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ABSTRACT

The estimation of glottal flow from a speech waveform is an
essential technique used in speech analysis and parameterisa-
tion. Significant research effort has been addressed at separat-
ing the first vocal tract resonance from the glottal formant (the
low-frequency resonance that describes the open-phase of the
vocal fold vibration), but few methods are capable of estimat-
ing the high-frequency spectral tilt, characteristic of the clos-
ing phase of the vocal fold vibration (which is crucial to the
perception of vocal effort). This paper proposes an improved
Iterative Adaptive Inverse Filtering (IAIF) method based on a
Glottal Flow Model, which we call GFM-IAIF. The proposed
method models the wide-band glottis response, incorporating
both glottal formant and spectral tilt characteristics. Evalua-
tion against IAIF and recently proposed IOP-IAIF shows that,
while GFM-IAIF maintains good performance on vocal tract
modelling, it significantly improves the glottis model. This
ensures that timbral variations associated to voice quality can
be correctly attributed and described.

Index Terms— Glottal inverse filtering, Glottal flow,
Spectral model, Spectral tilt, Voice quality

1. INTRODUCTION

Speech communication combines linguistic attributes to con-
vey phonetic information through articulation, and prosodic
attributes that encode speech expression through variation
of pitch, intensity, rhythm and timbre. The widely used lin-
ear source filter model [1] combines those components in
four parts; an excitation E, vocal tract (VT) filter V , lip
radiation filter L and glottis component G to yield speech
S(f) = E(f)G(f)V (f)L(f). The role of G is to model the
vibration shape of the vocal folds to convey voice quality. It
is often combined with L into a glottal flow derivative (GFD).

Glottal inverse filtering (GIF) [2] is used to separate these
components from recorded speech. It first estimates the glot-
tis and VT filters, then deconvolves the VT filter from the
speech signal. While glottal spectra are broadband, most cur-
rent GIF methods simply assign the lower part of the spec-
trum to the glottis G and the higher part to the VT V . In
[3] the authors proposed a new GIF method that extended the

well-known Iterative Adaptive Inverse Filtering (IAIF) pro-
cess [4], to wideband characteristics to more accurately ap-
portion spectral influences between G and V and hence better
model vocal effort. More recently, Mokhtari et al. [5] evalu-
ated this glottal flow model (GFM) against IAIF and the IOP-
IAIF method [6] using computational physical modelling. In
the current paper, we perform an in-depth evaluation of each
method using optimal parameters, against well established
evaluation criteria [7] on both synthetic speech and natural
speech. Results demonstrate the ability of GFM to (a) prop-
erly respond to changes in vocal effort, (b) accurately model
the wide-band glottis frequency response, yielding better glot-
tal estimation in the high frequency part of the spectrum.

2. GLOTTAL INVERSE FILTERING METHODS

2.1. Spectral glottal flow model

Vocal folds vibrations are asymmetric, with a slow open-
ing phase responsible for a spectral resonance called ‘glot-
tal formant’, and a more abrupt closing phase contribut-
ing to the higher spectral frequencies. These observations
motivate a 3rd order spectral model of glottal flow that
combines a complex conjugate pole pair {a, a∗} account-
ing for the glottal formant, with one real pole b modelling
the high frequency attenuation called ‘spectral tilt’, giving:
G(z) =

{
(1− az−1)(1− a∗z−1)(1− bz−1)

}−1
[8, 9]. Ap-

plications to voice quality modification [10] and expressive
singing or speech synthesis [11, 12] has demonstrated the
close relationship between this glottal flow model (GFM) and
perception of voice quality (e.g. tenseness, effort).

2.2. Glottal inverse filtering methods

GIF has been a topic of research for more than 60 years [13,
14] with most current methods based on linear prediction [15]
to extract the VT after pre-emphasis. The glottis filter is of-
ten reduced to the glottal formant contribution (b = 0), and
assuming that the a coefficient in G is close to the coefficient
of the lip radiation filter L(z) = 1−d, pre-emphasis removes
the contribution of GL by first-order high-pass filtering [16].
This is the case in IAIF which uses 1st order LPC analysis
to define the pre-emphasis filter [4]. While this method uses



