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Abstract

The ∆-convolution of real probability measures, introduced by Bożejko, generalizes
both free and boolean convolutions. It is linearized by the ∆-cumulants, and Yoshida gave
a combinatorial formula for moments in terms of ∆-cumulants, that implicitly defines the
latter. It relies on the definition of an appropriate weight on noncrossing partitions. We
give here two different expressions for the ∆-cumulants: the first one is a simple variant of
Lagrange inversion formula, and the second one is a combinatorial inversion of Yoshida’s
formula involving Schröder trees.

1 Introduction

The (classical) additive convolution µ ˚ ν of two real probability measures µ and ν is usu-
ally defined as the law of X ` Y where X and Y are two independent random variables of
law µ and ν, respectively. Other operations, that we can see as deformed convolutions, are
obtained by replacing the classical notion of independence with other ones coming from non-
commutative probability theories. Two important examples are the free convolution µ ‘ ν
(see Voiculescu [13]) and the boolean convolution µ

Ţ

ν (see Speicher and Woroudi [12]).
The ∆-convolution was introduced by Bożejko [1] as a special case of the conditionally

free convolution from [2], and further studied in [3, 9, 14]. See [10] for the general context.
This operation, denoted o , depends on another measure ω and specializes at ‘ (respectively,
Ţ

) when ω is the Dirac distribution at 1 (respectively, 0). It can be defined analytically as
follows. First, µ is characterized by its Cauchy transform:

Gµpzq “

ż

1

z ´ x
µpdxq.

Then, the function R∆
µ pzq is implicitly defined by:

Gµpzq “
1

z ´R∆
µ pGµlωpzqq

(1)

where µ l ω is the (classical) multiplicative convolution of µ and ω. It is defined like
the additive convolution above but with XY instead of X ` Y . This function R∆

µ pzq also
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characterizes the measure µ, and it is called its R∆-transform. This is a deformation of
Voiculescu’s R-transform (itself being the analog of the logarithm of the Fourier transform in
classical probability), see [13]. Then o is characterized by the fact that it is linearized by the
R∆-transform:

R∆
µo νpzq “ R∆

µ pzq `R
∆
ν pzq.

See [14] for details.
Rather than the functional equation in (1), one can consider the relations between the mo-

ments Mnpµq and ∆-cumulants Cnpµq, which are the coefficients in the following expansions,
when they exist:

Gµpzq “
8
ÿ

n“0

Mnpµq

zn`1
, R∆

µ pzq “
8
ÿ

n“1

Cnpµqz
n´1

near z “ 8 and z “ 0, respectively. Alternatively, we have Mnpµq “
ş

xnµpdxq. These
relations depend on the moments of ω, denoted δn “ Mnpωq, that we also assume to exist.
Yoshida [14] proved that for an appropriate weight function wt on the set NCn of noncrossing
partitions of t1, . . . , nu (defined in the next section), we have:

Mnpµq “
ÿ

πPNCn

Cπpµqwtpπq, where Cπpµq “
ź

BPπ

C#Bpµq. (2)

This generalizes the free and boolean cases, where we have an unweighted sum over noncross-
ing partitions, and interval partitions, respectively. But in the weighted case of (2), inverting
the relation cannot be done via a Möbius inversion of a poset, since the weight wtpπq depends
on the δi’s.

In this work, we provide two different expressions for the ∆-cumulants. The first one
(Theorem 3.1) is based on the functional equation in (1), and is a variant of Lagrange inversion
formula (see [4]) where a Hadamard product is involved. The second one (Theorem 4.8) is
a combinatorial formula that is the inverse of (2), proved by inverting a matrix which is the
multiplicative extension of Yoshida’s weight. The solution is in terms of Schröder trees, and
relies on related notions taken from [7]. In that work, Schröder trees appeared naturally
because the relations between moments and free cumulants are interpreted in the group of an
operad of trees, or also in terms of characters of Hopf algebras of trees (building on [5, 6]).
However, we don’t have such an algebraic interpretation for the case of ∆-cumulants.

2 Definitions

When π is a set partition of a set X, we denote
π
„ the equivalence relation defined by i

π
„ j

iff i, j P B for some block B P π.
Let NCn denote the set of noncrossing partitions of t1, . . . , nu, i.e. set partitions of

t1, . . . , nu where there exist no i, j, k, l such that i ă j ă k ă l, i
π
„ k, j

π
„ l and j

π
 k. For

example, tt1, 4, 6u, t2, 3u, t5uu P NC6. To lighten the notation, the same is written 146|23|5,
and it is represented as:

1 2 3 4 5 6
. (3)
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Endowed with the reverse refinement order, NCn is a lattice, first defined by Kreweras [8].
Its minimal element is 0n “ 1|2| . . . |n, and its maximal element is 1n “ 12 . . . n.

