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Introduction

The (classical) additive convolution µ ˚ν of two real probability measures µ and ν is usually defined as the law of X `Y where X and Y are two independent random variables of law µ and ν, respectively. Other operations, that we can see as deformed convolutions, are obtained by replacing the classical notion of independence with other ones coming from noncommutative probability theories. Two important examples are the free convolution µ ' ν (see Voiculescu [START_REF] Voiculescu | Addition of certain non-commuting random variables[END_REF]) and the boolean convolution µ Ţ ν (see Speicher and Woroudi [START_REF] Speicher | Boolean convolution[END_REF]). The ∆-convolution was introduced by Bożejko [START_REF] Bożejko | Deformed Free Probability of Voiculescu[END_REF] as a special case of the conditionally free convolution from [START_REF] Bożejko | Convolution and limit theorems for conditionally free random variables[END_REF], and further studied in [START_REF] Bożejko | Remarks on the r-and ∆convolutions[END_REF][START_REF] Krystek | The combinatorics of the r-free convolution[END_REF][START_REF] Yoshida | The weight function on non-crossing partitions for the ∆-convolution[END_REF]. See [START_REF] Lehner | Cumulants in noncommutative probability theory I[END_REF] for the general context. This operation, denoted o , depends on another measure ω and specializes at ' (respectively, Ţ

) when ω is the Dirac distribution at 1 (respectively, 0). It can be defined analytically as follows. First, µ is characterized by its Cauchy transform:

G µ pzq " ż 1 z ´x µpdxq.
Then, the function R ∆ µ pzq is implicitly defined by:

G µ pzq " 1 z ´R∆ µ pG µ l ω pzqq (1) 
where µ l ω is the (classical) multiplicative convolution of µ and ω. It is defined like the additive convolution above but with XY instead of X `Y . This function R ∆ µ pzq also characterizes the measure µ, and it is called its R ∆ -transform. This is a deformation of Voiculescu's R-transform (itself being the analog of the logarithm of the Fourier transform in classical probability), see [START_REF] Voiculescu | Addition of certain non-commuting random variables[END_REF]. Then o is characterized by the fact that it is linearized by the R ∆ -transform: R ∆ µ o ν pzq " R ∆ µ pzq `R∆ ν pzq. See [START_REF] Yoshida | The weight function on non-crossing partitions for the ∆-convolution[END_REF] for details.

Rather than the functional equation in [START_REF] Bożejko | Deformed Free Probability of Voiculescu[END_REF], one can consider the relations between the moments M n pµq and ∆-cumulants C n pµq, which are the coefficients in the following expansions, when they exist:

G µ pzq " 8 ÿ n"0 M n pµq z n`1 , R ∆ µ pzq " 8 ÿ n"1
C n pµqz n´1 near z " 8 and z " 0, respectively. Alternatively, we have M n pµq " ş x n µpdxq. These relations depend on the moments of ω, denoted δ n " M n pωq, that we also assume to exist. Yoshida [START_REF] Yoshida | The weight function on non-crossing partitions for the ∆-convolution[END_REF] proved that for an appropriate weight function wt on the set NC n of noncrossing partitions of t1, . . . , nu (defined in the next section), we have:

M n pµq " ÿ πPNCn C π pµq wtpπq, where C π pµq " ź BPπ C #B pµq. (2) 
This generalizes the free and boolean cases, where we have an unweighted sum over noncrossing partitions, and interval partitions, respectively. But in the weighted case of (2), inverting the relation cannot be done via a Möbius inversion of a poset, since the weight wtpπq depends on the δ i 's.

In this work, we provide two different expressions for the ∆-cumulants. The first one (Theorem 3.1) is based on the functional equation in [START_REF] Bożejko | Deformed Free Probability of Voiculescu[END_REF], and is a variant of Lagrange inversion formula (see [START_REF] Comtet | Advanced combinatorics[END_REF]) where a Hadamard product is involved. The second one (Theorem 4.8) is a combinatorial formula that is the inverse of (2), proved by inverting a matrix which is the multiplicative extension of Yoshida's weight. The solution is in terms of Schröder trees, and relies on related notions taken from [START_REF] Josuat-Vergès | Noncommutative free cumulants[END_REF]. In that work, Schröder trees appeared naturally because the relations between moments and free cumulants are interpreted in the group of an operad of trees, or also in terms of characters of Hopf algebras of trees (building on [START_REF] Ebrahimi-Fard | Cumulants, free cumulants and half-shuffles[END_REF][START_REF] Ebrahimi-Fard | The splitting process in free probability theory[END_REF]). However, we don't have such an algebraic interpretation for the case of ∆-cumulants.

