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Speech communication relies on articulatory and acoustic codes shared between speakers and

listeners despite inter-individual differences in morphology and idiosyncratic articulatory strategies.

This study addresses the long-standing problem of characterizing and modelling speaker-independent

articulatory strategies and inter-speaker articulatory variability. It explores a multi-speaker modelling

approach based on two levels: statistically-based linear articulatory models, which capture the speaker-

specific articulatory variability on the one hand, are in turn controlled by a speaker model, which cap-

tures the inter-speaker variability on the other hand. A low dimensionality speaker model is obtained

by taking advantage of the inter-speaker correlations between morphology and strategy. To validate

this approach, contours of the vocal tract articulators were manually segmented on midsagittal

MRI data recorded from 11 French speakers uttering 62 vowels and consonants. Using these con-

tours, multi-speaker models with 14 articulatory components and two morphology and strategy

components led to overall variance explanations of 66%–69% and root-mean-square errors of

0.36–0.38 cm obtained in leave-one-out procedure over the speakers. Results suggest that inter-speaker

variability is more related to the morphology than to the idiosyncratic strategies and illustrate the adap-

tation of the articulatory components to the morphology. VC 2019 Acoustical Society of America.

https://doi.org/10.1121/1.5096631

[ZZ] Pages: 2149–2170

I. INTRODUCTION

In order to be effective, speech communication relies on

articulatory and acoustic codes shared between speakers and

listeners (cf., e.g., Lindblom, 1990). These codes are obvi-

ously language-dependent but are expected to be speaker-

independent, though “most studies of speech production find
some differences between speakers” (Johnson et al., 1993).

Indeed, as emphasized by Ladefoged and Broadbent (1957),

the “socio-linguistic features,” related to the “general back-
ground of the speaker” and the “idiosyncratic features” of

the speaker, are conveyed by speech on top of the linguistic

information. These latter features may partly be “due to ana-
tomical and physiological considerations such as the partic-
ular shape of the vocal cavities” (Ladefoged and Broadbent,

1957). In other words, a speaker is characterized by a spe-

cific morphology, i.e., the intrinsic size and shape of the

speech articulators irrespective of the articulatory tasks, and

adapts her/his articulatory strategy, i.e., the displacement

and deformation of the speech articulators, to perform the

speech task and achieve the articulatory-acoustic goals com-

mon to all speakers in a language. Disentangling the mor-

phology variability from the articulatory strategy variability

constitutes a challenging problem, which is tackled in the

present study by means of a multi-speaker modelling

approach.

Inter-speaker articulatory variability in speech produc-

tion has been analyzed in a number of studies. Based on sta-

tistical analysis of the cross-section areas of the vocal tract,

Mokhtari et al. (2007) illustrated the inter-speaker variability

per phoneme while Story (2005, 2007) reported similar

modes of variation around speaker-specific morphologies

across speakers. By means of scaling transformations, Hashi

et al. (1998), using X-ray microbeam data, showed that the

variability of the palate morphology is partly compensated for

by the speaker articulation. Using a similar technique, Geng

and Mooshammer (2009) achieved a global reduction of the

cross-speaker variability for electromagnetic articulography

(EMA) data. Many studies, using various measurement meth-

ods such as X-ray microbeam, EMA, electropalatography or

magnetic resonance imaging (MRI), showed that the shape

and size of the palate have an influence on the articulations

(Hashi et al., 1998; Brunner et al., 2005, 2009; Fuchs et al.,
2008; Geng and Mooshammer, 2009; Yunusova et al., 2012;

Rudy and Yunusova, 2013; Weirich and Fuchs, 2013). They

emphasized, however, that the palate variability could not

explain all the inter-speaker variability. Using X-ray scans,

Honda et al. (1996) observed relationships between geometry

and articulatory variation and suggested that speakers’ vowel

articulations adapt to the shape of their respective articulatorya)Electronic mail: aserrurier@ukaachen.de
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space, while consonant articulations seem to be independent of

this space. More recently, Sorensen et al. (2016), using real-

time MRI, highlighted the various strategies used by the speak-

ers to achieve a target constriction in the vocal tract.

Linear statistically-based articulatory models based on

principal component analysis (PCA), referred to as linear
articulatory models or more simply as linear models in this

article, have proved in the last decades to be powerful to

extract and characterize the basic articulatory components of

a speaker (Lindblom and Sundberg, 1971; Maeda, 1979,

1990; Hoole, 1999; Engwall, 2000; Beautemps et al., 2001;

Badin et al., 2002). In such approaches, the correlations

between the various shapes of the speech organs over the set

of considered tasks are exploited to reduce the dimensional-

ity of the models. A variant of this method, referred to as the

guided PCA and detailed later in the article, aims at exploit-

ing the sole correlations related to biomechanisms while

excluding the correlations clearly related to pure control

strategies.1 The limited set of resulting components corre-

sponds to a set of simple gestures considered as independent
degrees of freedom, i.e., that are linearly uncorrelated and

can be executed independently of each other by the articula-

tors of the vocal tract (cf., e.g., Beautemps et al., 2001).

Articulatory models, largely explored for single speak-

ers, both in the two-dimensional (2D) midsagittal and the

three-dimensional volume spaces, could be extended to

multi-speaker models. The multi-speaker approach consists

in modelling the vocal tract articulators simultaneously for a

set of speakers performing the same speech tasks, while tak-

ing into account both the speaker-specific characteristics

related to morphology and the idiosyncratic articulatory con-

trol strategies. The multi-speaker modelling approach has

shown to be powerful in the context of variability analysis as

it brings out the articulatory background common to speak-

ers and determines to what extent each speaker complies

with this common background. The Parallel Factor Analysis

(PARAFAC), introduced by Harshman et al. (1977) in the

field of articulation studies, appears by far to be the most

popular approach in multi-speaker speech articulation stud-

ies. It aims at extracting a set of articulatory components

considered as common to all the speakers. Similarly, the set

of parameters controlling these components, i.e., the relative

contribution of each component to achieve the articulations

corresponding to given phonemes, is also common to all the

speakers. Together, they represent what might be considered

as the common articulatory background. Finally, a set of

speaker-specific weights is determined to provide the contri-

bution of each articulatory component for each speaker. The

PARAFAC method assumes that all the speakers share the

same sets of articulatory components and associated control

parameters, and that they only differ in the amount of use of

each component. The amount of data not explained by the

model is therefore considered as purely speaker-specific.

This simple clear-cut separation between universal and

speaker-specific components could explain the popularity of

this method. So far, it has mainly been used to study the

inter-speaker articulatory variability, in most cases for the

tongue, within one given language (Harshman et al., 1977;

Johnson et al., 1993; Hoole, 1998, 1999; Geng and

Mooshammer, 2000; Hoole et al., 2000; Zheng et al., 2003;

Hu, 2006; Ananthakrishnan et al., 2010; Vald�es Vargas

et al., 2012), or sometimes across different languages

(Lindau, 1986; Jackson, 1988; Nix et al., 1996). In a cross-

language framework, Linker (1982) applied this decomposi-

tion to the lips, articulators that were also succinctly consid-

ered together with the tongue by Johnson et al. (1993).

PARAFAC has therefore proved to be a powerful tool to

characterize both common articulatory background and

speaker strategies. However, it suffers also from important

limitations. Unlike the guided PCA approach mentioned ear-

lier, the decomposition underlying PARAFAC appears less

conducive to obtaining articulatory components related to

plausible underlying biomechanisms. The components are

not ensured to be uncorrelated, which makes the model

design sometimes very challenging and relying strongly on

the modeler’s expertise (cf., e.g., the re-analysis and re-

interpretation of Jackson’s (1988) data by Nix et al., 1996).

Mathematically, the algorithm might not converge, or might

converge to local minima, and must thus be explicitly moni-

tored by an expert modeler. In terms of pre-requisites, it

assumes that “the ratio of any two speakers’ usage of a given
[articulatory component] must be the same for all [consid-
ered articulations]” (Harshman et al., 1977). In other words,

“if speaker A uses more of [component] 1 than does speaker
B for a particular [articulation], then speaker A must use
more of [component] 1 than speaker B in all other [articu-
lations]” (Harshman et al., 1977). This assumption may,

however, not systematically hold. As reported by Hoole

(1999), PARAFAC showed moreover some limitation in

modelling various consonant contexts. To overcome some of

these limitations, extensions have been proposed in the liter-

ature (Hoole, 1999; Geng and Mooshammer, 2000), usually

at the cost of a higher number of parameters to estimate.

The issue of the number of components and parameters to

estimates has also been discussed by Vald�es Vargas et al.
(2012) and Vald�es Vargas (2013). Alternative approaches

have also been explored and compared with PARAFAC by

Ananthakrishnan et al. (2010), Vald�es Vargas et al. (2012),

and Vald�es Vargas (2013). Their joint PCA approach, based

on the two-way decomposition of the speakers’ data assem-

bled per articulation, seems to provide better results than

the PARAFAC and the direct three-way decomposition

proposed by Tucker (1966), though at a “much higher” cost

in the number of parameters to estimate than PARAFAC

(Ananthakrishnan et al., 2010). The Tucker and PARAFAC

decompositions require also setting in advance the number

of the various modes of variation. Besides, the Tucker

decomposition is a “method with a more complex structure
and more parameters than joint PCA” (Vald�es Vargas, 2013,

p. 73). In addition, all the decompositions are usually per-

formed on centered data, i.e., the averaged data are first sub-

tracted per speaker separately, which prevents taking into

account the inter-speaker variability carried by the averages.

Regarding the speech material analyzed, almost all the

studies mentioned above considered vowels only, sometimes

in different consonant contexts, on a few speakers. As far as

we know, only Hoole et al. (2000) with nine speakers,

Ananthakrishnan et al. (2010) with three speakers, Vald�es
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Vargas et al. (2012) with seven speakers, and Vald�es Vargas

(2013) with 11 speakers considered also consonants in their

corpora.

The ambition of the present study was to explore alter-

native approaches overcoming the previously mentioned

limitations of multi-speaker articulatory modelling. The first

issue is to ensure a large coverage of the speech repertoire of

the studied language by relying on a substantial set of vowels

and consonants acquired on a substantial set of speakers.