Let arcpπq denote the set of arcs of π P NCn, i.e. pairs pi, jq such that i ă j, i
π
„ j, and

there is no k such that i ă k ă j and i
π
„ j

π
„ k. They are indeed arcs in the graphical

representations as in (3), for example those of 146|23|5 are p1, 4q, p4, 6q, p2, 3q. Note that
there are #B ´ 1 arcs inside a block B of π, and it follows that # arcpπq `#π “ n.

Definition 2.1. Yoshida’s weight wtpπq of π P NCn is:

wtpπq “
ź

pi,jq P arcpπq

δj´i´1. (4)

Remark 2.2. If we allow ω to be a positive measure (i.e. δ0 “M0pωq is any positive number
instead of δ0 “ 1 for a probability measure), we see in Equation (2) thatMnpµq is homogeneous
of degree n in C1pµq, C2pµq, . . . and δ0, δ1, . . . (by the relation #π `# arcpπq “ n). So there
is no loss of generality when we assume δ0 “ 1.

Let INn Ă NCn denote the set of interval partitions of t1, . . . , nu, i.e. set partitions where
each block is an interval of consecutive integers. Equivalently, π P NCn is in INn iff it has no
arc pi, jq with j ´ i ě 2.

In the free case (δi “ 1 for all i), we have wtpπq “ 1 for all π P NCn. So Equation (2) is
the known relation for free cumulants [11]. In the boolean case (δ1 “ 1 and δi “ 0 for i ě 2),
we have wtpπq “ 1 if π P INn and 0 otherwise. So Equation (2) is the known relation for
boolean cumulants [12].

The Hadamard product d of two series is defined by:
´

ÿ

anz
n
¯

d

´

ÿ

bnz
n
¯

“

´

ÿ

anbnz
n
¯

.

This operation makes sense either for formal power series, or functions that are analytic at
a specified point. If two measures µ and ν have all their moments, their Cauchy transforms
are analytic near z “ 8, and we have:

Gµl νpzq “ Gµpzq dGνpzq. (5)

Indeed, let X and Y be two independent random variables of law µ and ν, respectively. Then
we have ErpXY qns “ ErXnY ns “ ErXnsErY ns, so Mnpµ l νq “MnpµqMnpνq.

From now on, we write Mn for the moments and Cn for the ∆-cumulants, dropping the
dependence in µ, and consider their generating functions:

Mpzq “
ÿ

ně0

Mnz
n`1, Cpzq “

ÿ

ně1

Cnz
n´1.

And to avoid confusion, we take specific notations for the two specializations of Cn: Fn and
Bn are respectively the free cumulants and boolean cumulants associated with Mn. Their
generating functions are:

F pzq “
ÿ

ně1

Fnz
n´1, Bpzq “

ÿ

ně1

Bnz
n´1.

Moreover, the generating function of the moments of ω is similar to Mpzq:

∆pzq “
ÿ

ně0

δnz
n`1.
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In fact, since our results are essentially of algebraic or combinatorial nature, we don’t need
to assume that pCnq or pδnq is the moment sequence of some measure, we can treat them as
formal variables and their generating functions as formal power series. In this setting, pMnq

and pCnq are related by (2) if and only if their generating functions are related by:

Mpzq “
z

1´ zCpMpzq d∆pzqq
. (6)

This is a rewriting of (1), using (5) and changing z to z´1.
In particular, in the free case we have Mpzq d ∆pzq “ Mpzq, and the relation between

Mpzq and F pzq is the definition of Voiculescu’s R-transform [13]:

Mpzq “
z

1´ zF pMpzqq
. (7)

And in the boolean case, Mpzq d∆pzq “ z, and we recover the analytic definition of boolean
cumulants [12]:

Bpzq “
1

z
´

1

Mpzq
. (8)

3 Lagrange inversion for cumulants

In this section, we denote by rzksgpzq the coefficient of zk in a formal Laurent series gpzq.
A formal power series fpzq “

ř

ně1 anz
n with a1 ‰ 0 has a unique compositional inverse

f x´1ypzq, such that fpf x´1ypzqq “ f x´1ypfpzqq “ z. Lagrange inversion formula is the identity:

rznsf x´1ypzq “
1

n
rzn´1s

´ z

fpzq

¯n
. (9)

It comes in a wide range of different forms and has a lot of variants and generalizations, see
Comtet’s book [4, Chapter III]. Let us review how to use it in the case of free cumulants,
following Speicher [11]. From (7), we get:

Mpzq ´ zMpzqF pMpzqq “ z,

and then:
Mpzq

1`MpzqF pMpzqq
“ z,

i.e. M x´1ypzq “ z
1`zF pzq . Applying (9) gives

Mn “
1

n` 1
rzns

`

1` zF pzq
˘n`1

.