Definitions

When π is a set partition of a set X, we denote π " the equivalence relation defined by i π " j iff i, j P B for some block B P π.

Let NC n denote the set of noncrossing partitions of t1, . . . , nu, i.e. set partitions of t1, . . . , nu where there exist no i, j, k, l such that i ă j ă k ă l, i π " k, j π " l and j π  k. For example, tt1, 4, 6u, t2, 3u, t5uu P NC 6 . To lighten the notation, the same is written 146|23|5, and it is represented as: 1 2 3 4 5 6

.

(

) 3 
Endowed with the reverse refinement order, NC n is a lattice, first defined by Kreweras [START_REF] Kreweras | Sur les partitions non croisées d'un cycle[END_REF]. Its minimal element is 0 n " 1|2| . . . |n, and its maximal element is 1 n " 12 . . . n.

Let arcpπq denote the set of arcs of π P NC n , i.e. pairs pi, jq such that i ă j, i π " j, and there is no k such that i ă k ă j and i π " j π " k. They are indeed arcs in the graphical representations as in (3), for example those of 146|23|5 are p1, 4q, p4, 6q, p2, 3q. Note that there are #B ´1 arcs inside a block B of π, and it follows that # arcpπq `#π " n. In the free case (δ i " 1 for all i), we have wtpπq " 1 for all π P NC n . So Equation ( 2) is the known relation for free cumulants [START_REF] Speicher | Multiplicative functions on the lattice of non-crossing partitions and free convolution[END_REF]. In the boolean case (δ 1 " 1 and δ i " 0 for i ě 2), we have wtpπq " 1 if π P IN n and 0 otherwise. So Equation ( 2) is the known relation for boolean cumulants [START_REF] Speicher | Boolean convolution[END_REF].

The Hadamard product d of two series is defined by:

´ÿ a n z n ¯d ´ÿ b n z n ¯" ´ÿ a n b n z n ¯.
This operation makes sense either for formal power series, or functions that are analytic at a specified point. If two measures µ and ν have all their moments, their Cauchy transforms are analytic near z " 8, and we have:

G µ l ν pzq " G µ pzq d G ν pzq. (5) 
Indeed, let X and Y be two independent random variables of law µ and ν, respectively. Then we have ErpXY q n s " ErX n Y n s " ErX n sErY n s, so M n pµ l νq " M n pµqM n pνq.

From now on, we write M n for the moments and C n for the ∆-cumulants, dropping the dependence in µ, and consider their generating functions:

M pzq " ÿ ně0 M n z n`1 , Cpzq " ÿ ně1 C n z n´1 .
And to avoid confusion, we take specific notations for the two specializations of C n : F n and B n are respectively the free cumulants and boolean cumulants associated with M n . Their generating functions are:

F pzq " ÿ ně1 F n z n´1 , Bpzq " ÿ ně1 B n z n´1 .
Moreover, the generating function of the moments of ω is similar to M pzq:

∆pzq " ÿ ně0 δ n z n`1 .
In fact, since our results are essentially of algebraic or combinatorial nature, we don't need to assume that pC n q or pδ n q is the moment sequence of some measure, we can treat them as formal variables and their generating functions as formal power series. In this setting, pM n q and pC n q are related by [START_REF] Bożejko | Convolution and limit theorems for conditionally free random variables[END_REF] if and only if their generating functions are related by:

M pzq " z 1 ´zCpM pzq d ∆pzqq . (6) 
This is a rewriting of (1), using [START_REF] Ebrahimi-Fard | Cumulants, free cumulants and half-shuffles[END_REF] and changing z to z ´1.

In particular, in the free case we have M pzq d ∆pzq " M pzq, and the relation between M pzq and F pzq is the definition of Voiculescu's R-transform [START_REF] Voiculescu | Addition of certain non-commuting random variables[END_REF]:

M pzq " z 1 ´zF pM pzqq . ( 7 
)
And in the boolean case, M pzq d ∆pzq " z, and we recover the analytic definition of boolean cumulants [START_REF] Speicher | Boolean convolution[END_REF]:

Bpzq " 1 z ´1 M pzq . ( 8 
)

Lagrange inversion for cumulants

In this section, we denote by rz k sgpzq the coefficient of z k in a formal Laurent series gpzq.