straightforward computation without a priori knowledge of
the signal (no estimation) and is noise robust [7], it fails to
encompass the spectral tilt of the glottis filter, which is an im-
portant attribute related to the perception of vocal effort. IOP-
IAIF [6] is a recent attempt to include spectral tilt through un-
constrained high-order filtering for signal pre-emphasis. We
believe that while improvements to IAIF are merited, an un-
constrained filter order risks endowing the glottal model with
too much complexity. It also complicates the extraction of
perceptual parameters for applications such as analysis, voice
modification or coding. In [3] we therefore proposed replac-
ing the 1st order IAIF glottal model with a 3rd order filter
matching the GFM, based on strong evidence that this degree
of complexity is sufficient [8, 10, 11]. We will demonstrate
that this is significantly better than IAIF at conveying vocal
effort information. It also allows simple spectral parameters
to describe the model, related to the three poles, which is ben-
eficial for voice transformation, coding, or synthesis.

3. FRAMEWORK OF GFM-IAIF

GFM-IAIF primarily proposes replacing the simple IAIF pre-
emphasis filter with a 3rd order glottal model as shown in
Fig 1. Like traditional IAIF [4], it comprises four steps, with
the main difference being in pre-emphasis (step 1) and fine
glottis estimation (step 3). Step 1, also called gross glottis es-
timation, enables removal of the glottis spectral tilt contribu-
tion from the speech signal, in preparation for VT estimation.
It is essential in this step not to model any VT formants. Esti-
mation is therefore accomplished by three successive 1st order
LPC iterations and the resulting gross glottis filter has three
real poles. In VT gross estimation (step 2), the gross glottis
and lip radiation filters are deconvolved from the original sig-
nal and VT autoregressive coefficients estimated through high
order LPC. Next, fine estimation of the glottis (step 3) first re-
moves lip radiation and the estimated VT contributions (hence
all VT formants) from the speech signal. From this, the full
spectral envelope of the glottis is extracted, including glottal
formant and high frequency attenuation. A 3rd order LPC is
used, to ensure that the final glottis filter adheres to the glottal
flow model. VT fine estimation (step 4) then reverts to the
IAIF final step. The glottal flow derivative is finally obtained
by deconvolving the fine VT from the speech signal.

4. EVALUATION

In this section, GFM-IAIF, the recently published IOP-IAIF
[5], and IAIF [17] are evaluated and compared. We adopt the
Drugman et al. [7] GIF evaluation on (a) synthetic speech, to
quantify the ability to model glottis characteristics, and (b)
natural speech, to evaluate how well voice quality is encoded.

Three frequency-domain features [7] are used to describe
the extracted glottal flow: The dB amplitude difference be-
tween first and second harmonics H1H2 [18, 19], relating to
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Fig. 1. Architecture of the GFM-IAIF method. The high-
lighted boxes are steps that differ from the standard IAIF.

the glottal formant position (higher when the latter is closer to
the first harmonic); Harmonic richness factor (HRF), a mea-
sure of the quantity of harmonics in the spectrum, is the ra-
tio between the sum of the 2nd to nth harmonic dB ampli-
tudes over the fundamental frequency amplitude [8]; Spec-
tral tilt (ST in dB/decade), computed from a linear regression
of the n first harmonic amplitudes on a log-frequency scale.
n is chosen to select harmonics below 5 kHz only [17]. All
three parameters have been proven to match the perception of
voice quality – when the voice becomes louder, H1H2 reduces
while HRF and ST increase, and vice versa [8, 18, 20].

4.1. Evaluation on synthetic speech

We synthesised 8700 phone stimuli at Fs = 16 kHz by pass-
ing LF glottal waveforms [21] through auto-regressive VT fil-
ters. The waveforms are defined in the time domain and were
parametrised by the Rd coefficient that describes each glottal
pulse (width and asymmetry) and is representative of voice
quality: small values lead to a tense/loud voice while large
values lead to a lax/soft voice [18]. 30 voice qualities (Rd

from 0.4 to 2.7, equally spaced on a log-scale)× 29 pitch lev-
els (f0 from 100 Hz to 240 Hz with a 5 Hz step)× 10 isolated
vowels were synthesised, using the formant values provided
in [22]. F1 is the centre frequency of the first vocalic formant.