Another identity is Hermite’s formula [4, p. 150, Theorem D)]:

rzns
z

f x´1ypzq
“ rznsf 1pzq

´ z

fpzq

¯n
,

from which we get:

Fn “ rz
nsM 1pzq

´ z

Mpzq

¯n
.
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One might prefer a formula only involving Mpzq and not its derivative, and this is possible
at the condition of working with Laurent series. Indeed, the previous formula also gives:

Fn “ rz
0s
M 1pzq

Mpzqn
,

and since M 1pzq
Mpzqn “ ´

1
n´1p

1
Mpzqn´1 q

1 for n ě 2, we have:

Fn “ ´
1

n´ 1
rzs

1

Mpzqn´1
. (10)

In the case of our series related by Equation (6), we can adapt a classical proof of Lagrange
inversion formula to get the following:

Theorem 3.1. For n ě 2, the nth ∆-cumulant is given by:

Cn “
1

n´ 1
rz´1s

M 1pzq

Mpzq2
´

1

z2

`

Mpzq d∆pzq
˘n´1 . (11)

Proof. From (6), we have:

Mpzq ´ z

zMpzq
“

ÿ

ně1

Cn
`

Mpzq d∆pzq
˘n´1

.

Taking the derivative, we have:

´
1

z2
`
M 1pzq

Mpzq2
“

ÿ

ně2

pn´ 1qCn
`

Mpzq d∆pzq
˘1`

Mpzq d∆pzq
˘n´2

.

Divide on both sides by
`

Mpzq d∆pzq
˘k

to get:

M 1pzq

Mpzq2
´

1

z2

`

Mpzq d∆pzq
˘k
“

ÿ

ně2

pn´ 1qCn
`

Mpzq d∆pzq
˘1`

Mpzq d∆pzq
˘n´k´2

.

Then, take the coefficient of z´1. To deal with the right hand side, note that if n ‰ k` 1, we
have:

`

Mpzq d∆pzq
˘1`

Mpzq d∆pzq
˘n´k´2

“
1

n´ k ´ 1

`

pMpzq d∆pzqqn´k´1
˘1
.

Since rz´1sf 1pzq “ 0 for any Laurent series fpzq, it remains:

rz´1s

M 1pzq

Mpzq2
´

1

z2

`

Mpzq d∆pzq
˘k
“ kCk`1rz

´1s
`

Mpzq d∆pzq
˘1`

Mpzq d∆pzq
˘´1

.

From Mpzq d∆pzq “ z `Opz2q, we easily obtain rz´1s
`

Mpzq d∆pzq
˘1`

Mpzq d∆pzq
˘´1

“ 1.
We thus obtain a formula for kCk`1 and Equation (11) follows.
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We end this section by a few remarks about the previous theorem. In the boolean case,
we have ∆pzq “ z and Mpzq d∆pzq “ z, so it says:

pn´ 1qBn “ rz
´1s

´ M 1pzq

zn´1Mpzq2
´

1

zn`1

˘

“ rzn´2s
M 1pzq

Mpzq2
.

After multiplying by zn´2 and summing for n ě 2, we get:

B1pzq “
M 1pzq

Mpzq2
´

1

z2

where the term ´ 1
z2

is needed to remove negative powers of z from M 1pzq
Mpzq2

. This agrees with

the analytic definition of boolean cumulants in (8).
In the free case, Mpzq d∆pzq “Mpzq, so we get:

Fn “
1

n´ 1
rz´1s

´M 1pzq

Mpzqn
´

1

z2Mpzqn´1

¯

.

Since M 1pzq
Mpzqn “ p´

1
pn´1qMpzqn´1 q

1, we have rz´1s
M 1pzq
Mpzqn “ 0. So the formula gives

Fn “ ´
1

n´ 1
rz´1s

1

z2Mpzqn´1

and we recover (10).
It is worth writing the previous theorem in a more analytic way, using Cauchy transforms.