The present work makes use of the multi-speaker set of

French MRI data initially collected by Ananthakrishnan

et al. (2010), Vald�es Vargas et al. (2012), and completed by

Vald�es Vargas (2013). The second aim is to build an organ-

based multi-speaker articulatory model of the whole vocal

tract, from the larynx to the lips, based on the guided PCA

so that the articulatory components can be related to plausi-

ble movements in terms of biomechanisms. The present

approach explores a modelling in two levels to solve this

problem: individual articulatory model parameters obtained

for each speaker by a classical two-way decomposition, rep-

resenting the first level models, are grouped together and

further decomposed themselves by a two-way decomposi-

tion, representing the second level model. This two-level
architecture leads to what might be called a model of models
(MoM). The third focus of the study is to characterize the

variability of the morphology and of the strategy among

speakers and to evaluate their relative contribution to the

articulatory realizations. As the proposed approach aims to

maintain a low dimensionality for the models, so that every

speaker can be represented by a very limited number of

parameters, the correlations between the morphology and the

strategy are exploited as much as possible in the modelling

design. A complementary analysis takes advantage of the

two-level modelling approach presented here to attempt to

disentangle them. For these purposes, in order to ensure cap-

turing all the inter-speaker variability, the speakers’ average

articulations, usually discarded from statistical analyses in

the literature, are also considered.

The manuscript is organized as follows: Sec. II presents

the modelling approach and the data, Sec. III details the

whole vocal tract articulatory model, Sec. IV the multi-

speaker modelling, while Sec. V characterizes the morphol-

ogy and strategy variability, and Sec. VI discusses the results

and draws conclusions.

II. APPROACH AND MATERIAL

A. Linear statistically-based articulatory modelling:
Formulation and terminology

In a linear articulatory model obtained by PCA from a

set of observations, the shape of an articulator for a given

phone—or articulation—is expressed as a linear combination

of eigenvectors forming an orthogonal basis of the organ

shape space, weighted by the set of control parameters cor-

responding to the articulation. Mathematically, a column

vector of articulatory measures xi of an articulator contour

for an articulation i is decomposed as follows (to simplify,

the equation is presented in a vector mode and the index j
corresponding to the points has been omitted):

xi ¼
Xnq

k¼1

pikek þ �x þ ei; (1)

where: (1) X ¼ ðxijÞ; i ¼ 1…na; j ¼ 1…2nc are the coordi-

nates of the nc contour points of the considered articulator

for the set of the na observed articulations, (2) E ¼ ðekjÞ;
k ¼ 1…nq; j ¼ 1…2nc the nq (orthogonal) eigenvectors of

the articulator contours, (3) P ¼ ðpikÞ; i ¼ 1…na; k ¼ 1…nq

the weights for the nq eigenvectors of the na articulations,

(4) �x ¼ ðxjÞ; j ¼ 1…2nc the average of the articulator con-

tour coordinates over the na articulations and (5) R ¼ ðeijÞ;
i ¼ 1…na; j ¼ 1…2nc the residue not explained by the for-

mer parameters for each coordinate value. R represents the

modelling error.

The eigenvectors in the matrix E are also referred to as

factors or modes in previous publications (e.g., Harshman

et al., 1977). These vectors are controlled by the weighting

matrix P, thereafter the predictors, also referred to in the lit-

erature as control parameters (Beautemps et al., 2001;

Badin et al., 2002), factor loadings (e.g., Harshman et al.,
1977) or [weighting] coefficients (e.g., Story, 2005, 2007).

In the formulation adopted in the present article, the eigen-

vectors of the matrix E are associated with the notion of

articulatory components. They correspond to the degrees of

freedom of the articulators described in the introduction. The

articulatory model is finally defined by the association of

the matrix of eigenvectors E with the mean articulation
vector �x.

A schematic representation of a linear articulatory

model is proposed in Fig. 1. Note that the term articulation
will sometimes be used in the manuscript instead of “the

coordinates of the contour points of an articulation” to sim-

plify the formulation.

B. Speakers

At present, medical imaging techniques such as MRI

can easily generate large amounts of data (e.g., Narayanan

et al., 2014), but processing them to obtain segmented artic-

ulators is still an arduous problem (e.g., Labrunie et al.,
2018). As a trade-off between the necessity to elicit as much

as possible inter-speaker variability and keeping a manage-

able amount of data to process, 11 speakers have been

recorded by means of static MRI in a previous study (Vald�es

Vargas, 2013): six male and five female, with ages spanning

from 18 to 48 at the time of the recordings (cf. Table I). All

the speakers were native French speakers and uttered the

same corpus of artificially sustained French articulations.

C. Corpus

The corpus, designed to be balanced and representative

of the French phonemic repertoire, consisted of the ten

French oral vowels [i e e a y ø œ u o O], two of the four nasal

vowels [~a ~O], and of ten consonants [p t k f s S m n � l] in

five symmetric vowel consonant vowel (VCV) contexts [i e e
a u], leading to a total of 62 articulations. For the consonants,

the speakers were instructed to repeat the VCV sequences a

few times in a natural manner, and then to freeze the
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consonant for the last repetition; the scan was started as soon

as the operator heard that the consonant was hold. This pro-

tocol ensures that the consonant is truly coarticulated with

the vowel. Due to the difficulty to sustain the articulations

for several seconds during data collection, the voiced conso-

nant counterparts have been discarded. They are, however,

expected to bring little additional variability. Similar corpora

have been extensively used in the past for such articulatory

studies (cf., e.g., Serrurier and Badin, 2008), following the

validation proposed by Beautemps et al. (2001).

D. Data

Midsagittal static MRI data were recorded at IRMaGe

MRI facility (Grenoble, France) with Achieva 1.5T and

Achieva 3.0T TX scanners (Philips, Best, The Netherlands)

between 2010 and 2012 for 10 out of 11 speakers. One

speaker was recorded at ATR (Japan) in 2002 with a

Marconi Eclipse 1.5 T scanner. The speakers, in the supine

position, were instructed to sustain each of the 62 articula-

tions between 8 to 24 s without movement. During this time,

at least one midsagittal image was acquired, spanning at

least from below the glottis to above the nasal tract in the

vertical direction and from before the external nose to behind

the neck in the horizontal direction (cf., e.g., Fig. 2). The

characteristics of the images and of their acquisition sequen-

ces are displayed in Table I.

In order to outline the contours of the teeth, which can-

not be distinguished from the air on MRI, additional articula-

tions have been recorded where the soft tissues (lips, tongue)

are in contact with the teeth to materialize their contours by

contrast. The boundaries of the upper teeth and hard palate

as well as those of the lower teeth and jaw bone have been

manually outlined on such reference images for each

speaker, using B-splines and control points. These two rigid

contours are referred to as the palate and jaw in the rest of

the article. Similarly, the outlines of the hyoid bone in the

midsagittal plane have been manually segmented on one of

the 62 articulations. The contours of these three rigid struc-

tures have then been manually aligned by means of a rigid

2D transformation (translation and rotation) for each of the

62 images for each speaker.

The following deformable contours of the vocal tract

relevant for speech have also been manually traced on each

of the 62 images for all the speakers using B-splines and

control points: the upper and lower lips (extended along the

face contours respectively up to the nose and down to the

larynx prominence), the tongue, velum, pharyngeal wall

(referred to as pharynx in the rest of the article), the epiglot-

tis and posterior supraglottic region (referred to as posterior
supraglottis in the rest of the article2). An example of MRI

with manually superimposed contours is visible in Fig. 2

(yellow lines). These structures will be referred to as speech

articulators in the following, although this term might be in

question for the structures such as the pharynx and posterior

supraglottis.

A series of landmarks attached to these contours or to

anatomical features has been determined, as visible in Fig. 2

(green points). They correspond to geometrical and anatomi-

cal singularities such the lower tip of the velum, apex of

the tongue, vermilion border, etc. While some landmarks

correspond to obvious characteristics, such as the velum tip,

FIG. 1. (Color online) Schematic representation of a single speaker linear articulatory model. See the text for the definitions of the variables. The replication

of the line vector �x in na rows was omitted to enhance the comprehension. The color code will be followed in the other figures to facilitate the reading: grey

for the data, blue for the mean articulation, red for the predictors, and green for the eigenvectors.

TABLE I. List of speakers and MRI data characteristics. F¼Female; M¼Male; 1.5T¼Philips Achieva; 1.5T-ME¼Marconi Eclipse; 3T¼Philips Achieva

3.0T TX; n/a¼ not available. TE: echo time; FA: flip angle; TR: repetition time; FOV: field of view.

Speaker Age(years) Imaging System TE (ms) FA TR (ms) Slice Thickness (mm) FOV (mm2) Resolution (mm/px) Acquisition Time (s)

f1 26 3T 10.74 80� 4.26 4 256� 256 1 8.1

f2 22 3T 10.74 80� 4.26 4 256� 256 1 8.1

f3 42 1.5T 3.5 12� 7.7–8.6 1.25 230� 160 0.958 21.8–24.1

f4 31 3T 10.74 80� 4.26 4 256� 256 1 8.1

f5 18 3T 10.74 80� 4.26 4 256� 256 1 8.1

m1 29 3T 10.74 80� 4.26 4 256� 256 1 8.1

m2 27 3T 10.74 80� 4.26 4 256� 256 1 8.1

m3 29 3T 10.74 80� 4.26 4 256� 256 1 8.1

m4 47 1.5T-ME n/a n/a n/a 5 256� 256 1 n/a

m5 24 3T 10.74 80� 4.26 4 256� 256 1 8.1

m6 48 1.5T 3.5 12� 5.6 1.25 230� 160 0.958 15.7

Mean 31
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others are more uncertain and have been determined at best

on the images based on the expert’s experience. This is for

instance the case of the landmark of the sublingual cavity,

not visible for all articulations (cf. Ananthakrishnan et al.,
2010) but nevertheless estimated for all of them.

All the contours and landmarks have been aligned for

each speaker on his/her common palate shape. Two further

anatomical landmarks have been identified: the Anterior
Nasal Spine (ANS) and the Posterior Nasal Spine (PNS). In

order to enhance the reliability of the determination of these

points, they have been manually located on all of the 62

images with a mouse click and their averages have been cal-

culated for each speaker after alignment on the speaker com-

mon palate shape. This has resulted for each speaker in two

single points ANS and PNS rigidly connected with the palate

(cf. cyan stars in Fig. 2). Using these points, the contours of

each of the ns� na¼ 11� 62 articulations have been aligned

in a common anatomical space: after transformation into

centimeters, they have been rotated and translated so that the

ANS-PNS line is horizontal and the origin of the coordinate

system is set so that the upper incisors lower edge coordi-

nates are arbitrarily at X¼ 5 cm and Y¼ 10 cm.

Finally, the contours have been resampled between each

landmark with a fixed number of points in order to build a data-

set consistent across articulations and speakers. The fixed num-

ber of points for each section has been set so that the average

distance between two consecutive contour points remains close

to an arbitrary value, although the length of each sub-contour

may vary depending on the articulation and speaker. On this

occasion, the contours of the tongue, upper lip and lower lip

have been restricted to the more relevant regions that influence

the vocal tract shape and acoustics: the tongue from its root

junction with the epiglottis up to its attachment to the jaw, and

similarly the upper lip (respectively, lower lip) from the contact

with the palate (respectively, jaw) until the external border of

the vermilion (cf. Fig. 2).