A formal power series f pzq " ř ně1 a n z n with a 1 ‰ 0 has a unique compositional inverse f x´1y pzq, such that f pf x´1y pzqq " f x´1y pf pzqq " z. Lagrange inversion formula is the identity:

rz n sf x´1y pzq " 1 n rz n´1 s ´z f pzq ¯n. (9) 
It comes in a wide range of different forms and has a lot of variants and generalizations, see Comtet's book [START_REF] Comtet | Advanced combinatorics[END_REF]Chapter III]. Let us review how to use it in the case of free cumulants, following Speicher [START_REF] Speicher | Multiplicative functions on the lattice of non-crossing partitions and free convolution[END_REF]. From (7), we get:

M pzq ´zM pzqF pM pzqq " z, and then:

M pzq 1 `M pzqF pM pzqq " z, i.e. M x´1y pzq " z 1`zF pzq . Applying (9) gives M n " 1 n `1 rz n s `1 `zF pzq ˘n`1 .
Another identity is Hermite's formula [4, p. 150, Theorem D)]:

rz n s z f x´1y pzq " rz n sf 1 pzq ´z f pzq ¯n,
from which we get:

F n " rz n sM 1 pzq ´z M pzq ¯n.
One might prefer a formula only involving M pzq and not its derivative, and this is possible at the condition of working with Laurent series. Indeed, the previous formula also gives:

F n " rz 0 s M 1 pzq M pzq n ,
and since M 1 pzq M pzq n " ´1 n´1 p 1 M pzq n´1 q 1 for n ě 2, we have:

F n " ´1 n ´1 rzs 1 M pzq n´1 . ( 10 
)
In the case of our series related by Equation ( 6), we can adapt a classical proof of Lagrange inversion formula to get the following: Theorem 3.1. For n ě 2, the nth ∆-cumulant is given by:

C n " 1 n ´1 rz ´1s M 1 pzq M pzq 2 ´1 z 2 `M pzq d ∆pzq ˘n´1 . (11) 
Proof. From ( 6), we have:

M pzq ´z zM pzq " ÿ ně1 C n `M pzq d ∆pzq ˘n´1 .
Taking the derivative, we have:

´1 z 2 `M 1 pzq M pzq 2 " ÿ ně2 pn ´1qC n `M pzq d ∆pzq ˘1`M pzq d ∆pzq ˘n´2 .
Divide on both sides by `M pzq d ∆pzq ˘k to get:

M 1 pzq M pzq 2 ´1 z 2 `M pzq d ∆pzq ˘k " ÿ ně2 pn ´1qC n `M pzq d ∆pzq ˘1`M pzq d ∆pzq ˘n´k´2 .
Then, take the coefficient of z ´1. To deal with the right hand side, note that if n ‰ k `1, we have:

`M pzq d ∆pzq ˘1`M pzq d ∆pzq ˘n´k´2 " 1 n ´k ´1 `pM pzq d ∆pzqq n´k´1 ˘1.
Since rz ´1sf 1 pzq " 0 for any Laurent series f pzq, it remains:

rz ´1s M 1 pzq M pzq 2 ´1 z 2 `M pzq d ∆pzq ˘k " kC k`1 rz ´1s `M pzq d ∆pzq ˘1`M pzq d ∆pzq ˘´1 .
From M pzq d ∆pzq " z `Opz 2 q, we easily obtain rz ´1s `M pzq d ∆pzq ˘1`M pzq d ∆pzq ˘´1 " 1. We thus obtain a formula for kC k`1 and Equation ( 11) follows.

We end this section by a few remarks about the previous theorem. In the boolean case, we have ∆pzq " z and M pzq d ∆pzq " z, so it says:

pn ´1qB n " rz ´1s ´M 1 pzq z n´1 M pzq 2 ´1 z n`1 ˘" rz n´2 s M 1 pzq M pzq 2 .
After multiplying by z n´2 and summing for n ě 2, we get:

B 1 pzq " M 1 pzq M pzq 2 ´1 z 2
where the term ´1 z 2 is needed to remove negative powers of z from M 1 pzq M pzq 2 . This agrees with the analytic definition of boolean cumulants in [START_REF] Kreweras | Sur les partitions non croisées d'un cycle[END_REF].