Following [5], the lip radiation coefficient d and the LPC
orders of the fine glottis estimation Ng and both vocal tract es-
timations Nv , were chosen to minimise the root mean square
(RMS) difference between the ground truth glottal flow (LF
waveform) and the estimated glottal flow. For this sake, d was
varied from 0.8 to 0.99 in steps of 0.01, Nv was varied from
bFs/1000e − 2 to bFs/1000e+ 6 in steps of 2, and Ng was
varied from 3 to 6 in steps of 1. The triplet that provided the
smallest RMS distance for each method and each stimuli was
kept. Note that the glottis LPC order Ng was fixed to 3 in the
case of the GFM-IAIF method.
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Fig. 2. Distances between extracted and original glottis. From rows 1 to 5: RMS distance; SD; H1H2 error; HRF error; ST
error. Columns 1 to 4: overall scores, Rd, f0 and F1 dependencies. Orange: IAIF; Yellow: IOP-IAIF; Blue: GFM-IAIF.

The top row of Fig. 2 shows the RMS distances obtained
for each method, and their dependencies on Rd, f0, and F1.
A Kruskal-Wallis rank-sum (KWRS) test showed a significant
effect of the method factor on the RMS distance (left panel),
and a Wilcoxon rank-sum test assessed the difference between
each pair of distributions relative to the GIF method. All were
significantly different (p < 10−4). Both IOP-IAIF and GFM-
IAIF are shown to outperform IAIF in terms of RMS, indicat-
ing the ability of iterative pre-emphasis in general.

However, RMS distance tends to favour the most ener-
getic parts of a spectrum, i.e. the low frequencies in the case
of the glottal flow. Therefore, to investigate effects on other
parts of the spectrum, we use spectral distortion (SD) [7], and
mean error E between the three perceptive parameters (de-
fined by Airaksinen et al. [23]):

EH1H2 = E [H1H2LF − H1H2estim] (1)
EHRF = E [(HRFLF − HRFestim)/HRFLF] (2)
EST = E [STLF − STestim] (3)

These measures are plotted for each method in the lower
four rows of Fig. 2, as overall scores (left column) and in
terms of their dependencies on Rd, f0, and F1 (moving to the
right). KWRS tests on each measure (first column) showed a
significant effect of the method factor, while Wilcoxon rank-
sum tests assessed the difference between each pair of dis-
tributions relative to the GIF method, with all judged signifi-
cantly different (p < 10−16). Overall, GFM outperformed the
other methods with lower SD and smaller perceptive param-
eter errors while IOP tended to outperform IAIF in all scores

apart from EH1H2. Note that while methods perform similarly
for low-frequencies (H1H2), performance variation increases
for mid- (HRF) and high-frequency (ST) regions. This con-
firms that RMS distance favours low frequency accuracy, and
prompts a question as to which distance measure best matches
the error we want to minimise.

KWRS tests applied for each measure and each method
distribution for each dependency indicated a significant effect
of each parameter for all measures and methods. In terms of
sensitivity to Rd, IAIF tended to perform well for low val-
ues, eclipsed by IOP and then GFM as Rd, and hence spectral
tilt, increased. This highlights the inability of IAIF to en-
compass varying spectral tilt, as only glottal flows with little
spectral tilt were correctly estimated. Conversely, IOP-IAIF
and GFM-IAIF better extracted high frequency information in
the glottal waveform. However, they both appeared to attempt
to extract spectral tilt even when there was none, explaining
poorer performance for low Rd values. GFM was also more
accurate in terms of parameter f0, with IAIF and IOP being
more sensitive to high and low values of f0, respectively. Fi-
nally, F1 interaction demonstrated a performance drop for low
values, particularly for EH1H2, suggesting that the glottal for-
mant (tightly linked to this), was misdetected when F1 was
within the same order of magnitude as the glottal formant.

4.2. Evaluation on natural speech

The approach used in the literature for GIF evaluation on nat-
ural speech is to compute variations of glottal flow parameters
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and their consistency for changes in voice quality. We follow
the approach of Drugman et al. [7], using recordings of 12
different vowels uttered at 3 vocal effort levels (soft, medium,
loud), each repeated 26 times, by two German speakers in the
de6 (male) and de7 (female) databases1 [24] (i.e. total 1872
recordings, sampled at 16 kHz). Since ground truth is un-
available for natural speech, direct optimisation of the method
parameters was not possible. However, the medians of opti-
mum parameters for each method obtained on the synthetic
speech evaluation were used: (For IAIF: Lv = 14; Lg = 3;
d = 0.98; For IOP-IAIF: Lv = 20; Lg = 3; d = 0.99; For
GFM-IAIF: Lv = 16; Lg = 3; d = 0.99). All methods used
a 3rd order model in glottis fine estimation.

