)
i is the jth coefficient of ~βi. The relaxation vector ~R

contains all the coherence and population lifetimes.

C.2. Derivation of the steady-state

The Bloch vector evolution Eq. (18) is solved numerically during
the excitation step, using the built-in ode45 Matlab function, for
different detunings within one spectral period 1/τ [49]. This
yields the population transfer rates Π1 and Π2 for any particular
value of νTm since the excitation spectrum is periodic. Again,
we emphasize that this rate equation formalism includes the
coherent interaction during the excitation step, provided that the
free evolution steps allow the coherences to vanish completely.
Π2 is deduced from Π1 using:

Π1(ν) = Π2(ν + ∆ge). (20)

Because of the Interlaced Spin Grating condition [26], Π1 and Π2
are simply shifted by π.

We now use the matrix formalism developed in Sec. 2. Let
Ψ = (ng1 ; ne1 ; ng2 ; ne2 ; nm1 ; nm2 ) be the state vector of our atomic
structure. The coherent evolution during the excitation step is
described by the transfer matrix

MΠ =



1− Π1
2

Π1
2 0 0 0 0

Π1
2 1− Π1

2 0 0 0 0

0 0 1− Π2
2

Π2
2 0 0

0 0 Π2
2 1− Π2

2 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, (21)

whereas the TR-long free evolution is described by the matrix
AR obtained from a matrix exponential. With the matrices AR
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and MΠ, we determine the steady-state population vectors Ψ(−)
∞

and Ψ(+)
∞ .

C.3. Propagation

The general propagation equation Eq. (6) can be significantly
simplified in our case. Rigorously, Eq. (6) can lead to electric
field spectrum distortion in amplitude and phase, so as a conse-
quence the temporal shape does not correspond to the double
chirp of Eq. (14) any longer. This distortion would in princi-
ple require a new numerical resolution (per slice) of the optical
Bloch equations with modified control vectors ~β1 and ~β2. Never-
theless, in most engraving protocols (including the present case
of double chirp) the distortions are small enough so they do not
significantly change the value of the population transfer rate.
One can then assume that the excitation spectrum preserves its
shape such as its evolution is described by the propagation of
its amplitude only (phase propagation can be neglected). This is
major computational simplification.

Given the single-beam configuration in the slowly varying
envelope approximation, the spectrum amplitude verifies the
simplified propagation equation (see Appendix of [26] for a
detailed derivation):

∂|E(ν,~r)|2
∂z

+ α(ν,~r)|E(ν,~r)|2 = 0. (22)

For a periodic excitation, Eq. (22) will be solved over one period
of the spectrum. To do so, we first divide the crystal into 25
optically thin slices orthogonal to the beam propagation direc-
tion ẑ. As a rule of thumb, we have found that the simulation
converges satisfyingly for an optical thickness of one slice ∼
0.1. Depending on the total optical thickness of the medium
α0L, the number of slices has to adapted accordingly. We start
with a numerical calculation of the population transfer rate (over
one spectral period as well). The simulation is achieved for a
fixed chirp rate and a range of Rabi frequencies Ω0. We use the
matrix formalism to calculate the average steady-state popula-

tion (Ψ(−)
∞ + Ψ(+)

∞ )/2 in the first slice of the atomic medium and
derive the absorption:

α(ν) = α0
[
(ng1 − ne1 )(ν) + (ng2 − ne2 )(ν + ∆ge)

]
. (23)

Then we use Eq. (22) to obtain the electric field that excites the
second slice. We calculate the corresponding Rabi frequency
over one spectral period and derive the corresponding popula-
tion transfer rate by using again the values calculated initially,
and interpolating them if necessary. This yields the steady-state
population in the second slice. We repeat this process through
the whole depth of the crystal. The distortion of the engraving
field is then modeled by Eq. (22) but neglected in the control
vectors dynamics that is always described as an undistorted
double chirp. This later provides the population transfer rates
after numerical resolution of the Bloch equations that can be
tabulated once and used afterward during the propagation. As
a consequence, the accuracy of our model decreases when the
diffraction efficiency increases. To account for large diffraction ef-
ficiencies (few percents), one must compute the temporal shape
of the electric field using Eq. (22), and numerically solve the op-
tical Bloch equations for every slice. Depending on the desired
accuracy and the available computing resources, these latter
additional steps can be performed only every few slices.

D. Results and discussion
In the following we compare the population transfer rates ob-
tained with the numerical resolution and the analytic result that
is derived from the weak field approximation. Then we show
the absorption profile throughout the whole sample depth and
diffraction efficiency as computed using our matrix formalism.