In the free case, M pzq d ∆pzq " M pzq, so we get:

F n " 1 n ´1 rz ´1s ´M 1 pzq M pzq n ´1 z 2 M pzq n´1 ¯.
Since M 1 pzq M pzq n " p´1 pn´1qM pzq n´1 q 1 , we have rz ´1s M 1 pzq M pzq n " 0. So the formula gives

F n " ´1 n ´1 rz ´1s 1 z 2 M pzq n´1
and we recover [START_REF] Lehner | Cumulants in noncommutative probability theory I[END_REF].

It is worth writing the previous theorem in a more analytic way, using Cauchy transforms. We have:

pn ´1qC n " rz ´1s M 1 pzq M pzq 2 ´1 z 2 `M pzq d ∆pzq ˘n´1 " rzs M 1 p 1 z q M p 1 z q 2 ´z2 `M p 1 z q d ∆p 1 z q ˘n´1 " rz ´1s M 1 p 1 z q z 2 M p 1 z q 2 ´1 `M p 1 z q d ∆p 1 z q ˘n´1 .
Since M p 1 z q " G µ pzq, and ∆p 1 z q " G ω pzq, this gives:

pn ´1qC n " rz ´1s ´G1 µ pzq G µ pzq 2 ´1 pG µ pzq d G ω pzqq n´1 .
For a function which is analytic near z " 8, its residue at z " 8 is given by Res 8 f pzq " ´rz ´1sf pzq and can be calculated by a contour integral. So the analytic formulation of the previous theorem is:

C n " 1 n ´1 Res 8 G 1 µ pzq G µ pzq 2 `1 G µ l ω pzq n´1 .
We do not know if there exists another variant of Lagrange inversion that would give the moments M n in terms of Cpzq and ∆pzq.

Inverting the relation

We now present how to inverse the relation in Equation ( 2) to get a formula for C n in terms of M 1 , . . . , M n . For small values of n, (2) gives:

M 1 " C 1 , M 2 " C 2 `C2 1 , M 3 " C 3 `p2 `δ1 qC 2 C 1 `C3 1 , M 4 " C 4 `p2 `2δ 1 qC 3 C 1 `p1 `δ2 qC 2 2 `p3 `2δ 1 `δ2 qC 2 C 2 1 `C4 1 .
From that, we successively get the values:

C 1 " M 1 , C 2 " M 2 ´M 2 1 , C 3 " M 3 ´p2 `δ1 qM 2 M 1 `p1 `δ1 qM 3 1 , C 4 " M 4 ´p2 `2δ 1 qM 3 M 1 ´p1 `δ2 qM 2 2 `p3 `4δ 1 `2δ 2 1 `δ2 qM 2 M 2 1 ´p1 `2δ 2 1 `2δ 1 qM 4 1 .
It appears that each coefficient between parentheses is a polynomial in δ 1 , δ 2 , . . . with positive coefficients. This property will be a consequence of our general formula for C n .

To present the multiplicative extension of Yoshida's weight, we first need some definitions. If B Ă N is finite, there is a natural notion of noncrossing partitions of B, using the same condition as in the definition of NC n (the only property that we need is the total order on B). They form a lattice denoted NC B . The unique order preserving bijection B Ñ t1, . . . , #Bu induces a bijection std : NC B Ñ NC n , called standardization. If π P NC B , its weight is defined as wtpπq " wtpstdpπqq.

Also, if π, ρ P NC n with π ď ρ and B P ρ, we define the restriction of π to B as: π| B " tC P π : C Ă Bu P NC B . More generally, π| B P NC B is well defined as soon as B is the union of some blocks of π. n is given by: ζpπ, ρq "

$ & % ś BPρ wtpπ| B q if π ď ρ, 0 otherwise. ( 12 
)
It is a refinement by the parameters δ 1 , δ 2 , . . . of the poset theoretic ζ function of NC n . 