Fig. 3 displays the distribution of H1H2, HRF, and ST (in
rows, from top to bottom) previously obtained for synthetic
speech depending on Rd, and for natural speech (middle col-
umn) depending on vocal effort, for the three methods (Or-
ange: IAIF; Yellow; IOP-IAIF; Blue: GFM-IAIF) and the
LF ground truth (black) for synthetic speech. Assuming that
the range Rd reflects the variation of vocal effort of natural
speech, we observe that the evolution of perceptive parame-
ters follows the same trend and range between synthetic and
natural speech, across all methods. In particular, we observe
the expected decrease in H1H2 and increase in HRF and ST
with increasing vocal effort [8, 18, 20]. Hence, this shows a
consistency between synthetic and natural speech.

A non-parametric Wilcoxon rank-sum test assessed the
significance between different pairs of distributions (soft
vs. medium; medium vs. loud; soft vs. loud) for natural
speech. All pairs were assessed to be significantly different

1https://github.com/numediart/MBROLA-voices/

(p < 10−4). The normalised rank-sum calculated from each
pair is plotted in Fig. 3 (right column). Lower values denote
more distinct distributions, and a greater likelihood that the
parameter can discriminate between vocal effort types. We
observe that all methods discriminated equally well the vocal
efforts regarding H1H2. This is consistent with synthetic
speech observations where the error in H1H2 estimation was
very small for all methods, thanks to the minimisation of the
RMS distance. Regarding HRF, GFM-IAIF showed the best
discriminative power, followed by IOP-IAIF, then IAIF. Simi-
larly for synthetic speech, the range of HRF values is reduced
for IOP-IAIF, and more compressed for IAIF, with high HRF
values. Finally, GFM-IAIF ST distributions also show better
spread with vocal effort. Again, both on synthetic and natural
speech, IOP-IAIF tends to attribute too much spectral tilt for
all vocal efforts, while IAIF tends to attribute little spectral
tilt for all vocal efforts.

Overall, these results indicate that a stronger pre-emphasis
has a role in the preservation of mid and high frequency fea-
tures while a too weak pre-emphasis (i.e. 1st order in IAIF)
does not attribute enough spectral tilt to the glottis. How-
ever a too strong pre-emphasis (i.e. the unconstrained order
of IOP-IAIF) tends to attribute too much tilt, hence reducing
performance.

5. CONCLUSION

This paper has presented and explored a new proposed
method for glottal inverse filtering, GFM-IAIF, which en-
sures a third order filter in the pre-emphasis step, motivated
by spectral glottis source models. Evaluation against standard
IAIF and the recently-proposed IOP-IAIF on both synthetic
and natural speech showed that while the low frequency re-
gion is equally well extracted by the three methods, the choice
of a third order filter derived from GFM, led GFM-IAIF to
provide the best estimation of both glottal formant and spec-
tral tilt relative to voice quality variation. The performance
gain is stronger at high frequencies, matching expectations
from the literature [8, 9, 20].

One can note a discrepancy between these results and
those from Mokhtari et al. [5]. However that paper estimated
the glottal flow with GFM by deconvolving the speech sig-
nal with the gross estimated vocal tract instead of the fine
estimated vocal tract; leading to a suboptimal version of the
GFM method. Another difference is that their evaluation was
made on a computational physics model. This contrasts to
the evaluation in the current paper which uses methods well
established in the literature, conducted on both synthetic and
natural speech. GFM-IAIF has been shown to provide good
discrimination with vocal quality, and it provides an intuitive
way to describe voice quality as well as matching the input
parameters of glottal-source synthesis models [11]. We aim
to conduct further evaluation on those parameters in future.



6. REFERENCES

[1] Gunnar Fant, Acoustic Theory of Speech Production,
Mouton, 1970.

[2] Thomas Drugman, Paavo Alku, Abeer Alwan, and
Bayya Yegnanarayana, “Glottal source processing:
From analysis to applications,” Computer Speech &
Language, vol. 28, no. 5, pp. 1117–1138, 2014.