We have:

pn´ 1qCn “ rz
´1s

M 1pzq

Mpzq2
´

1

z2

`

Mpzq d∆pzq
˘n´1 “ rzs

M 1p1
z q

Mp1
z q

2
´ z2

`

Mp1
z q d∆p1

z q
˘n´1 “ rz

´1s

M 1p1
z q

z2Mp1
z q

2
´ 1

`

Mp1
z q d∆p1

z q
˘n´1 .

Since Mp1
z q “ Gµpzq, and ∆p1

z q “ Gωpzq, this gives:

pn´ 1qCn “ rz
´1s

´
G1µpzq

Gµpzq2
´ 1

pGµpzq dGωpzqqn´1
.

For a function which is analytic near z “ 8, its residue at z “ 8 is given by Res8 fpzq “
´rz´1sfpzq and can be calculated by a contour integral. So the analytic formulation of the
previous theorem is:

Cn “
1

n´ 1
Res8

G1µpzq

Gµpzq2
` 1

Gµlωpzqn´1
.

We do not know if there exists another variant of Lagrange inversion that would give the
moments Mn in terms of Cpzq and ∆pzq.
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4 Inverting the relation

We now present how to inverse the relation in Equation (2) to get a formula for Cn in terms
of M1, . . . ,Mn. For small values of n, (2) gives:

M1 “ C1,

M2 “ C2 ` C
2
1 ,

M3 “ C3 ` p2` δ1qC2C1 ` C
3
1 ,

M4 “ C4 ` p2` 2δ1qC3C1 ` p1` δ2qC
2
2 ` p3` 2δ1 ` δ2qC2C

2
1 ` C

4
1 .

From that, we successively get the values:

C1 “M1,

C2 “M2 ´M
2
1 ,

C3 “M3 ´ p2` δ1qM2M1 ` p1` δ1qM
3
1 ,

C4 “M4 ´ p2` 2δ1qM3M1 ´ p1` δ2qM
2
2 ` p3` 4δ1 ` 2δ2

1 ` δ2qM2M
2
1 ´ p1` 2δ2

1 ` 2δ1qM
4
1 .

It appears that each coefficient between parentheses is a polynomial in δ1, δ2, . . . with positive
coefficients. This property will be a consequence of our general formula for Cn.

To present the multiplicative extension of Yoshida’s weight, we first need some definitions.
If B Ă N is finite, there is a natural notion of noncrossing partitions of B, using the same
condition as in the definition of NCn (the only property that we need is the total order on B).
They form a lattice denoted NCB. The unique order preserving bijection B Ñ t1, . . . ,#Bu
induces a bijection std : NCB Ñ NCn, called standardization. If π P NCB, its weight is
defined as wtpπq “ wtpstdpπqq.

Also, if π, ρ P NCn with π ď ρ and B P ρ, we define the restriction of π to B as:
π|B “ tC P π : C Ă Bu P NCB. More generally, π|B P NCB is well defined as soon as B is
the union of some blocks of π.

Definition 4.1. The map ζ on NC2
n is given by:

ζpπ, ρq “

$

&

%

ś

BPρ

wtpπ|Bq if π ď ρ,

0 otherwise.
(12)

It is a refinement by the parameters δ1, δ2, . . . of the poset theoretic ζ function of NCn.

Proposition 4.2. If π ď ρ, we have:

ζpπ, ρq “
ź

pi,jqParcpπq

δ
#
 

k : iăkăj, and i
ρ
„k

ρ
„j
(. (13)

Proof. Let us first show that for any finite B Ă N and π P NCB, we have:

wtpπq “
ź

pi,jqParcpπq

δ#tkPB : iăkăju. (14)

If B “ t1, 2, . . . ,#Bu, we have #tk P B : i ă k ă ju “ j´ i´1 and we recover the definition
of the weight. The right hand side of (14) is clearly unchanged by the standardization process,
so we get (14) in general.
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Let π ď ρ in NCn, then we have:

ζpπ, ρq “
ź

BPρ

wtpπ|Bq “
ź

BPρ

ź

pi,jqParcpπq
i,jPB

δ#tkPB : iăkăju,

and we get (13).

Lemma 4.3. We have:

Mρ “
ÿ

πPNCn
πďρ

Cπζpπ, ρq, where Mρ “
ź

BPρ

M#B. (15)

Proof. Using (2) with NCB instead of NC#B, we can write:

Mρ “
ź

BPρ

M#B “
ź

BPρ

´

ÿ

πPNCB

Cπ wtpπq
¯

.