Proof. Let us first show that for any finite B Ă N and π P NC B , we have:

wtpπq " ź pi,jqParcpπq δ #tkPB : iăkăju . (14) 
If B " t1, 2, . . . , #Bu, we have #tk P B : i ă k ă ju " j ´i ´1 and we recover the definition of the weight. The right hand side of ( 14) is clearly unchanged by the standardization process, so we get ( 14) in general.

Let π ď ρ in NC n , then we have:

ζpπ, ρq " ź BPρ wtpπ| B q " ź BPρ ź pi,jqParcpπq i,jPB δ #tkPB : iăkăju ,
and we get [START_REF] Voiculescu | Addition of certain non-commuting random variables[END_REF].

Lemma 4.3. We have:

M ρ " ÿ πPNCn πďρ C π ζpπ, ρq, where M ρ " ź BPρ M #B . (15) 
Proof. Using (2) with NC B instead of NC #B , we can write:

M ρ " ź BPρ M #B " ź BPρ ´ÿ πPNC B C π wtpπq ¯.
Then we expand the product. Using the fact that the map π Þ Ñ pπ| B q BPρ is an order preserving bijection from tπ P NC n : π ď ρu to ś BPρ NC B , and the definition of ζ as a product of weights, we get the announced formula.

We can see ζ as a matrix whose rows and columns are indexed by NC n , and define its inverse µ " ζ ´1. It is a refinement by the parameters δ 1 , δ 2 , . . . of the Möbius function of NC n . It follows from (15) that:

C 1n " ÿ πPNCn M π µpπ, 1 n q. ( 16 
)
So it remains to make µpπ, 1 n q explicit. To this end, we use some definitions taken from [START_REF] Josuat-Vergès | Noncommutative free cumulants[END_REF]. Schröder trees themselves are classical objects in combinatorics but it was shown there that they are an alternative to noncrossing partitions for dealing with free cumulants.

Definition 4.4 (cf. [START_REF] Josuat-Vergès | Noncommutative free cumulants[END_REF]). Let S n denote the set of Schröder trees with n `1 leaves, defined as plane trees where each internal vertex has at least 2 descendants. Among edges issued from an internal vertex, we have a left edge, a right edge, and other ones are called middle edges.

Let S 1 n Ă S n denote the set of prime Schröder trees, defined as those such that the right edge issued from the root is attached to a leaf. Also let intpT q denote that set of internal vertices of a tree T .

When drawing a tree, we take the convention that all leaves are at the same level. For example, the Schröder trees with 3 leaves are:

, , , (17) 
and the first 2 only are prime. Those with 4 leaves are:

, , , , , , (18) 
, , , , , (19) 
and the first 6 only are prime. We need a map η from Schröder trees to noncrossing partitions, introduced in [START_REF] Josuat-Vergès | Noncommutative free cumulants[END_REF]. It is not bijective, rather we can see it as a kind of cover map (it is surjective and we are interested in the preimage of a given noncrossing partition, see below). Definition 4.5 (Cf. [START_REF] Josuat-Vergès | Noncommutative free cumulants[END_REF]). The map η : S 1 n Ñ NC n is given by the following rule. Let T P T n . First, we place labels 1, 2, . . . , n such that i is placed between the ith and pi `1qst leaves, from left to right. Then, we have i ηpT q " j iff we can draw a path from label i to label j that stays above the level of the leaves, and cross only middle edges of T .

For example, η ´1 2 3 4 5 6 7 ¯" 1|27|346|5.

Another property that we will need and is elementary to check is that #ηpT q " # intpT q.

(20)

Definition 4.6. The left branch of a tree T P S 1 n is the path going from the root down to the leftmost leaf. Let int 1 pT q denote the set of internal vertices that are not in the left branch of T . The degree degpvq of v P intpT q is its number of descendants. And the weight of T P S 1 n is:

wtpT q " ź vPint 1 pT q δ degpvq´1 . ( 21 
)
We have now all necessary definitions to state:

Theorem 4.7. For any π P NC n , we have:

µpπ, 1 n q " p´1q #π´1 ÿ T PS 1 n , ηpT q"π wtpT q. ( 22 
)
This will be proved in the next section. Together with Equations ( 16) and ( 20), it immediately follows:

Theorem 4.8. The nth ∆-cumulant is given combinatorially by

C n " ÿ T PS 1 n M ηpT q p´1q # intpT q´1 wtpT q.
For example, one can check that the 6 trees in (18) (in this order) gives the formula for C 3 given at the beginning of this section.