III. ARTICULATORY MODEL OF THE MEAN SPEAKER

In an attempt to develop an articulatory model which

retains general but not speaker-specific characteristics, a

(virtual) mean speaker with 62 articulations has been created

by averaging the contours of the 11 speakers for each articu-

lation. An articulatory model of this speaker, which repre-

sents the average articulatory space of the set of speakers, is

expected to smooth out speaker-specific articulatory strate-

gies while retaining the speakers’ common language back-

ground, and thus concentrates on the components common

to the speakers. This kind of general speaker will thereafter

be referred to as the mean speaker. Note that this speaker

can be considered as an intermediate between male and

female due to the approximately balanced number of males

(six) and females (five) in the dataset.

Following the general principles described in Secs. I

and II A, the guided PCA has been applied to the contour

coordinates of the 62 articulations for each articulator of the

mean speaker, in a hierarchical order, as detailed in Table II.

The number and nature of components retained for each

articulator depend on the desired percentage of explained

variance, residual root-mean-square (rms) error and likeli-

hood in terms of biomechanical interpretation. The percent-

age of variance explanation and the rms reconstruction error

are provided for each articulator in Table III. The nomo-

grams of the contours, i.e., the variation of the contours

resulting from the variations of the articulatory predictors by

regular steps between the minimal and maximal values

found in the data are displayed in Fig. 3 for all the articula-

tory components. Note that the tongue component TT, which

appears to be the fifth component in terms of variance expla-

nation in the PCA, is presented in this study as the fourth

component, before the component TR, to maintain the con-

sistency of interpretation with previous publications (Badin

and Serrurier, 2006; Vald�es Vargas, 2013).

The overall model of the vocal tract articulators is made

of 14 articulatory components, leading to a global rms recon-

struction error of 0.05 cm and a variance explanation of 96%.

The variance of each articulator is explained up to a level vary-

ing from 83%–86% (pharynx, epiglottis, posterior supraglottis)

to 93%–98% (tongue, lips, velum). This model provides there-

fore a very accurate reconstruction of the 62 mean articulations

of the corpus.

The JH component, a nearly vertical displacement of the

jaw, partly controls the lips, and also the tongue, with a

higher amplitude in the front region. TB corresponds to an

oblique backward-frontward movement of the tongue and of

the epiglottis, TD to an oblique flattening-arching movement

of the tongue, and TT to an oblique upward-downward

movement of the tongue tip. These observations are in agree-

ment with previous results (e.g., Beautemps et al., 2001),

though they concern here an average speaker rather than

individual speakers, for whom these components may vary

significantly (cf. Vald�es Vargas, 2013). Interestingly, an

additional component TR accounting for 13% of the

FIG. 2. (Color online) Example of MRI image superimposed with the manu-

ally segmented contours (solid yellow lines), their restriction to the vocal

tract region (dotted red lines), the contour landmarks (green points), and the

two ANS and PNS anatomical landmarks (cyan stars). Note that the small

grey spots that can be seen along the external profile correspond to fiducial

markers not exploited in the present study.
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variance of the tongue has been highlighted. It corresponds

to a bunching-flattening movement complementary to those

controlled by TB and TD: [a] (flat) and [u] (round) are asso-

ciated with opposed extreme values of TR, while [i] is asso-

ciated with an intermediate value. ULH, LLH, ULP, and

LLP correspond to the height and protrusion of the upper

and lower lips (cf. Badin et al., 2013). VL corresponds to an

oblique movement of the velum from a low flat position to a

high position folded in its middle, while VS corresponds

mainly to a small frontward-backward movement with the

greater amplitude on the uvula, which is in general agree-

ment with earlier observations on a single speaker (Serrurier

and Badin, 2008). Note that the VS movement may partly

correspond to a shift of the velum mechanically pushed by

the tongue observed on several articulations for several

speakers (Vald�es Vargas, 2013) and may not result from

muscular activity. Interestingly, the movement of the velum

for VL is not associated with a movement of the upper

region of the pharyngeal wall to form a nasopharyngeal

sphincter, referred to as Passavant’s pad (Passavant, 1869) in

the literature and already observed on a single speaker

(Serrurier and Badin, 2008). LH, representing a vertical dis-

placement of the larynx, is related to the vertical movements

of the organs in the neighborhood, namely, the epiglottis and

posterior supraglottis and by extension the pharynx. The

remaining pharynx component PH corresponds to a

frontward-backward movement, associated with a similar

frontward-backward movement of the posterior supraglottis.

Finally, the remaining component of the epiglottis EH corre-

sponds to a frontward-backward tilting movement.

It is worth mentioning significant correlations between

predictors. The upper and lower lip protrusions have a corre-

lation coefficient of 0.74, in line with earlier findings

(Beautemps et al., 2001, found 0.91, while Abry and Bo€e,

1986, found 0.98 on a corpus without labiodentals). A corre-

lation of 0.63 has also been observed between lower lip

TABLE II. Pseudo-code description of the guided PCA process for the mean speaker. All contours were initially centered, i.e., their means over the 62 articu-

lations subtracted. Predictors and eigenvectors described in Sec. II A and in Fig. 1 are postfixed, respectively, with “p” and “e” for each component. LR stands

for Linear Regression. All predictors are z-scored and the associated eigenvectors accordingly adjusted when required. Associated articulatory nomograms are

displayed in Fig. 3.

Articulator Component Predictor and eigenvector

Jaw JH (Jaw Height) - JHp¼ vertical coordinate of the upper point of the lower teeth (LT)

- JHe_jaw¼LR of LT on JHp

- Jaw contour follows the rigid displacement of LT according to its JH component

Upper lip JH - JHe_upperlip¼LR of upper lip contour on JHp

ULH (Upper Lip Height) - Residual contour¼ upper lip contour - JHp� JHe_upperlip

ULP (Upper Lip Protrusion) - ULHp¼ vertical coordinate of the outer point of the residual contour

- ULHe¼LR of residual contour on ULHp

- Residual contour¼ residual contour - ULHp�ULHe

- ULPp¼ horizontal coordinate of the outer point of the residual contour

- ULPe¼LR of residual contour on ULPp

Lower lip JH - JHe_lowerlip, LLHp and LLHe, LLPp and LLPe are determined in the same way as for the

upper lip, but on the lower lip contour

LLH (Lower Lip Height)

LLP (Lower Lip Protrusion)

Tongue JH - JHe_tongue¼LR of the tongue contour on JHp

TB (Tongue Body) - Residual contour¼ tongue contour - JHp� JHe_tongue

TD (Tongue Dorsum) - TBp and TDp¼ predictors obtained by PCA on the back region of the residual contour

TT (Tongue Tip) - TBe_tongue and TDe¼LR of the entire residual contour on TBp and TDp

TR (Tongue Rounding) - Residual contour¼ residual contour – TBp�TBe_tongue - TDp�TDe

- TTp and TTe and TRp and TRe¼ eigenvectors and predictors obtained by PCA on the entire

residual contour

Velum VL (Velum Levator)

VS (Velum Shape)

- VLp and VLe and VSp and VSe¼ eigenvectors and predictors obtained by PCA on the velum

contour

Pharynx LH (Larynx Height) - LHp (Larynx Height)¼ vertical coordinate of the center of gravity of the glottis contour

PH (Pharynx Horizontal) - LHe_pharynx¼LR of the pharynx contour on LHp

- Residual contour¼ pharynx contour - LHp�LHe_pharynx

- PHp and PHe_pharynx¼ eigenvectors and predictors obtained by PCA on the residual contour

Epiglottis LH - LHe_epiglottis¼LR of the epiglottis contour on LHp

TB - Residual contour¼ epiglottis contour - LHp�LHe_epiglottis

EH (Epiglottis Horizontal) - TBe_epiglottis¼LR of the residual contour on TBp

- Residual contour¼ residual contour - TBp�TBe_epiglottis

- EHp and EHc¼ eigenvectors and predictors obtained by PCA on the residual contour

Posterior

supraglottis

LH - LHe_posteriorsupraglottis¼LR of the posterior supraglottis contour on LHp

PH - Residual contour¼ posterior supraglottis contour - LHp�LHe_ posteriorsupraglottis

- PHe_posteriorsupraglottis¼LR of the residual contour on PHp

2154 J. Acoust. Soc. Am. 145 (4), April 2019 Serrurier et al.



protrusion and larynx height: this correlation has already

been documented by Beautemps et al. (2001), who found a

correlation of 0.66, and by Hoole and Kroos (1998); they

ascribed this covariation to a control strategy aiming at max-

imizing overall vocal tract length variations to enhance

acoustic differences between /i/ and /u/.

Although Johnson (1991) already performed analyses

on data averaged over several speakers, this model consti-

tutes as far as we know the only organ-based articulatory

model of the full vocal tract representing an average speaker.

It highlights the common articulatory background between

speakers, but does not take into account the speaker-specific

strategies. Section IV focuses on this aspect.

IV. MULTI-SPEAKER MODELLING

As explained in Sec. I, multi-speaker articulatory

modelling aims at modelling the vocal tract articulators

simultaneously for a set of speakers producing the same

speech tasks. Multi-speaker modelling can be handled in var-

ious ways. Four different approaches are explored and com-

pared in this section. Section IV A describes the design,

while Sec. IV B presents an evaluation.

A. Model design

The multi-speaker modelling presented in this study

relies on a two-level linear modelling approach. The first

FIG. 3. (Color online) Nomograms of the contours for the 14 articulatory components of the mean speaker for predictors varying at regular steps between the mini-

mal and maximal values found in the data. Contours with negative (respectively, positive) predictor values are plotted in green (respectively, orange); one every 25

points is plotted as a black dot to emphasize deformation directions. The full contour of the average articulation is displayed (in blue) for better comprehension.

Some components are grouped on the same picture (f, g, and h) and some components apply to several articulators (JH on a, TB on b, LH on f and PH on g).

TABLE III. Percentage of variance explanation per articulatory component (column “%”) and rms reconstruction error cumulated over the articulatory compo-

nents in cm (column “cm”) for each articulator for the model of the mean speaker.