Then we expand the product. Using the fact that the map π ÞÑ pπ|BqBPρ is an order preserving
bijection from tπ P NCn : π ď ρu to

ś

BPρ NCB, and the definition of ζ as a product of
weights, we get the announced formula.

We can see ζ as a matrix whose rows and columns are indexed by NCn, and define its
inverse µ “ ζ´1. It is a refinement by the parameters δ1, δ2, . . . of the Möbius function of
NCn. It follows from (15) that:

C1n “
ÿ

πPNCn

Mπµpπ, 1nq. (16)

So it remains to make µpπ, 1nq explicit. To this end, we use some definitions taken from [7].
Schröder trees themselves are classical objects in combinatorics but it was shown there that
they are an alternative to noncrossing partitions for dealing with free cumulants.

Definition 4.4 (cf. [7]). Let Sn denote the set of Schröder trees with n` 1 leaves, defined as
plane trees where each internal vertex has at least 2 descendants. Among edges issued from
an internal vertex, we have a left edge, a right edge, and other ones are called middle edges.
Let S 1n Ă Sn denote the set of prime Schröder trees, defined as those such that the right edge
issued from the root is attached to a leaf. Also let intpT q denote that set of internal vertices
of a tree T .

When drawing a tree, we take the convention that all leaves are at the same level. For
example, the Schröder trees with 3 leaves are:

, , , (17)

and the first 2 only are prime. Those with 4 leaves are:

, , , , , , (18)

, , , , , (19)
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and the first 6 only are prime.
We need a map η from Schröder trees to noncrossing partitions, introduced in [7]. It is

not bijective, rather we can see it as a kind of cover map (it is surjective and we are interested
in the preimage of a given noncrossing partition, see below).

Definition 4.5 (Cf. [7]). The map η : S 1n Ñ NCn is given by the following rule. Let T P Tn.
First, we place labels 1, 2, . . . , n such that i is placed between the ith and pi ` 1qst leaves,

from left to right. Then, we have i
ηpT q
„ j iff we can draw a path from label i to label j that

stays above the level of the leaves, and cross only middle edges of T .

For example,

η
´

1 2 3 4 5 6 7

¯

“ 1|27|346|5.

Another property that we will need and is elementary to check is that

#ηpT q “ # intpT q. (20)

Definition 4.6. The left branch of a tree T P S 1n is the path going from the root down to the
leftmost leaf. Let int1pT q denote the set of internal vertices that are not in the left branch of
T . The degree degpvq of v P intpT q is its number of descendants. And the weight of T P S 1n is:

wtpT q “
ź

vPint1pT q

δdegpvq´1. (21)

We have now all necessary definitions to state:

Theorem 4.7. For any π P NCn, we have:

µpπ, 1nq “ p´1q#π´1
ÿ

TPS1n, ηpT q“π
wtpT q. (22)

This will be proved in the next section. Together with Equations (16) and (20), it imme-
diately follows:

Theorem 4.8. The nth ∆-cumulant is given combinatorially by

Cn “
ÿ

TPS1n

MηpT qp´1q# intpT q´1 wtpT q.

For example, one can check that the 6 trees in (18) (in this order) gives the formula for
C3 given at the beginning of this section.

In the free case (δi “ 1 for all i, hence wtpT q “ 1 for all T P S 1n), this was obtained in [7].
It was proved there that this formula in terms of prime Schröder trees implies Speicher’s one
involving the Möbius function of NCn [11].
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In the boolean case (δ1 “ 1, δi “ 0 for i ě 2), we have wtpT q “ 1 if all internal vertices
of T are in the left branch, and 0 otherwise. Such trees with wtpT q “ 1 are in bijection with
interval partitions, via the map η (suitably restricted). For example,

η
´

1 2 3 4 5 6 7

¯

“ 1|234|56|7.

Moreover, the factor p´1q# intpT q´1 is easily seen to be the Möbius function of INn evaluated
at pηpT q, 1nq, so we recover the known formula for boolean cumulants [12].

5 Proof of Equation (22)

Let Vπ denote the right hand side of (22), and for ρ P NCn, let

Wρ “
ÿ

πPNCn
ρďπď1n

ζpρ, πqVπ.

Our goal is to show that W1n “ 1 and Wρ “ 0 if ρ ‰ 1n. Indeed, these equations precisely
say that pVπqπPNCn is the column vector of ζ´1 indexed by 1n, i.e. Vπ “ µpπ, 1nq.