In the free case (δ i " 1 for all i, hence wtpT q " 1 for all T P S 1 n ), this was obtained in [START_REF] Josuat-Vergès | Noncommutative free cumulants[END_REF]. It was proved there that this formula in terms of prime Schröder trees implies Speicher's one involving the Möbius function of NC n [START_REF] Speicher | Multiplicative functions on the lattice of non-crossing partitions and free convolution[END_REF].

In the boolean case (δ 1 " 1, δ i " 0 for i ě 2), we have wtpT q " 1 if all internal vertices of T are in the left branch, and 0 otherwise. Such trees with wtpT q " 1 are in bijection with interval partitions, via the map η (suitably restricted). For example, η ´1 2 3 4 5 6 7 ¯" 1|234|56|7.

Moreover, the factor p´1q # intpT q´1 is easily seen to be the Möbius function of IN n evaluated at pηpT q, 1 n q, so we recover the known formula for boolean cumulants [START_REF] Speicher | Boolean convolution[END_REF].

Proof of Equation (22)

Let V π denote the right hand side of (22), and for ρ P NC n , let

W ρ " ÿ πPNCn ρďπď1n ζpρ, πqV π .
Our goal is to show that W 1n " 1 and W ρ " 0 if ρ ‰ 1 n . Indeed, these equations precisely say that pV π q πPNCn is the column vector of ζ ´1 indexed by 1 n , i.e. V π " µpπ, 1 n q.

First note that W 1n " 1 is straightforward. The sum defining W 1n is reduced to the unique term ζp1 n , 1 n qV 1n . Moreover V 1n " 1 because there is a unique T P S 1 n such that ηpT q " 1 n , that having one internal vertex whose n `1 descendants are the n `1 leaves. So, from now on we assume ρ ă 1 n and we want to prove W ρ " 0.

Let us first rewrite the formula for V π in terms of other combinatorial objects, also taken from [START_REF] Josuat-Vergès | Noncommutative free cumulants[END_REF]. Definition 5.1. Let A n denote the set of noncrossing arrangements of binary trees with n leaves, defined as follows. Given n dots on a horizontal axis, A P A n is a set of binary trees such that: each of the n dots is a leaf of exactly one of the trees, and edges do not cross when the trees are drawn in the canonical way (formally described by the fact that the edges issued from an internal vertex go in the South East and South West directions). Also, for A P A n , we define a noncrossing partition A P NC n as follows: label the leaves by 1, 2, . . . , n from left to right, then each block of A is the set of labels of the leaves in some tree of A.

For example, an element A P A 11 is in the right part of Figure 1, and the associated noncrossing partition is A " 1456|23|78AB|9. Note that the map A Þ Ñ A is surjective but not injective. Proposition 5.2 (cf. [START_REF] Josuat-Vergès | Noncommutative free cumulants[END_REF]). There is a bijection φ : S 1 n Ñ A n such that for T P S 1 n , φpT q is obtained from T by removing the root and its incident edges, and removing every middle edge of the tree.

See Figure 1 for an example, and note that there is an obvious identification of the vertices of φpT q with vertices of T different from the root and the rightmost leaf. For A P A n we will denote int 1 pAq " int 1 pT q where T is the element of S 1 n such that φpT q " A.

Definition 5.3. We extend the weight function to A n by the rule that wtpφpT qq " wtpT q for any T P S 1 n . For two internal vertices v 1 , v 2 P intpAq, we say that v 1 covers v 2 if, in the unique T P S 1 n such that φpT q " A, v 2 is a descendant of v 1 via a middle edge. For v P int 1 pAq, we denote by covpvq the number of vertices covered by v.

Lemma 5.4. For A P A n , we have:

wtpAq " ź vPint 1 pAq δ covpvq`1 . (23) 
Proof. This is a simple reformulation of Definition 4.6 using the bijection φ. Note that for v P int 1 pT q, the number of vertices it covers is degpvq ´2, since these are all its descendants except the left and right ones. This explains why the index degpvq ´1 in (21) becomes covpvq `1 here.