Jaw Tongue Upper lip Lower lip Velum Pharynx Epiglottis Posterior supraglottis

% cm % cm % cm % cm % cm % cm % cm % cm

JH 91 0.06 21 0.35 9 0.15 18 0.20

LH 57 0.06 47 0.15 66 0.10

TB 33 0.27 13 0.13

TD 24 0.18

TT 7 0.15

TR 13 0.05

ULP 49 0.10

ULH 38 0.03

LLP 48 0.13

LLH 27 0.06

VL 92 0.05

VS 6 0.02

PH 25 0.04 20 0.06

EH 24 0.08

Cum. 91 0.06 98 0.05 96 0.03 93 0.06 98 0.02 83 0.04 83 0.08 86 0.06
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level model is a speaker-specific model of articulation,

which provides speaker-specific articulations from articula-
tory predictors. The second level model is a model of

speaker, which controls the parameters of the articulatory

model of a given speaker from speaker predictors. This latter

model is therefore a model of models. An overview is dis-

played in Fig. 4. Being speaker-specific, the first level articu-

latory model represents the intra-speaker variability, while

the associated predictors control the realization of the articu-

lation produced with the specific morphology and strategy of

the speaker. The second level model represents the inter-

speaker variability: the associated predictors control the

parameters of the speakers’ articulatory models, including

their specific morphology and strategy, and possibly the

articulatory predictors. Together, the first level articulatory

model and the second level speaker model constitute a two-
level multi-speaker model.

The multi-speaker models are derived from the data.

The individual articulatory model parameters are obtained

for each speaker by a standard two-way decomposition [as in

Eq. (1) and Fig. 1]; the parameters of all the speakers are

then concatenated and further modelled using another two-

way decomposition to obtain the parameters of the second

level speaker model. The articulatory components identified

in the first level models are expected to be similar for differ-

ent speakers, as they aim at the same phonetic goals, but

may also underlie slightly different speaker-specific strate-

gies. This has been emphasized by Vald�es Vargas et al.
(2012) who carried out qualitative inter-speaker comparisons

of homologous components with similar interpretations or

functions. The underlying idea of the second level model is

to take advantage of these similarities and of the possible

correlations among speakers between the morphology and

the strategy parameters to uncover the principal strategy and

morphology components common to the speakers, namely,

the speaker components.

In the current formulation, the parameters of the first

level models are the ns sets of articulatory models, i.e., the

eigenvectors E and the mean articulations �x, representing,

respectively, the speakers’ strategies and morphologies,

together with the ns sets of articulatory predictors P. The

four approaches explored are detailed in the following.

1. General model

In this model, the first level corresponds to a speaker-

specific articulatory model together with the associated artic-

ulatory predictors, i.e., the model and articulatory predictors

that represent the articulations in the space of the speaker.

The second level model aims to represent the speaker-

specific articulatory model parameters, i.e., the parameters

P, E, and �x related to the first level. The second level model

is controlled by a small number of speaker components ng

representing the morphology and the articulatory strategy of

the speaker. As schematized in Fig. 5, the model is built as

follows. First, ns individual articulatory models together

with their predictors are built using the methodology

described in Sec. III and form the first level models. The

homologous articulatory components in these models are

assumed to lead to contour deformations approximately in

the same directions for all the speakers.3 Then, for each

speaker, the P, E, and �x parameters are recast in a single line

vector and the resulting ns line vectors are finally stacked in

a single matrix (cf. Fig. 5). The second level model is

obtained by submitting this matrix directly to PCA so as to

exploit the covariations between speakers and to reduce the

dimensionality of the model parameters. Note that the P, E,

and �x parameters composing this matrix are of different

nature, with different units, and may have different orders of

magnitude; a simple PCA might therefore generate compo-

nents mainly explaining the variance of the parameters with

the largest order of magnitude. The other parameters that

would be poorly taken into account by this PCA might, how-

ever, play an important role in the first level models despite

their lower order of magnitude. This potential problem has

been dealt with by attributing different weights to the three

sets of parameters before applying the PCA. E has been arbi-

trarily chosen as reference, while empirical weightings for P
and �x have been determined automatically so as to minimize

the global reconstruction error of the multi-speaker model,

leading, respectively, to values of 0.4 and 1.2.

In the second level, the first principal components deter-

mined with the PCA are expected to represent simultaneously

the morphology and strategy variations of the speakers. They

will be referred to in the following as SPg, standing for

SPeaker components of the general model. This MoM simul-

taneously reconstructs speaker-specific articulatory models

and speaker-specific articulatory predictors with a limited

number ng of second-level speaker predictors.

2. Universal predictor model

The universal predictor model approach is similar to the

general model approach, but aims at ensuring universal, i.e.,

speaker-independent, articulatory predictors. As schematized

in Fig. 6, the model is built in two steps as follows.

In the first step, na sets of articulations pooled over

speakers are formed, i.e., made of the concatenation of the

articulations of each speaker, and referred to as pooled artic-
ulations in the following. This approach is inspired by the

work of Ananthakrishnan et al. (2010), Vald�es Vargas et al.
(2012), and Vald�es Vargas (2013), where it is referred to as

two-level PCA or joint PCA (this latter terminology will be

used in the following to refer to their work). For each articu-

lator, the pooled articulations are analyzed by the guided

PCA as described in Table II. This generates a single matrix

of articulatory predictors P, as well as a single matrix of

FIG. 4. (Color online) Schematic general overview of the two-level multi-

speaker model. Note that, in some cases, the speaker model may also control

the articulatory predictors, as illustrated by the dashed lines.
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pooled eigenvectors and a single vector of average pooled

articulations. Next, the matrix of pooled eigenvectors and

the vector of average pooled articulations are split and redis-

tributed to deliver individual sets of E and �x parameters for

the ns speakers, while the articulatory predictors P remain

unique and common to all the speakers for each articulation.

These parameters form the first level of the multi-speaker

model.

In the second step, the E and �x parameters for the ns

speakers are concatenated and stacked into a single matrix.

The articulatory predictors P, being speaker-independent, do

not need to be modelled in the second-level. As for the gen-

eral model, relative weightings are first applied to the E and

�x parameters: E is arbitrarily chosen as reference; an empiri-

cal weighting of 1.05 obtained automatically is applied to �x.

A PCA is subsequently applied to these data, and the ng first

speaker components are retained to establish a model,

namely, the second-level model, able to estimate the

speaker-specific E and �x parameters of the individual articu-

latory models. These components will be referred to in the

FIG. 5. (Color online) Schematic rep-

resentation of the data analysis proce-

dure for the general model. Refer to

Fig. 1 for the color conventions. See

the text for the definitions of the vari-

ous indices. As in Fig. 1, the replica-

tion of the (blue) line vectors in na (for

the top blue line vectors) and ns (for

the bottom blue line vector) rows was

omitted to enhance the comprehension.

FIG. 6. (Color online) Schematic rep-

resentation of the data analysis proce-

dure for the universal predictor model.
Refer to Fig. 1 for the color conven-

tions. See the text for the definitions of

the various indices. The copy of the

predictor matrix P (in red) for all the

speakers is not represented to simplify

the schema and emphasize the speaker-

independent property. As in Fig. 1, the

replication of the (blue) line vectors in

na (for the top blue line vectors) and ns

(for the bottom blue line vector) rows

was omitted to enhance the comprehen-

sion (color online). *Note also that the

first step generating the articulatory

models from pooled articulations (see

the text for details) is not displayed in

the figure.
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following as SPup, standing for SPeaker components of the
universal predictor model. In this model, the matrix of articu-

latory predictors P bears “universal predictors,” i.e., the

articulation of a given phoneme is controlled by the same set

of predictors for all the speakers. Note that all the inter-

speaker variability is thus transferred to the E and �x
parameters.

3. Universal eigenvector model

This third approach assumes that the differences

between speakers are mainly related to the range and combi-

nation of their use of the same articulatory components

rather than to the use of different components. In other

words, the same set of speaker-independent eigenvectors E
is controlled by speaker-specific sets of articulatory predic-

tors P for each speaker. The procedure to achieve this model

is schematized in Fig. 7.

In the first stage of the procedure, the speaker-specific

mean articulations �x are calculated. Then, the set of eigen-

vectors E of the model of the mean speaker described in Sec.

III are imposed as the universal eigenvectors. Next, the

matrix P of articulatory predictors corresponding to these

eigenvectors are determined for each speaker and each artic-

ulation: this is basically carried out by inversing Eq. (1),

knowing the speaker’s data as well as the matrices E and �x.

Specifically, for each articulator and each speaker, the mean

articulation is subtracted from the data, and the predictors P
are determined by pseudo-inversing iteratively the matrix E
in accordance with the scenario described in Table II. For

each iteration, once the predictors are determined for one

component, the contribution of this component is subtracted

from the residual data before estimating the predictors of the

next component. This method finally yields a set of P and x

parameters for each speaker. These parameters, together

with the universal matrix E, form the first level of the multi-

speaker model.

In the second stage of the procedure, the P and �x param-

eters for the ns speakers are concatenated into a single

matrix. The eigenvectors E, being speaker-independent, do

not need to be modelled in the second-level. As for the gen-

eral and the universal predictor models, weightings need to

be applied to the P and �x parameters: P is arbitrarily chosen

as reference, while the weighting of �x is optimized, leading

to a value of 3.6. A PCA is subsequently applied to these

data, and the ng first speaker components are retained to

establish a model, namely, the second-level model, able to

represent the speaker-specific P and �x parameters of the indi-

vidual articulatory models. These components will be

referred to in the following as SPue, standing for SPeaker
components of the universal eigenvector model. In this

model, the matrix of eigenvectors E bears “universal

eigenvectors,” i.e., all the speakers are modelled with the

same set of eigenvectors. Note that all the inter-speaker vari-

ability is thus transferred to the P and �x matrices.

4. Mean articulation model

This model has been designed in order to explore the

specific role of the mean articulation in multi-speaker model-

ling. In this approach, the articulatory predictors and eigen-

vectors are universal, whereas the mean articulations only

are speaker-specific. The procedure to achieve this model is

schematized in Fig. 8. The speaker-independent matrices of

articulatory predictors P and eigenvectors E are those of the

model of the mean speaker described in Sec. III, and are

imposed to the ns speakers. The ns mean articulations �x for

the ns speakers are then concatenated into a single matrix

FIG. 7. (Color online) Schematic rep-

resentation of the data analysis proce-

dure for the universal eigenvector
model. Refer to Fig. 1 for the color

conventions. See the text for the defini-

tions of the various indices. The copy

of the eigenvector matrix (in green) for

all the speakers is not represented to

simplify the schema and emphasize the

speaker-independent property. As in

Fig. 1, the replication of the (blue) line

vectors in na (for the top blue line vec-

tors) and ns (for the bottom blue line

vector) rows was omitted to enhance

the comprehension.
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and subsequently submitted to PCA. The ng first components

are retained to establish a model, namely, the second-level

model, able to represent the speaker-specific �x parameters of

the individual articulatory models. These components,

referred to in the following as SPm, standing for SPeaker
components of the mean articulation model, carry only mor-

phology information, unlike the previous multi-speaker

models. Despite their close terminology, note the difference

between this model, a multi-speaker model named mean
articulation model, and the model presented in Sec. III, an

articulatory model of a single speaker (the mean speaker)

named articulatory model of the mean speaker.