First note that W1n “ 1 is straightforward. The sum defining W1n is reduced to the
unique term ζp1n, 1nqV1n . Moreover V1n “ 1 because there is a unique T P S 1n such that
ηpT q “ 1n, that having one internal vertex whose n` 1 descendants are the n` 1 leaves. So,
from now on we assume ρ ă 1n and we want to prove Wρ “ 0.

Let us first rewrite the formula for Vπ in terms of other combinatorial objects, also taken
from [7].

Definition 5.1. Let An denote the set of noncrossing arrangements of binary trees with n
leaves, defined as follows. Given n dots on a horizontal axis, A P An is a set of binary trees
such that: each of the n dots is a leaf of exactly one of the trees, and edges do not cross when
the trees are drawn in the canonical way (formally described by the fact that the edges issued
from an internal vertex go in the South East and South West directions). Also, for A P An,
we define a noncrossing partition A P NCn as follows: label the leaves by 1, 2, . . . , n from left
to right, then each block of A is the set of labels of the leaves in some tree of A.

For example, an element A P A11 is in the right part of Figure 1, and the associated
noncrossing partition is A “ 1456|23|78AB|9. Note that the map A ÞÑ A is surjective but not
injective.

1 2 3 4 5 6 7 8 9 A B

Figure 1: The bijection φ.
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1 1’ 2 2’ 3 3’ 4 4’ 5 5’ 6 6’ 7 7’ 8 8’ 9 9’ A A’

Figure 2: Kreweras complementation.

Proposition 5.2 (cf. [7]). There is a bijection φ : S 1n Ñ An such that for T P S 1n, φpT q is
obtained from T by removing the root and its incident edges, and removing every middle edge
of the tree.

See Figure 1 for an example, and note that there is an obvious identification of the vertices
of φpT q with vertices of T different from the root and the rightmost leaf. For A P An we will
denote int1pAq “ int1pT q where T is the element of S 1n such that φpT q “ A.

Definition 5.3. We extend the weight function to An by the rule that wtpφpT qq “ wtpT q for
any T P S 1n. For two internal vertices v1, v2 P intpAq, we say that v1 covers v2 if, in the unique
T P S 1n such that φpT q “ A, v2 is a descendant of v1 via a middle edge. For v P int1pAq, we
denote by covpvq the number of vertices covered by v.

Lemma 5.4. For A P An, we have:

wtpAq “
ź

vPint1pAq

δcovpvq`1. (23)

Proof. This is a simple reformulation of Definition 4.6 using the bijection φ. Note that for
v P int1pT q, the number of vertices it covers is degpvq ´ 2, since these are all its descendants
except the left and right ones. This explains why the index degpvq ´ 1 in (21) becomes
covpvq ` 1 here.

To state the next lemma, we need the classical notion of Kreweras complement [8]. Let
π P NCn. Suppose we have 2n labels 1, 11, 2, 21, . . . , n, n1 on a horizontal line, in this order,
and that π is drawn as in (3) (only using the labels 1, . . . , n). Then the Kreweras complement

πc of π is defined by the condition that i
πc
„ j iff we can connect i1 to j1 by a path that stays

above the level of the labels, and do not cross the arches of π. For example, Figure 2 shows
that p134|2|59|678|Aqc “ 12|3|49A|58|6|7. The map π ÞÑ πc is a poset anti-isomorphism from
NCn to itself, and its inverse is denoted π ÞÑ cπ. We refer to [8] for details.

Lemma 5.5 (cf. [7]). If T P S 1n, we have φpT q
c
“ ηpT q.

Using the bijection φ and the previous lemma, we can write Vπ in terms of noncrossing
arrangements of binary trees:

Vπ “ p´1q#π´1
ÿ

APAn
A
c
“π

wtpAq.

11



A property of Kreweras complementation is that #π `#πc “ n` 1. Note also that we have
clearly #A “ #A for A P An. So p´1q#π´1 “ p´1qn´#A if A

c
“ π. Plugging the previous

formula for Vπ in the definition of Wρ, it follows:

p´1qnWρ “
ÿ

πPNCn
ρďπď1n

ζpρ, πq
ÿ

APAn
A
c
“π

p´1q#A wtpAq “
ÿ

APAn
ρďA

c

ζpρ,A
c
qp´1q#A wtpAq.

Kreweras complementation being a poset anti-automorphism, we can change the condition in
the summation to get:

p´1qnWρ “
ÿ

APAn
Aďcρ

ζpρ,A
c
qp´1q#A wtpAq.