To state the next lemma, we need the classical notion of Kreweras complement [START_REF] Kreweras | Sur les partitions non croisées d'un cycle[END_REF]. Let π P NC n . Suppose we have 2n labels 1, 1 1 , 2, 2 1 , . . . , n, n 1 on a horizontal line, in this order, and that π is drawn as in (3) (only using the labels 1, . . . , n). Then the Kreweras complement π c of π is defined by the condition that i π c " j iff we can connect i 1 to j 1 by a path that stays above the level of the labels, and do not cross the arches of π. For example, Figure 2 shows that p134|2|59|678|Aq c " 12|3|49A|58|6|7. The map π Þ Ñ π c is a poset anti-isomorphism from NC n to itself, and its inverse is denoted π Þ Ñ c π. We refer to [START_REF] Kreweras | Sur les partitions non croisées d'un cycle[END_REF] for details. Lemma 5.5 (cf. [START_REF] Josuat-Vergès | Noncommutative free cumulants[END_REF]). If T P S 1 n , we have φpT q c " ηpT q.

Using the bijection φ and the previous lemma, we can write V π in terms of noncrossing arrangements of binary trees: This block B shows that there is a factor δ k in the right hand side of (25). Indeed, we have 1 R B since minpBq " j 1 `1 ě 2. We have minpBq P B 1 and maxpBq P B k`1 so minpBq α  maxpBq. The sets B 1 , . . . , B k`1 are blocks of α| rBs , and the relations between their maxima and minima show that ιpα| rBs q " k `1. So we get a factor δ k in the right hand side of (25), as needed.

V π " p´1q #π´1 ÿ APAn A c "π wtpAq. 1 2 3 4 5 6 7 8 9 A B C D E F . . . v 0 v 1 v 2 Þ Ñ 1 
In the other direction, we can check that starting from B and the blocks B 1 , . . . , B k`1 , we find j 1 , . . . , j k`2 as above. The next step is to define a fixed point free involution Ψ on the set tA P A n : A ď c ρu, such that ζ c pA, c ρqp´1q #A wtpAq " ´ζc pΨpAq, c ρqp´1q #ΨpAq wtpΨpAqq.

It will show that the right hand side of Equation (24) vanishes, since terms indexed by A and ΨpAq cancel each other out, hence it will complete the proof of Equation (22).

To begin, we denote B 0 the (unique) block of c ρ such that #B 0 ě 2, and minpB 0 q ă minpBq if B is another block of c ρ such that #B ě 2. Since ρ ‰ 1 n , we have c ρ ‰ 0 n , so B 0 exists. To define ΨpAq, we distinguish two cases, whether minpB 0 q A " maxpB 0 q or not.

• If minpB 0 q A " maxpB 0 q, there is a tree T in the arrangement A, two of whose leaves are labelled by minpB 0 q and maxpB 0 q. Let v 0 denote the root of T . Then, ΨpAq is defined by removing v 0 (as well as the two edges issued from it).

• In the other case, minpB 0 q A  maxpB 0 q, it is the reverse operation. Let T 1 and T 2 be the trees in A that respectively contain minpB 0 q and maxpB 0 q. Then ΨpAq is obtained from A by adding a new internal vertex v, whose two descendants are the roots of T 1 and T 2 .

To check that we can add the two new edges without creating a crossing in the latter case, observe that since A ď c ρ, and B 0 P c ρ, there exists a noncrossing partitions obtained from A obtained by merging the block containing minpB 0 q with that containing maxpB 0 q. This shows that Ψ is a well-defined pairing on the set tA P A n : A ď c ρu. An example is given in Figure 3, with B 0 " 3678BEF (for example).

Also, the number of trees in ΨpAq is one more or one less than that of A, so p´1q #A " ´p´1q #ΨpAq . It remains only to show: ζ c pA, c ρq wtpAq " ζ c pΨpAq, c ρq wtpΨpAqq.

(26)

Indeed, Ψ has then all the required properties to show that the right hand side of Equation (24) vanishes.

We can assume that we are in the first case above, i.e. minpB 0 q A " maxpB 0 q, since the two cases are exchanged under the involution Ψ.

First, if 1 P B 0 , we have: ζ c pA, c ρq " ζ c pΨpAq, c ρq.

Indeed, in the product of ( 13), B 0 does not appear since it contains 1, and the other factors cannot change. We also have: wtpAq " wtpΨpAqq.

Indeed, v 0 is in the left branch of A, so we can remove it without changing the product in (23). So (26) holds. Now suppose 1 R B 0 . We have from (25):

ζ c pΨpAq, c ρq " δ ιpΨpAq| rB 0 sq ´1ζ c pA, c ρq.