B. Evaluation

1. Principles

The four multi-speaker models have been evaluated in

terms of the reconstruction error through a Leave-One-Out

Cross-Validation procedure (LOOCV, cf. Arlot and Celisse,

2010) applied to the whole set of speakers to assess their

generalization capability. Each speaker is characterized by a

set of ng parameters that controls his/her P, E, and/or �x indi-

vidual articulatory model parameters, depending on the type

of MoM. Testing the generalization capability of these mod-

els consists thus in (1) building a multi-speaker model from

a set of ns � 1¼ 10 speakers, excluding one of them in turn

in a leave-one-out manner, (2) determining the ng parameters

of the excluded speaker by inversing the second level model

knowing entirely the first level articulatory model of the

speaker (cf. Table IV for details), (3) reconstructing the dis-

carded speaker’s articulations by means of the multi-speaker

model controlled by these ng parameters, and (4) computing

the error between these reconstructions and the original data.

In order to be able to compare the performances with the lit-

erature, the models for all the speakers have also been evalu-

ated in a direct way without cross-validation.

FIG. 8. (Color online) Schematic rep-

resentation of the data analysis proce-

dure for the mean articulation model.
Refer to Fig. 1 for the color conven-

tions. See the text for the definitions of

the various indices. The copy of the

predictor (in red) and eigenvector (in

green) matrices for all the speakers is

not represented to simplify the schema

and emphasize the speaker-

independent property. As in Fig. 1, the

replication of the (blue) line vectors in

na (for the top blue line vectors) and ns

(for the bottom blue vector) rows was

omitted to enhance the comprehension.

TABLE IV. Method for the determination of the ng parameters of the excluded speaker in a leave-one-out procedure for each multi-speaker model built on the

rest of the speakers. The speaker data consist of (xi), i¼ 1…na articulations. The first-level universal parameters of each multi-speaker model, when existing,

are denoted with the postfix _universal and the second-level parameters with the postfix “(2)”. For each model, P(2) of the discarded speaker is composed of ng

elements.

Steps General model Universal predictor model Universal eigenvector model Mean articulation model

Calculation of �x �x¼ average of (xi), i¼ 1…na

Calculation of P
and E

P, E¼ predictors and eigen-

vectors of the speaker articu-

latory model obtained from

its data (xi)i¼ 1…na (Table II)

E¼Linear Regression of (xi��x)

i¼1…na on P_universal in a step-

wise manner following Table II

P¼ result of the pseudo-

inversion of equation [(xi)i

¼ 1…na¼ �xþP E_universal]

performed in a stepwise manner

following Table II

Calculation of the

intermediate line

vector v

v¼Recast of �x, P and E in

vector of size

2ncþ nanqþ nq2nc (Fig. 5)

v¼Recast of �x and E in vector

of size 2ncþ nq2nc (Fig. 6)

v¼Recast of �x and P in vector

of size 2ncþ nanq (Fig. 7)

v¼Recast of �x in vector of

size 2nc (Fig. 8)

Calculation of P(2) For each model, P(2)¼ result of the pseudo-inversion of equation [v¼ �x(2)þP(2) E(2)]
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The overall errors on the ns� na reconstructed articula-

tions are expressed in terms of the rms error and percentage

of variance explanation. The rms reconstruction error is

calculated as

rms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ns2ncna

Xns

l¼1

X2nc

j¼1

Xna

i¼1

x2
ijl � x̂2

ijl

� �
vuut ; (2)

where xijl and x̂ijl represent, respectively, the measured and

estimated coordinates of the contour point j of the articula-

tion i of the speaker l of the data and its estimation. The per-

centage of variance explanation, usually provided as a

byproduct of the modelling process for PCA or PARAFAC

methods, has been calculated here as the complement to the

error variance (i.e., the variance of the residuals), equivalent

to the percentage of variance explanation for PCA, and

referred to as such in the following for consistency and sim-

plicity reasons.

For each model, the errors have been determined for a

number ng of speaker components SPg, SPup, SPue, and

SPm varying from 0 to 10. In all cases, the first two compo-

nents contribute from 40% to 45% of the variance explana-

tion, and to about 0.25 cm of the rms error decrease relative

to a model without any component. On the contrary, the con-

tribution of the next components appears more limited, for

instance about 4% of variance explanation and 0.04 cm of

the rms error reduction for the third component. Therefore, a

rather safe value of ng¼ 2 was retained for the rest of the

study. The overall errors for ng¼ 2 are displayed in Table V

for the LOOCV evaluation and in Table VI for the direct

evaluation.

2. Results

For the present MoMs, the performances calculated

directly from the individual articulatory models represent the

best achievable performance, namely, 98% of overall vari-

ance explanation and 0.1 cm of overall rms reconstruction

error (Table VI). On the other hand, the worst performance

is achieved by simply using the articulatory model of the

averaged ns � 1 speakers for the discarded speaker; the per-

formance in that case was found to be 0.66 cm of rms error

and no variance explanation. These performances constitute,

respectively, the upper and lower bounds of the multi-

speaker models’ performance.

The multi-speaker models controlled by two speaker

predictors explain about 68% of the overall data variance

and lead to reconstruction errors of about 0.37 cm (Table

VI), which corresponds to an overall variance explanation

about 30% lower than the upper bound and to an overall rms

error about 0.27 cm higher.

These performances naturally depend on the empirical

weightings used for the various parameters for the second-

level PCA. These weightings ensure a balance between the

relative importance of each of the parameters P, E and �x in

the resulting speaker components; they have been optimized

to minimize the direct overall rms reconstruction error. A

detailed analysis of the performance of the second-level

PCA by means of direct evaluation for each of the four mod-

els showed a very good variance explanation of around 89%

for the parameter �x, but of only 15 to 25% for the P and E
parameters. The four modelling approaches deliver rather

similar models, namely, models explaining the mean articu-

lation and marginally the other parameters, which explains

why they present similar, if not identical, results (Tables V

and VI). The fact that the mean articulation has more impor-

tance than the E or P parameters in the MoMs has emerged

through the automatic optimization of the empirical weight-

ings used to achieve minimal reconstruction errors. This

result emphasizes the primary importance of the mean artic-

ulation in the modeling of each speaker’s articulations. In

other words, it suggests that the largest source of difference

between the speaker articulations lies in the difference of

their average articulators’ shapes rather than in their articula-

tory components. The potential correlation of the predictors

and eigenvectors themselves over the set of speakers, ana-

lyzed separately from the mean articulation, will be explored

in more detail in Sec. V. Additionally, the performances of

the four models tend to diverge with the increase of the num-

ber of components ng, demonstrating that the four models

take into account the finer role of the articulatory strategies

in different ways.

These global errors mask however differences between

articulators, with a variance explanation varying from 1%

(jaw) to 85% (pharynx) and an rms error from 0.20 cm

(upper lip) to 0.48 cm (posterior supraglottis). Note that, as

TABLE V. Percentage of variance explanation (column “%”) and cumulated rms reconstruction error (column “cm”) estimated by LOOCV for each articula-

tor obtained with the four multi-speaker models with ng¼ 2.

General model Universal predictor model Universal eigenvector model Mean articulation model

% cm % cm % cm % cm

Jaw 1 0.36 2 0.35 1 0.36 3 0.35

Tongue 56 0.46 59 0.44 57 0.45 61 0.43

Upper lip 23 0.21 29 0.20 25 0.21 32 0.20

Lower lip 6 0.33 13 0.32 8 0.33 16 0.31

Velum 60 0.33 61 0.33 60 0.33 61 0.33

Pharynx 84 0.30 84 0.30 84 0.30 85 0.29

Epiglottis 70 0.44 71 0.43 68 0.45 73 0.42

Posterior supraglottis 72 0.47 73 0.46 71 0.48 74 0.46

Overall vocal tract 66 0.38 68 0.37 66 0.38 69 0.36
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the various articulators differ considerably in terms of articu-

latory data variance, the highest rms errors (e.g., around

0.45 cm for the tongue, epiglottis and posterior supraglottis)

are not necessarily associated with the lowest variance

explanation rates (e.g., less than 10% for the jaw and lower

lip). In general, the articulators forming the front region of

the vocal tract, i.e., the jaw and lips, show the lowest rates of

variance explanation, below 30%, the articulators of the mid-

dle of the vocal tract, i.e., the tongue and velum, show inter-

mediate results, around 55%–60% of variance explanation,

while the rest of the articulators in the back region of the

vocal tract ranges from about 70% to 85%. The lower per-

centage of variance explanation for the front articulators in

comparison with the back articulators can be partly ascribed

to the alignment procedure that imposes the lowest edge of

the upper incisors to be the same for all the speakers, leading

to a lower variability in this region. This point will be revis-

ited in the Discussion. In terms of the rms error, the articula-

tors can be grouped into three categories: the tongue,

epiglottis, and posterior supraglottis, with an error higher

than 0.4 cm, the jaw, lower lip, velum and pharynx, with an

error around 0.3–0.35 cm, and finally the upper lip with an

error of 0.2 cm.

These results suggest that the articulations of one

speaker cannot be completely reconstructed by the articula-

tory components derived from ten other speakers. In other

words, it suggests that ten speakers are not enough to capture

the complete variability of the morphology and strategy of a

given speaker. Nevertheless, these errors remain still signifi-

cantly lower than the overall rms error of 0.66 cm of the

upper bound, which means that a part of the morphology and

strategy variability of one speaker is actually borne by the

other ten speakers and is exploited through the chosen

modelling approach.

In addition, it can be observed that the mean articulation

model presents results similar to those of the other three

models that aim to estimate the specific articulatory predic-

tors and/or eigenvectors for the discarded speaker in addition

to the mean articulation. It could be expected that estimating

the strategy parameters, i.e., the articulatory predictors and

eigenvectors, for the discarded speaker would have led to

better reconstructions. It is actually not the case, which sug-

gests that, in the approach chosen in this study, the strategy

variability of one speaker cannot easily be explained by the

strategy components extracted from ten other speakers.

Oppositely, the morphology variability of one speaker can,

at least partly, be explained by the morphology components

extracted from ten other speakers. Further studies with a

larger cohort of speakers are needed to clarify these points.

3. Comparison with previous studies

As mentioned earlier, direct evaluation without leave-

one-out has been performed for comparisons with the litera-

ture: the multi-speaker models explain about 80% of the

overall data variance and lead to a reconstruction error of

about 0.28 cm (cf. Table VI for details). As detailed in this

section, this study presents at best results similar to those in

previous studies and at worst lower ones, which could be

ascribed to a few main facts: (1) the larger size of the dataset

in terms of speakers, articulations and speech articulators,

(2) the chosen approach based on the guided PCA, and (3)

the inclusion of individual means in the models.