Then, let us define a map ζc by ζcpα, βq “ ζpβc, αcq. Here we exchange the arguments to
keep the fact that ζcpα, βq “ 0 if α ę β, just as ζ. We get the following equality:

p´1qnWρ “
ÿ

APAn
Aďcρ

ζcpA, cρqp´1q#A wtpAq. (24)

We will show that this quantity is 0 by pairing terms, but we need another lemma before
doing that.

If B Ă N is finite, we denote rBs the smallest interval containing B, i.e. the set of con-
secutive integers tminpBq,minpBq ` 1, . . . ,maxpBqu. Note that if π P NCn and B P π, rBs is
the union of some blocks of π.

If π P NCn, there is an interval partition which is minimal among interval partitions above
π, and its number of blocks is denoted ιpπq. It is easily seen that this number can be computed
as follows: consider B1 P π with minpB1q “ 1, then B2 P π with minpB2q “ maxpB1q` 1, and
so on until we find Bk with minpBkq “ maxpBk´1q ` 1, and maxpBkq “ n, this last condition
meaning that Bk`1 cannot be defined and the process stops. Then k “ ιpπq. More precisely
the smallest interval partition above π is trB1s, . . . , rBksu.

We also extend this map ι to NCB if B Ă N by the requirement ιpπq “ ιpstdpπqq.

Lemma 5.6. If α ď β, we have:

ζcpα, βq “
ź

BPβ,

1RB and minpBq
α
maxpBq

διpα|rBsq´1. (25)

Proof. We will use the following fact, which is straightforward from the definition of Kreweras
complementation: asumming 1 ď i ă j ď n, pi, jq is an arch of πc if and only if there is a
block B P π such that minpBq “ i` 1 and maxpBq “ j.

Our goal is as follows: to each factor δk in ζpβc, αcq, associate a factor δk in the right hand
side of (25), and reciprocally.

Such a factor δk in ζpβc, αcq means we can find j1, . . . , jk`2 such that 1 ď j1 ă j2 ă
¨ ¨ ¨ ă jk`2 ď n, pj1, jk`2q P arcpβcq, and pj1, j2q, . . . , pjk`1, jk`2q P arcpαcq. This follows from
Equation (13).

From pj1, jk`2q P arcpβcq, we get that β contains a block B with minpBq “ j1 ` 1, and
maxpBq “ jk`2. Similarly, there exist B1, . . . , Bk`1 P α such that minpBiq “ ji ` 1 and
maxpBiq “ ji`1 (for 1 ď i ď k ` 1).

12



1 2 3 4 5 6 7 8 9 A B C D E F . . .

v0

v1
v2

ÞÑ

1 2 3 4 5 6 7 8 9 A B C D E F . . .

Figure 3: The involution Ψ.

This block B shows that there is a factor δk in the right hand side of (25). Indeed, we
have 1 R B since minpBq “ j1 ` 1 ě 2. We have minpBq P B1 and maxpBq P Bk`1 so

minpBq
α
 maxpBq. The sets B1, . . . , Bk`1 are blocks of α|rBs, and the relations between their

maxima and minima show that ιpα|rBsq “ k ` 1. So we get a factor δk in the right hand side
of (25), as needed.

In the other direction, we can check that starting from B and the blocks B1, . . . , Bk`1,
we find j1, . . . , jk`2 as above.

The next step is to define a fixed point free involution Ψ on the set tA P An : A ď cρu,
such that

ζcpA, cρqp´1q#A wtpAq “ ´ζcpΨpAq, cρqp´1q#ΨpAqwtpΨpAqq.

It will show that the right hand side of Equation (24) vanishes, since terms indexed by A and
ΨpAq cancel each other out, hence it will complete the proof of Equation (22).

To begin, we denote B0 the (unique) block of cρ such that #B0 ě 2, and minpB0q ă

minpBq if B is another block of cρ such that #B ě 2. Since ρ ‰ 1n, we have cρ ‰ 0n, so B0

exists. To define ΨpAq, we distinguish two cases, whether minpB0q
A
„ maxpB0q or not.

• If minpB0q
A
„ maxpB0q, there is a tree T in the arrangement A, two of whose leaves are

labelled by minpB0q and maxpB0q. Let v0 denote the root of T . Then, ΨpAq is defined
by removing v0 (as well as the two edges issued from it).