D.1. Population transfer rate

We focus on atoms lying on the central bright fringe of the spec-
tral interference pattern such that νTm = ν0 in Eq.(17). The
population transfer rates for a set of 8 chirp rates and a range of
Rabi frequencies going from 0 to 4 Mrad/s are plotted in Fig. 7.
As expected, for weak fields, the numerical resolution of the
Bloch vector equations retrieves the weak excitation limit:

Π1 =
2Ω2

0
r

. (24)

Fig. 7. Simulated population transfer rate on a bright fringe
of the spectral interference pattern created by the sum of
two chirps defined in Eq. (14), as a function of the Rabi fre-
quency Ω0. Dashed lines correspond to the analytic deriva-
tion of the transfer rate using a weak field approximation.
The selected chirp rates correspond to 20 GHz swept in
∆t ∈ {40, 20, 10, 5, 2.5, 1, 0.5, 0.35}ms.

For Rabi frequencies up to a few Mrad/s, the computation on
our laptop computer (CPU Intel Core i5-3320M @2.6GHz with
4GB RAM) for one set of variables (Ω0, r) takes several minutes.
This time could be reduced by using lower-level programming.
This is not the prospect of the present paper which focuses on
the method.

With a compromise between accuracy and computing time,
we extend our calculation to larger Rabi frequencies up to
60 Mrad/s. As shown in Fig. 8, the population transfer rate
deviates from Eq. (24), and strongly oscillates with the Rabi
frequency, similarly to the standard Rabi oscillations. In the
double chirp case, considering that a given chirp rate yields an
effective pulse duration, the oscillations observed in Fig. 8 can
be regarded as "chirped pseudo Rabi oscillations". Indeed, the
Bloch vector essentially moves when the third component of the
control vector approaches zero, and is approximately tilted by
the pulse area (integral of the Rabi frequency Ω0).

Considering Eq. (18) and discarding all relaxation processes,
we derive an approximated Rabi frequency Ωπ−pulse

0 required
for a "chirped pseudo π-pulse" using a geometric argument on
the Bloch sphere: Ωπ−pulse

0 '
√

πr. This expression is reminis-
cent of the adiabaticity condition of a so-called Rapid Adiabatic
Passage with a single chirp, which reads as Ω0 �

√
r [50].
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Fig. 8. Simulated population transfer rate as a function of the
Rabi frequency for the same chirp rates as in Fig. 7, but much
higher Rabi frequencies. The noise comes from the compro-
mise between computation time and accuracy.

This shows the ability of our method to represent coherent light-
matter interaction effects such as adiabatic inversion, in the form
of a population transfer rate.

D.2. Propagation in an optically thick medium and diffraction effi-
ciency

With the method described in section C.3, we perform a full
calculation of the absorption spectrum within the whole depth
of the crystal in a few seconds only, as compared to minutes for
the initial tabulation of the transfer rates. An example of the
spectral grating through the optical depth is plotted in Fig. 9.
The progressive distortion from sinusoidal to square lineshape
was predicted in [26] and corresponds to the creation of higher
order harmonics arising from the nonlinearity of Eq. (22).

Fig. 9. Simulated spectral gratings obtained for a Rabi fre-
quency Ω0 = 1 Mrad/s and a chirp rate r = 40 MHz/µs
in the depth of the Tm3+:YAG crystal. The physical depth is
L = 2.5 mm and the optical depth α0L = 2.

We now apply the method to a broad range of input Rabi fre-
quencies from 10 krad/s up to 20 Mrad/s. By interpolating the
results of Figs. 7 and 8, the full propagation in time and space is
achieved for a set of 30 values of the Rabi frequency within less
than 10 minutes with our simple laptop computer. The results,
averaged over the crystal depth, are plotted in Fig. 10. For weak
fields, the grating shape mimics the sinusoidal excitation spec-
trum as expected from the weak field approximation (see Eq. (8)).
The average absorption of the grating is preserved because the
population is essentially shuffled between the ground state sub-
levels. For stronger fields, the population starts accumulating

Fig. 10. Simulated spectral gratings obtained for Rabi frequen-
cies ranging from 10 krad/s to 20 Mrad/s and for a chirp rate
r = 40 MHz/µs in an optically thick medium. The gratings are
averaged over the crystal depth.

Fig. 11. First order diffraction efficiency calculated from the
simulated spectral gratings in Fig. 10 (green dots). As a com-
parison, we plot the expected efficiency in the weak field ap-
proximation where the pumping rate is analytically deduced
from the sinusoidal excitation spectrum (see Eq. (8)).

in the metastable state, thus reducing the average absorption.
Besides, the grating shape changes, with narrower peaks and
holes, because the population transfer rate significantly deviates
from the quadratic behavior as a function of the Rabi frequency
and even decreases above 10 Mrad/s (see Fig. 8).