Previous multi-speaker modelling studies mostly

focused on the tongue (Harshman et al., 1977; Lindau, 1986;

Jackson, 1988; Nix et al., 1996; Hoole, 1998, 1999; Geng

and Mooshammer, 2000; Hoole et al., 2000; Zheng et al.,
2003; Hu, 2006), occasionally including the jaw and/or the

lips (Johnson et al., 1993), or treating them separately

(Linker, 1982; Ananthakrishnan et al., 2010; Vald�es Vargas

et al., 2012; Vald�es Vargas, 2013); Vald�es Vargas (2013)

also analyzed the velum. Although the objectives and meth-

ods differ substantially, the present work is a follow-up of

Vald�es Vargas (2013), and of Vald�es Vargas et al. (2012)

and Ananthakrishnan et al. (2010). From these three studies,

only Vald�es Vargas (2013) will therefore be considered for

comparison and used as reference. Note that Vald�es Vargas

(2013) provides a LOOCV evaluation of the generalizability

to articulations, whereas the present work focusses on the

generalizability to speakers, assuming that the 62 phonemes

of the corpus constitute a representative sampling of the

French articulatory repertoire.

For the tongue, beyond these latter three studies, multi-

speaker models based on contours in single- or cross-language

studies have been developed by Harshman et al. (1977),

Jackson (1988), Nix et al. (1996), Hoole et al. (2000), and

Zheng et al. (2003) by means of PARAFAC. Two to three

TABLE VI. Percentage of variance explanation (column “%”) and cumulated rms reconstruction error (column “cm”) estimated directly without LOOCV for

each articulator for the speaker-specific individual models and the four multi-speaker models with ng¼ 2.

Individual models General model Universal predictor model Universal eigenvector model Mean articulation model

% cm % cm % cm % cm % cm

Jaw 90 0.11 41 0.27 39 0.28 42 0.27 38 0.28

Tongue 97 0.11 75 0.34 75 0.34 76 0.34 74 0.35

Upper lip 90 0.07 50 0.17 51 0.17 53 0.16 49 0.17

Lower lip 89 0.12 44 0.26 44 0.26 48 0.25 41 0.26

Velum 99 0.06 79 0.24 79 0.24 79 0.24 79 0.24

Pharynx 99 0.08 91 0.23 91 0.23 91 0.22 90 0.23

Epiglottis 96 0.16 82 0.34 81 0.34 81 0.35 81 0.34

Posterior supraglottis 97 0.14 85 0.35 84 0.36 84 0.35 84 0.36

Overall vocal tract 98 0.10 81 0.28 81 0.28 81 0.28 80 0.29
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factors led to variance explanations from 87% to 93% (but

noticeably only 76% for Zheng et al., 2003) and rms recon-

struction errors, when provided, from 0.16 to 0.22 cm. Results

for much sparser sampling of the tongue (for example by

EMA coordinates), still based on PARAFAC decomposition,

led to similar performances: from 80% to 96% of variance

explanation and rms reconstruction errors from 0.11 to

0.2 cm with two or three factors (Hoole, 1999; Geng and

Mooshammer, 2000; Hu, 2006). Vald�es Vargas (2013) com-

pared different linear three-way decomposition methods,

namely, PARAFAC, joint PCA and Tucker. For each method,

he provided the variance explanation and rms reconstruction

error for a varying number of components. In the present

study, the tongue articulation of any speaker can be controlled

by a combination of five guided PCA articulatory components,

equivalent in terms of performance to about four raw PCA

components, and two speaker components, leading altogether

to an equivalent of six raw PCA components. For six compo-

nents, Vald�es Vargas (2013) obtains from 70% to 79% of vari-

ance explanation and from 0.23 to 0.27 cm rms error. Except

for the variance explanation of Zheng et al. (2003) and Vald�es

Vargas (2013), comparable to the results presented in this arti-

cle, the performance of the present models appears lower than

that in other studies, with a variance explanation lower by

5%–20% and an rms error larger by 0.07–0.23 cm. The closest

results to the present study are observed for Zheng et al.
(2003) and for Vald�es Vargas (2013), the most comparable

study in terms of data and design.

For the lips, Linker (1982) conducted an extensive

cross-language analysis of articulatory measures, based on

PARAFAC. For a number of factors varying between 1 and

3 depending on the language, he found a variance explana-

tion from 87% to 96%. The models from Vald�es Vargas

(2013) reached from 69% to 77% of variance explanation

for lip contours with PARAFAC, joint PCA, or Tucker

decomposition with four components; these four components

can be deemed equivalent to the three guided PCA compo-

nents of the present study (equivalent to two raw PCA com-

ponents) combined with two speaker components. The

corresponding rms error was from 0.08 to 0.09 cm for the

upper lip and from 0.14 to 0.15 cm for the lower lip. The per-

formance of the present study appears significantly lower,

with a variance explanation ranging from 41% to 53% and

an rms error from 0.16 to 0.26 cm.

For the velum, Vald�es Vargas (2013) obtained from

79% to 83% of variance explanation and from 0.12 to

0.13 cm of rms error with four components. The present

study reaches a comparable rate of variance explanation of

79%, but with an rms error of 0.24 cm.

This study presents at best results similar to those in pre-

vious studies and at worst lower ones. This can be ascribed

to a number of reasons, given the numerous differences in

the data and methods. The data comprise 62 articulations,

vowels and consonants, for 11 speakers, i.e., 682 articula-

tions altogether, which is more than in most previous studies,

despite the single language approach. Moreover, the data

cover all the contours of the vocal tract articulators with a

very detailed geometrical representation, in particular in

comparison with the geometrically sparse EMA articulatory

data. The number of components is also hardly comparable

due to the two-level decomposition vs one level decomposi-

tion of previous studies. Additionally, the chosen approach

is based on the guided PCA, leading to articulatory compo-

nents easily interpretable, which might not be the case of

those based on direct PCA decomposition. Finally, the lower

performance for the front articulators can be partly ascribed,

as noted for the LOOCV analysis, to the alignment process,

as further discussed in Sec. VI.

The major difference lies, however, in the methodologi-

cal approach that aims, in the present study, at characterizing

entirely a speaker, i.e., including also his/her mean articula-

tion with a limited number of parameters. To our knowledge,

no other study has considered and explicitly modelled the

mean articulations of the speakers in multi-speaker model-

ling. In the present approach, all the speaker morphology

and strategy specificity, including the mean articulation, is

captured by only two parameters. This represents a signifi-

cantly smaller speaker dimensionality in comparison with

previous studies, where speaker-specific means are not mod-

elled and need, therefore, to be explicitly known to recon-

struct the articulations. For instance, considering 14

predictor values corresponding to all articulators of one spe-

cific phoneme, the present approach would require in addi-

tion (using the universal predictor model) two speaker-

specific values to reconstruct the speaker-specific articula-

tion, whereas a PARAFAC approach would require the com-

plete speaker mean articulation in addition to 14 speaker-

specific weight parameters.

To summarize, with two speaker components, all gen-

eral, universal predictor, universal eigenvector, and mean

articulation models, present similar performances, as esti-

mated with the direct evaluation, i.e., about 80% of variance

explanation and about 0.28 cm of rms error. In a LOOCV

procedure, they reach a variance explanation around 67%

and an rms error around 0.37 cm, demonstrating interesting

capabilities of generalization over the set of speakers.

V. MORPHOLOGY AND ARTICULATORY STRATEGY
CHARACTERIZATION

Section IV described the MoMs that mutualize the infor-

mation common to the individual articulatory models. In

these models, the components represent indiscriminately

inter-speaker variability for both morphology and strategy.

The present section describes experiments aiming at disen-

tangling morphology- and strategy-related variability. The

objective is not to derive a minimal number of components

for the second level model as in Sec. IV, but to analyze sepa-

rately the morphology and strategy components, also by

means of second level modelling.

Recall that in a linear articulatory model, the compo-

nents represent the variations of the articulator shapes around

their mean values. In this approach, one may assume that the

mean articulation �x represents the morphology of the

speaker, while the articulatory predictors P and eigenvectors

E represent the phoneme-specific strategy. Morphology and

articulatory strategies are, however, necessarily related, as

speakers must adopt strategies complying with their own
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morphology to reach the required phonemic target articula-

tions. Similarly, the mean articulation may, to a certain

extent, reflect the strategy of the speaker. But, as the corpus

is well balanced by design and large enough, it may be

assumed that the mean articulation is free from the possible

idiosyncratic articulatory strategies implemented by the

speaker to achieve specific articulations, and thus truly

reflects his/her morphology.

The present exploration is based on the universal predic-

tor modelling architecture presented in Sec. IV A 2. In this

approach, the first stage derives a unique set of articulatory

predictors P common to all the speakers and ns sets of

speaker-specific E and �x parameters. As pointed out earlier,

all the variability between speakers is transferred by this

method to the E and �x parameters that therefore represent,

respectively, the articulatory strategies and the morphologies

of the speakers. In the following, these two sets of parame-

ters are further analyzed separately using second-level

modelling.

A. Morphology characterization

This section presents an analysis of the morphology var-

iability of all the articulators’ contours, including the hard

palate, and shows that the variability of the mean contours of

the speakers can faithfully be represented with two compo-

nents. For that purpose, a PCA has been applied to the ns

sets of speakers’ mean articulations �x supplemented with the

ns hard palate contours. Note that this step is in practice sim-

ilar to the second level modelling of the mean articulation

multi-speaker model (cf. Sec. IV A 4). For the same reasons

as for the MoMs described in Sec. IV, the first two compo-

nents only have been retained: MP1 and MP2. These two

components explain, respectively, 64% and 24% of the vari-

ance, 88% altogether, and lead to a cumulated rms recon-

struction error of the mean articulation of 0.33 and 0.20 cm.

The associated nomograms are displayed in Fig. 9.

The first component MP1 clearly controls the lengthen-

ing/shortening of both horizontal and vertical vocal tract

dimensions, ranging from a short vocal tract with a high

position of the larynx to a long vocal tract with a low posi-

tion of the larynx. Figure 9 shows that MP1 controls also a

variation of the depth of the hard palate, as also reported by

Lammert et al. (2013). Note that the relation between these

two speaker characteristics, vocal tract length and hard

palate depth, does not seem very realistic and might be an

artefactual correlation due to the limited number of speakers

in the dataset. The second component MP2 represents a hori-

zontal scaling concomitant with a rotation around the lower

edge of the upper incisors much related to the head orienta-

tion (cf. Serrurier and Badin, 2008). These two components,

and especially MP1, strongly reflect the well documented

male-female differences (Goldstein, 1980; Fitch and Giedd,

1999; Vorperian et al., 2009; Barbier et al., 2015; Story

et al., 2018); Fig. 10 shows indeed that the male and female

speakers can easily be linearly separated in the MP1-MP2

space. The next two components, not detailed here, represent

less than 5% of variance explanation each and relate to resid-

ual deformations of the tongue, hard palate, and larynx

region, without clear interpretation. The overall rms recon-

struction error with the first two components is 0.2 cm.