• In the other case, minpB0q
A
 maxpB0q, it is the reverse operation. Let T1 and T2 be

the trees in A that respectively contain minpB0q and maxpB0q. Then ΨpAq is obtained
from A by adding a new internal vertex v, whose two descendants are the roots of T1

and T2.

To check that we can add the two new edges without creating a crossing in the latter case,
observe that since A ď cρ, and B0 P

cρ, there exists a noncrossing partitions obtained from
A obtained by merging the block containing minpB0q with that containing maxpB0q. This
shows that Ψ is a well-defined pairing on the set tA P An : A ď cρu. An example is given in
Figure 3, with B0 “ 3678BEF (for example).

Also, the number of trees in ΨpAq is one more or one less than that of A, so p´1q#A “
´p´1q#ΨpAq. It remains only to show:

ζcpA, cρqwtpAq “ ζcpΨpAq, cρqwtpΨpAqq. (26)
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Indeed, Ψ has then all the required properties to show that the right hand side of Equation (24)
vanishes.

We can assume that we are in the first case above, i.e. minpB0q
A
„ maxpB0q, since the two

cases are exchanged under the involution Ψ.
First, if 1 P B0, we have:

ζcpA, cρq “ ζcpΨpAq, cρq.

Indeed, in the product of (13), B0 does not appear since it contains 1, and the other factors
cannot change. We also have:

wtpAq “ wtpΨpAqq.

Indeed, v0 is in the left branch of A, so we can remove it without changing the product in (23).
So (26) holds.

Now suppose 1 R B0. We have from (25):

ζcpΨpAq, cρq “ δ
ιpΨpAq|rB0sq´1

ζcpA, cρq.

On the other side, we have:

δcovpv0q`1 wtpΨpAqq “ wtpAq.

Multiplying the previous two equations gives (26), at the condition that

covpv0q ` 1 “ ι
´

ΨpAq|rB0s

¯

´ 1. (27)

This is therefore the last equality to check to complete the proof of the required properties of
Ψ, hence of Wρ “ 0.

To prove (27), let us first check on the example of Figure 3. The vertices covered by v0

are v1 and v2, and the smallest interval partition above rB0s is 34567|89AB|CD|EF, so (27)
holds. In general, let v10 and v20 be the two descendants of v0. Then, for each vertex v which
is either v10 or v20 or covered by v0, consider the tree T of A containing v, then denote Bv
the set of its leaf labels. Then it is straightforward to see that the intervals rBvs form the
smallest interval partition above ΨpAq|rB0s. This proves (27).
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[3] M. Bożejko, A. D. Krystek,  L. J. Wojakowski: Remarks on the r- and ∆-
convolutions. Math. Z. 253 (2006), 177–196.

[4] L. Comtet: Advanced combinatorics (english translation). Reidel Publishing Com-
pany, Dordrecht, Holland, 1974.

[5] K. Ebrahimi-Fard, F. Patras: Cumulants, free cumulants and half-shuffles. Proc.
Royal Soc. London A 471 (2015).

14



[6] K. Ebrahimi-Fard, F. Patras: The splitting process in free probability theory. Inter-
nat. Math. Res. Notices 2015.

[7] M. Josuat-Vergès, F. Menous, J.-C. Novelli, J.-Y. Thibon: Noncommutative
free cumulants. Adv. Appl. Math., to appear.

[8] G. Kreweras: Sur les partitions non croisées d’un cycle. Disc. Math. 1(4) (1972),
333–350.

[9] A. Krystek, H. Yoshida: The combinatorics of the r-free convolution. Infin. Dimens.
Anal. Quantum Probab. Relat. Top. 6(4) (2003), 619–627.

[10] F. Lehner: Cumulants in noncommutative probability theory I. Noncommutative Ex-
changeability Systems. Math. Z. 248(1) (2004), 67–100.

[11] R. Speicher: Multiplicative functions on the lattice of non-crossing partitions and free
convolution. Math. Ann. 298 (1994), 611–628.

[12] R. Speicher, R. Woroudi: Boolean convolution. Fields Institute Communications,
Vol. 12 (D. Voiculescu, ed.), AMS, 1997, pp. 267–279.

[13] D. Voiculescu: Addition of certain non-commuting random variables. J. Func. Anal.
66 (1986), 323–346.

[14] H. Yoshida: The weight function on non-crossing partitions for the ∆-convolution.
Math. Z. 245 (2003), 105–121.

15


	Introduction
	Definitions
	Lagrange inversion for cumulants
	Inverting the relation
	Proof of Equation (22)