We use the propagation equation Eq. (22) to compute the
diffraction efficiency of a probe beam in a given order of diffrac-
tion, as explained in [26]. The first order diffraction efficiency
is plotted in Fig. 11. For weak fields, the efficiency scales as the
fourth power of the Rabi frequency as the contrast of the grating
increases and is well predicted by assuming the pumping rate
analytically deduced from Eq. (8) (Fig. 11, inset). Deviating from
the weak field approximation, the simulated efficiency reaches
a maximum (18.3%) and finally decreases as the features of the
grating get narrower. For large efficiencies, the weak field ap-
proximation cannot be used, somehow justifying the use of a
more complete numerical simulation.

This whole simulation is performed in less than 10 minutes
on our laptop computer. Again, faster computing of our method
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could be obtained with lower-level programming. This approach
paves the way to the optimization of a broad range of optical
signal processing protocols.

5. CONCLUSION

We have described a simulation method that predicts the shape
of the steady-state absorption profile in an optically thick spec-
tral hole-burning material under periodic excitation. The light-
atom interaction during a single excitation pattern is numerically
solved and rewritten as a transfer matrix, with an equivalent
population transfer rate. This approach accounts for coherent
excitation and relaxation. The weak field approximation which
strongly simplifies the theoretical treatment cannot be used in
the parameters range where the largest efficiencies are expected.

In our case, we use the Bloch vector formalism in order to
deal with real variables to minimize the computational resources.
The steady-state atomic populations are simply expressed as a
matrix eigenvector. Under the assumption of a modest field
distortion during propagation, this numerical resolution is per-
formed only once, even when dealing with an optically thick
medium. This way the time evolution and the propagation
through the medium are decoupled.

This method is practical for any signal processing architec-
tures based on accumulated programming of a spectral structure
in the absorption profile, including spectral analysis of optically-
carried RF signals, ultrasound-optical tomography, and quan-
tum memories. It can be directly adapted to atomic vapors stud-
ied by femtosecond pulses, thus finding applications in high
resolution spectroscopy and metrology with frequency-combs.
The approach can be extended to a large number of levels or
optical transitions involved in the optical pumping process. Be-
cause we track the population changes after each excitation step,
detrimental effects such as spectral diffusion could be included
by shuffling the populations between the steps. Our method
can also account for a spatial field dependency in the transverse
(x, y) plane as Gaussian beams. The only geometric limitations
would come from an imperfect overlap of several beams.
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A. GENERALIZED OPTICAL BLOCH EQUATIONS

Let us consider a generalized atomic structure SA composed of
No optical transitions and NL atomic levels. We denote the states
|ψ〉i , i ∈ [[1, NL]] and ni the population in state |i〉.

Unlike previous works on the general Bloch vector that aimed
at formalizing the multi-dimensional “Bloch-ball” and identi-
fying its mathematical properties [45], we aim at deriving the
most practical formulation of the vector Bloch equations in such
a system, similar to Eq. (10).

We consider the total field that can arise from the addi-
tion of several fields ~E(t,~r) = ∑q(~E0,q(t)eiφq(t,~r) + c.c.). For in-
stance, using these notations, a simple monochromatic square
pulse of duration T and optical frequency ν0 reads as ~E0 ·
1[0,T](t) · e−2iπν0t+i~k·~r + c.c.. For every optical transition be-
tween state |a〉 and state |b〉, we can define the Rabi frequency

Ωab(t,~r) = ~µab · ~E(t,~r)/h̄, where ~µab is the electric dipole of the
transition. The complex phase of Ωab can be split into a fast part

φ
(F)
ab (t,~r) and a slow part φ

(S)
ab (t,~r), where φ

(F)
ab (t,~r) varies in the

time domain with the frequency of the optical wave ν0 and in
the space domain with the wavevector k along the ẑ direction
defined in Sec. D. Finally, the Rabi frequency can be decomposed
in the following way:

Ωab(t,~r) = Ω(M)
ab · e

i(φ(S)
ab +φ

(F)
ab ) = Ω(C)

ab · e
iφ(F)

ab , (25)

where Ω(C)
ab is the complex, slowly varying part of the Rabi

frequency. We define the variable changes enabling the use of
the rotating wave approximation [44]:

σaa = ρaa = na, (26)

σbb = ρbb = nb, (27)

σab = ρabeiφ(F)
ab , (28)