Finally, as the speakers’ articulatory contours have been

aligned on the upper teeth and the ANS-PNS lines (cf. Sec.

II D), the inter-speaker variability is lower in this region,

which is reflected in the nomograms of Fig. 9. Another

choice of alignment procedure could lead to different com-

ponents as explained later in Sec. VI.

B. Articulatory strategy characterization

In this section, we show that the variation of the strategy

is related to a certain extent to the variation of the morphol-

ogy and how the strategy seems to comply with the morphol-

ogy. To characterize the strategy, a PCA has been applied to

the ns sets of the eigenvectors E taken from the universal

predictor model, as explained at the beginning of this sec-

tion. The resulting components might be considered as artic-

ulatory strategy components associated with the variation

of the matrix of eigenvectors E of individual articulatory

models. As for the MoMs described in Sec. IV, the first two

strategy components S1 and S2 only have been retained;

they explain, respectively, 26% and 21% of the variance of

the eigenvectors, altogether 47%. As could be expected, this

is better than the percentage of variance of a mere 22%–25%

for the eigenvectors obtained by two components in the

MoMs, where the analysis is carried out simultaneously on

the eigenvectors and the mean articulation, and occasionally

the articulatory predictors.

Although the focus of this section is the sole strategy,

the correlation of the strategy predictors with the morphol-

ogy predictors obtained in Sec. V A has been analyzed to

assess possible links between strategy and morphology. A

FIG. 9. (Color online) Nomograms of

the contours of the mean articulation

for the two morphology components

for predictor values varying at regular

steps between the minimal and

maximal values found in the data.

Contours with negative (respectively,

positive) predictor values are plotted in

green (respectively, orange). One

every 30 point is plotted as black dot

to emphasize deformation directions.

The full contour of the average articu-

lation is displayed (in blue) for better

comprehension.
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slight correlation (0.62) was found between the first mor-

phology predictor MP1 and the first strategy predictor S1,

suggesting that the variations of strategy captured by S1 are

related to some extent to the morphology variations captured

by MP1. The correlation between morphology and strategy

justifies a posteriori the approach chosen for the multi-

speaker models, where these correlations are exploited

through the joint PCA of the mean articulations and the

eigenvectors. However, no other significant correlation

(above 0.5) was observed between the morphology and strat-

egy predictors.

The strategy components highlight the principal inter-

speaker strategy variations. Figure 11 illustrates the articula-

tory nomograms for the components TB, TD, and TT

obtained for the two most extreme values of S1. On this fig-

ure, the contribution of S1 to the mean articulation has also

been taken into consideration: a model of mean articulation

obtained by linear regression of the ns mean articulations

(supplemented with the hard palate contours) on S1 has been

built and is used to reconstruct the mean articulation corre-

sponding to the value of S1 used. For space reasons, the var-

iations of the 14 articulatory components of all the

articulators as a function of the two strategy components

cannot be presented; the focus is made on the three tongue

components TB, TD, and TT.

The first strategy component S1 explains 26% of the

variance of the eigenvector matrix E, i.e., of the inter-

speaker strategy variance. The influence of the strategy on

the TB component is mainly associated with a change in the

orientation of the lines of deformation in the back region of

the tongue, from rather oblique to horizontal, together with a

change of amplitude range, especially in the front region of

the tongue. For the TD component, it is mainly associated

with a change of the direction of the dorsum movement,

from a rather oblique to a more vertical direction, leading to

a tongue-palate contact place slightly more backward or

FIG. 10. (Color online) MP1–MP2 plane for the ns speakers listed in Table I.

FIG. 11. (Color online) Nomograms of the contours for the tongue articulatory components TB, TD, and TT using eigenvectors reconstructed by means of the

sole strategy component S1 using minimum (top) and maximum (bottom) predictor values observed in the data. The articulatory predictor values vary at regu-

lar steps between the minimal and maximal values found in the data. Contours with negative (respectively, positive) predictor values are plotted in green

(respectively, orange); one every 20 points is plotted as a black dot to emphasize deformation directions. The full contour of the average articulation is dis-

played (in blue) for better comprehension (note that it depends on S1 and is thus different in the top and bottom rows). Note that the component TB controls

the epiglottis in addition to the tongue.

2164 J. Acoust. Soc. Am. 145 (4), April 2019 Serrurier et al.



frontward. This comes together with a slight change in the

rotation of the tongue, the tip going more upward when the

dorsum lowers in the case where the tongue-palate contact is

more frontward, and vice versa. The more oblique deforma-

tion of the tongue dorsum is also associated with a large

amplitude range. The influence of the strategy on the TT

component is clearly mainly associated with the tongue tip

deformation varying from a rather horizontal movement

with a large amplitude range to a rather vertical movement

with a lower amplitude range. The other components not

presented here exhibit analogous ranges or types of varia-

tions as TB, TD and TT for extreme values of S1.

Interestingly, the extent to which the strategy seems to

comply with the morphology can be observed in Fig. 11: for

an S1 predictor value leading to a long vocal tract (bottom

row), the various articulatory components tend also to have a

more important frontward-backward movement than the

articulatory components obtained for an S1 value leading to

a short vocal tract (top row). This means that the speakers

with a longer vocal tract present a larger tongue span from

low or back positions like in /O/ to high or front positions

like in /ti/. This is illustrated on the top row of Fig. 12.

Another analogous trend is observed for the velar constric-

tion/contact partly controlled by the TD parameter: its loca-

tion is more backward for speakers with a longer vocal tract

than for those with a shorter vocal tract. This actually

maintains the constriction in the same relative position with

respect to the whole tract, compensating for the larger vocal

tract length variation in the vertical direction than in the hor-

izontal direction reflecting male/female differences. The TB

component tends also to adapt so that the tongue blade mir-

rors the shape of the palate, either domed (top row of Fig.

11) or flat (bottom row). This is for instance the case for the

high front vowels like /e/ as illustrated on the top of Fig. 12.

For the TT component, the vertical or oblique movement of

the tongue tip tends to maintain the same contact position on

the palate regardless of the palate shape.

A detailed comparison of the articulations obtained

using the strategy predictor S1 to control both the eigenvec-

tors and the mean articulations with the articulations

obtained using S1 to control the mean articulation only has

revealed minor differences: the rms distance on the corpus is

of maximally 0.1 cm for S1 varying between the minimal

and maximal values found in the data. This limited influence

of the strategy is illustrated on the bottom row of Fig. 12 that

displays such pairs of articulations obtained for the absolute

maximum value of S1 found in the data for three phonemes.

This is in general agreement with the results obtained in Sec.

IV, where it was found that inter-speaker variability is

primarily carried by the mean articulations. This limited

influence of the strategy observed in Fig. 12 seems in contra-

diction with the nomogram differences that can be observed

FIG. 12. (Color online) Top: superposition of the articulations obtained using the universal predictors and both the mean articulation and the eigenvectors con-

trolled by the strategy component S1 using minimum (dashed blue) and maximum (solid orange) predictor values observed in the data for the three articula-

tions [O] (left), [t] in context [i] (middle), and [e] (right). Bottom: superposition of the same solid orange contours as for the top row with the same

articulations obtained by controlling only the mean articulation with the maximum value of S1 and keeping the mean eigenvectors (dashed black), so as to

highlight the influence of the strategy component of the model.
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between the top and bottom rows of Fig. 11. This discrep-

ancy suggests that the strategy components would mainly

model the differences between the articulatory components

(Fig. 11), but that the differences would compensate for each

other in the final contours of articulations as seen in Fig. 12.

The second strategy component S2 explains 21% of the

inter-speaker strategy variance. As for S1, the nomograms of

the various articulatory components as a function of S2

exhibit slight variations, but their representation is discarded

for space reasons. The variations of the directions of defor-

mation of the articulatory components appear, however,

complementary to those induced by S1, though less easily

interpretable.

In conclusion, with 47% of variance explained by the

two strategy components S1 and S2, a large part of the indi-

vidual strategies remains still unexplained, pointing to the

importance of the individual behavior. Interestingly, the link

between morphology and strategy has been further empha-

sized by (1) measuring the correlation between the first

morphology predictor MP1 and the first strategy predictors

S1—suggesting that the variations of strategy captured by

S1 are related to some extent to the morphology variations

captured by MP1 and related to the male-female differ-

ences—and (2) observing the adaptation of the range and

directions of deformations of the articulatory components to

the vocal tract morphology. The link between articulatory

strategy and morphology has already been pointed out in the

literature (cf. Sec. I), including by Serrurier et al. (2017)

with the same data. The fact that no significant correlation

(above 0.5) between MP2 and the strategy predictors and

between S2 and the morphology predictors suggests that

either speakers do not always adapt their strategies to their

morphological characteristics or that these relations are not

captured by the present linear modelling approach. This obser-

vation does not exclude in general the fact that the strategy

may result to some extent from morphological constraints

beyond the relations already brought out in this article.

As far as we know, this study constitutes the only attempt

in the literature to model the strategy variations of a set of

speakers. In summary, the first strategy component, account-

ing for about a quarter of the variance, is related to a certain

extent to the first morphology component, which is related to

the vocal tract dimension and palate shape. A variation of

range and directions of deformation of the articulatory com-

ponents related to these characteristics is logically observed in

this component. The second strategy component accounts for

about a fifth of the variance but seems related to the morphol-

ogy to a much lesser extent.

VI. DISCUSSION AND CONCLUSION

The present article has described an approach for multi-

speaker articulatory modelling based on models of models.

This approach involves a two-level modelling procedure,

where the parameters of the speaker-specific articulatory

model are themselves controlled by another linear model.

The first level, the speaker-specific articulatory model, deals

with the intra-speaker variability, whereas the second level

deals with the inter-speaker variability. An articulatory

model can further be considered as the association of a mor-

phology constituent4 (the mean articulation) with a strategy

constituent (the matrix of eigenvectors) controlled by a set

of articulatory predictors. In Sec. IV, a full advantage of

potential correlations between morphology and strategy over

the set of speakers was taken in order to obtain the MoMs

controlled by a minimum number of parameters. For this

purpose, morphology and strategy parameters of individual

articulatory models were jointly analyzed to obtain joint

morphology and strategy components (the speaker compo-

nents). Four approaches were considered in the study, lead-

ing to the speaker components SPg, SPup, SPue, and SPm.

In Sec. V this approach was used in a complementary way to

characterize independently the inter-speaker morphology

and the strategy variability and to represent their main modes

of variation. For this purpose, the morphology and the strat-

egy constituents of the first level models were analyzed sepa-

rately in order to obtain distinct morphology components

MP and strategy components S.