On the other side, we have:

δ covpv 0 q`1 wtpΨpAqq " wtpAq.

Multiplying the previous two equations gives (26), at the condition that covpv 0 q `1 " ι ´ΨpAq| rB 0 s ¯´1.

This is therefore the last equality to check to complete the proof of the required properties of Ψ, hence of W ρ " 0.

To prove (27), let us first check on the example of Figure 3. The vertices covered by v 0 are v 1 and v 2 , and the smallest interval partition above rB 0 s is 34567|89AB|CD|EF, so (27) holds. In general, let v 1 0 and v 2 0 be the two descendants of v 0 . Then, for each vertex v which is either v 1 0 or v 2 0 or covered by v 0 , consider the tree T of A containing v, then denote B v the set of its leaf labels. Then it is straightforward to see that the intervals rB v s form the smallest interval partition above ΨpAq| rB 0 s . This proves (27).
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  If we allow ω to be a positive measure (i.e. δ 0 " M 0 pωq is any positive number instead of δ 0 " 1 for a probability measure), we see in Equation (2) that M n pµq is homogeneous of degree n in C 1 pµq, C 2 pµq, . . . and δ 0 , δ 1 , . . . (by the relation #π `# arcpπq " n). So there is no loss of generality when we assume δ 0 " 1.Let IN n Ă NC n denote the set of interval partitions of t1, . . . , nu, i.e. set partitions where each block is an interval of consecutive integers. Equivalently, π P NC n is in IN n iff it has no arc pi, jq with j ´i ě 2.
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A property of Kreweras complementation is that #π `#π c " n `1. Note also that we have clearly #A " #A for A P A n . So p´1q #π´1 " p´1q n´#A if A c " π. Plugging the previous formula for V π in the definition of W ρ , it follows:

Kreweras complementation being a poset anti-automorphism, we can change the condition in the summation to get:

Then, let us define a map ζ c by ζ c pα, βq " ζpβ c , α c q. Here we exchange the arguments to keep the fact that ζ c pα, βq " 0 if α ę β, just as ζ. We get the following equality:

We will show that this quantity is 0 by pairing terms, but we need another lemma before doing that.

If B Ă N is finite, we denote rBs the smallest interval containing B, i.e. the set of consecutive integers tminpBq, minpBq `1, . . . , maxpBqu. Note that if π P NC n and B P π, rBs is the union of some blocks of π.

If π P NC n , there is an interval partition which is minimal among interval partitions above π, and its number of blocks is denoted ιpπq. It is easily seen that this number can be computed as follows: consider B 1 P π with minpB 1 q " 1, then B 2 P π with minpB 2 q " maxpB 1 q `1, and so on until we find B k with minpB k q " maxpB k´1 q `1, and maxpB k q " n, this last condition meaning that B k`1 cannot be defined and the process stops. Then k " ιpπq. More precisely the smallest interval partition above π is trB 1 s, . . . , rB k su.

We also extend this map ι to NC B if B Ă N by the requirement ιpπq " ιpstdpπqq.

Lemma 5.6. If α ď β, we have:

Proof. We will use the following fact, which is straightforward from the definition of Kreweras complementation: asumming 1 ď i ă j ď n, pi, jq is an arch of π c if and only if there is a block B P π such that minpBq " i `1 and maxpBq " j.

Our goal is as follows: to each factor δ k in ζpβ c , α c q, associate a factor δ k in the right hand side of (25), and reciprocally.

Such a factor δ k in ζpβ c , α c q means we can find j 1 , . . . , j k`2 such that 1 ď j 1 ă j 2 ă ¨¨¨ă j k`2 ď n, pj 1 , j k`2 q P arcpβ c q, and pj 1 , j 2 q, . . . , pj k`1 , j k`2 q P arcpα c q. This follows from Equation [START_REF] Voiculescu | Addition of certain non-commuting random variables[END_REF].

From pj 1 , j k`2 q P arcpβ c q, we get that β contains a block B with minpBq " j 1 `1, and maxpBq " j k`2 . Similarly, there exist B 1 , . . . , B k`1 P α such that minpB i q " j i `1 and maxpB i q " j i`1 (for 1 ď i ď k `1).