σba = ρbae−iφ(F)
ab . (29)

The control vector ~βab reads as:

~βab =


<(Ω(C)

ab )

=(Ω(C)
ab )

−∆ab

 , (30)

where ∆ab is the detuning between the atomic resonance and the
mean frequency of the electric field. For each couple of states |a〉
and |b〉 linked by an optical transition, we define a Bloch vector
(Uab; Vab; Wab):

Uab = σab + σba, (31)

Vab = i(σab − σba), (32)

Wab = nb − na. (33)

To fully solve the time evolution of the atomic state, one
needs to determine the complete set of variables to include in
the formalism. We first consider all the No Bloch vectors corre-
sponding to the optical transitions and gather them into a vector
~Bo (of size 3No). In order to count the number of independent
elements of this vector, we must identify cycles of transitions.
We define a cycle of transitions as an ensemble of 2 or more
transitions {(i1, i2), (i2, i3), . . . , (ip−1, ip), (ip, i1)}. For every cy-
cle, since the variable Wp,1 can be calculated from all the other
Wi,j of the cycle, it can be withdrawn from vector ~Bo. The size of
~Bo is then 3No − Ncycle, where Ncycle is the number of cycles of
transitions. Note that every time a cycle is “broken” (ie a variable
of type Wp,1 is withdrawn), one has to redefine the remaining
cycles since several cycles may be entangled and simultaneously
broken. Once ~Bo is clear of cycles, for every set of contiguous
states (linked by optical transitions), one can choose one state of
the set and define a variable Xi = ni that is simply the atomic
population in state |i〉. If possible, the chosen state should be on
the edge of the set so that it involves only one optical transition.
All these Xi constitute a population vector ~BP1 (of size NP). Since
the structure has NL atomic levels, NL population variables are
required. Yet, No − Ncycle + NP population variables are already
defined. Therefore, NL − (No − Ncycle + NP other variables of
type Yi = ni chosen among the other states only reached by
relaxation processes must be considered. These variables can
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be gathered into a vector ~BP2 = (Y1; Y2; . . . ; YNL−(NO−Ncycle+NP)).
The full generalized Bloch vector reads as:

~B = (~Bo;~BP1 ;~BP2 ). (34)

The relaxation vector ~R defined in Eq. (10) and acting on ~B can
finally be spelled.

Now one can write the full set of Bloch equations as a pure
vector equation, similar to equation Eq. (10):

∂t


~Bo

~BP1

~BP2

 =


~Po

~PP1

~PP2

+ ~R = ~P + ~R. (35)

In Eq. (35), ~Po is composed of triplets of components that read
as:

~βab ×


Uab

Vab

Wab



+
1
2 ∑

p∈N (a),p 6=b




~β
(1)
ap

~β
(2)
ap

0

×


Uap

Vap

0




−1
2 ∑

q∈N (b),q 6=a




~β
(1)
bq

~β
(2)
bq

0

×


Ubq

Vbq

0


 , (36)

whereN (i) stands for the ensemble of all the neighboring atomic
states of |i〉 (linked by an optical transition). The exponents (1)

and (2) stand for the first and the second components of ~βij
vectors. In the case of non-contiguous optical transitions (as in
Sec. 4 of this article), the two sums disappear. Finally in Eq. (35),
~PP1 reads as:

~PP1 =


∑p∈N(1)(~β

(1)
1p V1p − ~β

(2)
1p U1p)

...

∑p∈N (Np)(
~β
(1)
Np pVNp p − ~β

(2)
Np pUNp p)

 (37)

and ~PP2 = ~0. The components of vector ~PP1 account for the
population change in terms of Xi variables. These come from
the cross products that appear in Eq. (36).

Using the expressions of all the components of the Bloch
vector ~B, the pumping vector ~P, and the relaxation vector ~R,
one can numerically solve the Bloch equation given in Eq. (35)
and get the time evolution of the system. Such a generalized
expression of the light matter interaction can then be utilized
to derive the population transfer rates Πab and yield the steady
state absorption profile of a multilevel system under periodic
excitation.
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“Cancellation of the coherent accumulation in rubidium atoms excited
by a train of femtosecond pulses,” Phys. Rev. A 76, 043410 (2007).

36. H. Tang and T. Nakajima, “Effects of the pulse area and pulse number
on the population dynamics of atoms interacting with a train of ultrashort
pulses,” Opt. Commun. 281, 4671–4675 (2008).

37. D. Aumiler, T. Ban, and G. Pichler, “Time dynamics of a multilevel
system excited by a train of ultrashort pulses,” Phys. Rev. A 79, 063403
(2009).
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