This study relies on a dataset of 62 articulations

collected from 11 French speakers. The extent of this dataset

constitutes both an asset and a limitation to the study. On the

one hand, this set constitutes to our knowledge the largest

collection of contours of the whole vocal tract used for

multi-speaker modelling. Previous studies usually included

fewer speakers, fewer articulations, and/or fewer points on

the vocal tract, typically recorded through EMA.

Developments in the last decade made it possible to record

real-time MRI of the vocal tract for speech production stud-

ies, leading to datasets with many more observations (e.g.,

Teixeira et al., 2012; Narayanan et al., 2014): although

promising for the future, this modality still provides images

of lower quality than the static ones used in current study

and requires automatic image processing for contour extrac-

tion, still less accurate than the current manual processing

(Labrunie et al., 2018). The dataset of the present study con-

stitutes therefore a realistic compromise to build multi-speaker

models based on accurate contours. In addition, it has been

proved that carefully designed corpora lead to similar articula-

tory models than the larger corpora based on real-time mea-

surements (Beautemps et al., 2001): the corpus designed to

represent the wide range of French articulations appears there-

fore appropriate for the study. On the other hand, the present

set of speakers might appear too small for the study of inter-

speaker variability: although balanced between females and

males, it cannot be ensured to be truly representative of all

possible French speakers. Moreover, 11 observations represent

a limited set for statistical analyses. The selection of compo-

nents was therefore restricted to the first two speaker compo-

nents, clearly interpretable and generalizable over the set of

speakers. The next components, although possibly coding

meaningful information as detailed later, were discarded in

order to avoid overfitting. These limitations call for larger

datasets of speakers in the future to analyze inter-speaker vari-

ability in depth.

Section III described an articulatory model of the mean

speaker averaged over the set of 11 speakers, aiming at

reducing the influence of individual morphologies and artic-

ulatory strategies while retaining their common background.
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An overall variance explanation of 96% and an rms

reconstruction error of 0.05 cm were obtained with 14

components.

Based on the articulatory modelling architecture

described in Sec. III, four multi-speaker models have been

explored. Depending on the parameters considered in the

second level models, the articulatory predictors and/or eigen-

vectors could in addition be universal, i.e., speaker-

independent, and therefore fixed regardless of the second

level model. Recall that the second level models intend to

take advantage of the correlations between the morphology

and strategy constituents of the articulatory model parame-

ters of the speaker-specific first level models. This resulted

in similar performances established by LOOCV for all

multi-speaker models, namely, from 0.36 to 0.38 cm of over-

all rms error and from 66% to 69% of variance explanation.

A deeper analysis revealed that the two ng speaker compo-

nents retained for each of the four models, i.e., the compo-

nents SPg, SPup, SPue, and SPm, essentially explain the

mean articulation, i.e., the morphology of the speakers,

rather than the articulatory eigenvectors and predictors, i.e.,

the speakers’ articulatory strategy. The relative weighting

between the morphology and strategy constituents in second

level models optimized to achieve better overall results tends

thus to favor the modelling of the morphology compared

with the strategy. This means either that the dominant source

of inter-speaker variability is related to morphology, or that

the inter-speaker variability related to morphology is more

suited to PCA modelling—hence better taken into consider-

ation—than the one related to strategy. In any case, the pre-

dominance of the morphology over the strategy in the

second level models can explain why the four multi-speaker

models present similar performance: they all take into

account in the same way the morphology constituent of the

articulatory model parameters, i.e., the mean articulation,

but differ in the way they take into account the strategy con-

stituent, i.e., the articulatory eigenvectors and articulatory

predictors. Further informal analyses performed on the

tongue showed that the differences among the reconstruction

errors obtained for the four models tend indeed to be more

pronounced as the number of speaker components increases.

This shows that the next components are more closely

related to the strategy than to the morphology.

As emphasized earlier, the global errors mask strong

disparities between front and back articulators. This can be

partly ascribed to the alignment procedure. Indeed, since all

the midsagittal contours have been aligned on the lowest

edge of the upper incisors, this point has zero variability, and

the points in its vicinity present lower variability than those

farther away. This implies that the front articulators present

lower variability than the back articulators (a ratio from 1 to

14 has been observed between the points of the upper lip and

those of the posterior supraglottis). The first speaker compo-

nents, much related to morphology components, tend to

explain primarily this larger source of variance of the back

articulators. This can be observed for the morphology com-

ponent MP1 in Fig. 9, where the articulatory contours in the

back of the vocal tract exhibit a much larger range of varia-

tion than those in the front. Once this effect has been

compensated for by the first components, one can expect that

the next components do not depend on the alignment proce-

dure and appear more balanced between the articulators,

which was indeed verified. However, these were finally not

retained in the models for two reasons: (1) due to the low

number of speakers, the risk of overfitting was important and

brought us to keep only the components clearly generaliz-

able over the speakers; (2) the gain in terms of the rms error

and variance explanation appeared too marginal to justify

the addition of extra components. It has been verified that

another alignment procedure leads to different principal

components. Nonetheless, the alignment proposed in this

study on the palate, and by extension on the cranium, is in

line with numerous articulatory studies and takes advantage

of the only rigid structure that supports the vocal tract.

As noted earlier, the performances of the models pro-

posed in the present study are not higher than those reported

in the literature, which can be ascribed to a multitude of fac-

tors: the larger size of the corpus, the larger number of

speakers, the more exhaustive description of the vocal tract

contours, the two-level decomposition approach making the

number of components hardly comparable, or also the

guided PCA approach that intends to make articulatory com-

ponents more easily interpretable. In addition, most studies

provide an evaluation in terms of percentage of variance

explanation, which could be influenced by the alignment

procedure as explained above. For all these reasons, the

results presented in this study are difficult to compare with

those of previous studies. But most importantly, the primary

aim of the current study, i.e., to propose a multi-speaker

model able to fully characterize any speaker with a mini-

mum of control parameters, is also eminently different from

previous studies. To achieve these objectives, the study was

inspired from previous studies highlighting the relationship

between morphology and strategy (cf., e.g., Honda et al.,
1996; Fuchs et al., 2008; Brunner et al., 2009; Yunusova

et al., 2012; Rudy and Yunusova, 2013; Weirich and Fuchs,

2013; Weirich et al., 2013) and involved a two-level model-

ling approach that takes full advantage of this relationship.

Hence, unlike in previous studies, inter-speaker variability

related to morphology was also taken into account.

The two-level models are composed of a chain of two

linear models: one dealing with the intra-speaker variability,

i.e., the articulatory model of individual speakers, and the

other with the inter-speaker variability. Linear models have

already proven to be efficient for modelling the articulatory

variability of individual speakers. This study proposed to

extend this concept to the modelling of the morphology and

strategy variability of a set of speakers. The performance of

the multi-speaker models appears to be intermediate between

the lower and upper bounds, suggesting that these models

are able to represent a part but not all of the inter-speaker

morphology and strategy variability. The detailed analysis

mentioned earlier revealed that the MoMs mainly explained

the morphology variability rather than the strategy variabil-

ity. When applied to data combining both morphology and

strategy elements, second level linear models appear thus

mainly efficient to model the inter-speaker morphology vari-

ability. Three possible reasons can be proposed to explain
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these results: (1) there is little correlation among the strate-

gies of the speakers, (2) the potential correlation between the

strategies of the speakers cannot be represented by means of

linear PCA modelling, and (3) the variance associated with

the potential correlation between the strategies of the speak-

ers remains lower than the variance associated with the

correlation between the morphologies of the speakers, and

requires therefore more than two components to be taken

into account by the models. Further investigations involving

alternative modelling approaches, including nonlinear ones,

and a larger set of speakers, are required to clarify this issue.

The principles exposed for the MoMs have also been

exploited to independently characterize the morphology and

the strategy variability: 88% of the variance of the mean

articulations could be explained by only two components,

MP1 and MP2. These two components reflect the male-

female differences. This suggests that the principal source of

inter-speaker variability regarding the morphology is related

to the size of the vocal tract, itself related to the sex.

The analysis of inter-speaker strategy variability by means

of two-level modelling has shown that 47% of the articulatory

eigenvector variance could be explained by two strategy compo-

nents. This is significantly more than the 22%–25% explained

for the eigenvector variance by two speaker components when

the analysis is combined with the morphology parameters. This

demonstrates that the inter-speaker strategy variability can, to a

certain extent, be taken into account by linear modelling. The

lower variance explanation rate observed when the analysis is

combined with the morphology parameters implies either that a

part of the inter-speaker strategy variability is related to idiosyn-

cratic features and not to speakers’ morphology, or that the com-

ponents corresponding to this strategy variability were not

retained in the two-component models. The correlation found

between the first component morphology predictors and the first

component strategy predictors points out the relationship

between morphology and strategy and justifies the combined

approach chosen in Sec. IV. Regarding the strategy components

alone, their influence on the variations of the directions and

ranges of deformation related to the articulatory components

have been demonstrated to serve to adjust the articulatory com-

ponents to comply with morphology constraints. This is particu-

larly the case of TB and TT for the component S1, which adjust

themselves according to the palate shape.

Despite all the limitations mentioned above, the multi-

speaker models proposed in this study can fairly well charac-

terize the full vocal tract contours of a speaker with two

parameters. To our knowledge, such characterization has not

been attempted in the literature. Beyond the multi-speaker

model itself, the main contribution of the present study is the

finding that inter-speaker variability is more related to the

morphology, and in particular to the sex and size of the

speakers, than to the idiosyncratic articulatory strategies. In

addition, the present approach reveals the extent to which

the articulatory components adapt themselves to comply

with the morphology constraints.

The present approach opens the way to a range of appli-

cations where a generic articulatory model must be adapted

to a specific user based on limited data available for this

user. It is in particular the case in the domain of speech

rehabilitation and language pronunciation training, where

visual articulatory feedback proves to be useful. When visual

articulatory feedback is used for speech rehabilitation

(Roxburgh et al., 2015; Fabre et al., 2017), visual informa-

tion regarding the articulation produced by the speaker is

displayed in real-time. If this display is to be performed by

means of an articulatory model, information regarding both

the speaker and the articulation is necessary. As little data

are available for the speaker in clinical environment, the use

of multi-speaker models appears appropriate. Based on the

results of this study, a proof-of-concept has been tested where

a speaker-specific articulatory model was estimated from lim-

ited data from the speaker, using the MoM. Using the articula-

tion produced by the speaker, this model has been inversed to

obtain articulatory predictors, that were in turn used to control

a generic articulatory model; this model could be for instance

the articulatory model of the mean speaker, or a specific artic-

ulatory model. Such an approach led to an overall articulators’

rms reconstruction error of 0.25 cm. While errors are still

large, in particular for the tongue, this approach constitutes a

promising benchmark and motivates further the development

of multi-speaker models.
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