[3] Olivier Perrotin and Ian V. McLoughlin, “On the use of
a spectral glottal model for the source-filter separation
of speech,” arXiv:1712.08034, December 2017.

[4] Paavo Alku, “Glottal wave analysis with pitch syn-
chronous iterative adaptive inverse filtering,” Speech
Comm., vol. 11, no. 2–3, pp. 109–118, June 1992.

[5] Parham Mokhtari, Brad Story, Paavo Alku, and Hiroshi
Ando, “Estimation of the glottal flow from speech pres-
sure signals: Evaluation of three variants of iterative
adaptive inverse filtering using computational physical
modelling of voice production,” Speech Comm., vol.
104, pp. 24–38, 2018.

[6] Parham Mokhtari and Hiroshi Ando, “Iterative opti-
mal preemphasis for improved glottal-flow estimation
by iterative adaptive inverse filtering,” in Proc. of In-
terspeech, Stockholm, Sweden, August 21-24 2017, pp.
1044–1048.

[7] Thomas Drugman, Baris Bozkurt, and Thierry Dutoit,
“A comparative study of glottal source estimation tech-
niques,” Computer Speech & Language, vol. 26, no. 1,
pp. 20–34, 2012.

[8] Donald G. Childers, “Vocal quality factors: Analysis,
synthesis and perception,” J. Acoust. Soc. Am., vol. 90,
no. 5, pp. 2394–2410, 1991.

[9] Boris Doval, Christophe d’Alessandro, and Nathalie
Henrich, “The spectrum of glottal flow models,” Acta
Acustica, vol. 92, no. 6, pp. 1026–1046, 2006.

[10] Olivier Perrotin and Christophe d’Alessandro, “Vocal
effort modification in singing synthesis,” in Proc. of
Interspeech, San Francisco, CA, USA, September 8-12
2016, pp. 1235–1239.

[11] Lionel Feugère, Christophe d’Alessandro, Boris Doval,
and Olivier Perrotin, “Cantor digitalis: Chironomic
parametric synthesis of singing,” EURASIP Journal on
Audio, Speech, and Music Processing, 2017.

[12] Christer Gobl and Ailbhe Nı́ Chasaide, “The role of
voice quality in communicating emotion, mood and at-
titude,” Speech Comm., vol. 40, no. 1, pp. 189–212,
2003.

[13] Gilles Degottex, Glottal source and vocal-tract sepa-
ration: Estimation of glottal parameters, voice transfor-
mation and synthesis using a glottal model, Ph.D. thesis,
Univ. Pierre et Marie Curie (UPMC), Nov. 2010.

[14] Paavo Alku, “Glottal inverse filtering analysis of human
voice production – a review of estimation and parame-
terization methods of the glottal excitation and their ap-
plications,” Sadhana, vol. 36, no. 5, pp. 623–650, 2011.

[15] John Makhoul, “Linear prediction: A tutorial review,”
Proc. of the IEEE, vol. 63, no. 4, pp. 561–580, 1975.

[16] Boris Doval, Christophe d’Alessandro, and Benoit Di-
ard, “Spectral methods for voice source parameters
estimation,” in Proceedings of Eurospeech, Rhodes,
Greece, September 22-25 1997, pp. 533–536.

[17] Gilles Degottex, John Kane, Thomas Drugman, Tuomo
Raitio, and Stefan Scherer, “COVAREP – a collabora-
tive voice analysis repository for speech technologies,”
in IEEE Int. Conf. on Acoustics, Speech, and Signal Pro-
cessing, Florence, May 4-9 2014, pp. 960–964.

[18] Gunnar Fant, “The LF-model revisited. transformations
and frequency domain analysis,” Quarterly Progress
and Status Report 2-3, Royal Institute of Technologies
- Dept. for Speech, Music and Hearing, 1995.

[19] Dennis H. Klatt and Laura C. Klatt, “Analysis, synthe-
sis, and perception of voice quality variations among fe-
male and male talkers,” J. Acoust. Soc. Am., vol. 87, no.
2, pp. 820–857, 1990.

[20] Sirisha Duvvuru and Molly Erickson, “The effect of
change in spectral slope and formant frequencies on the
perception of loudness,” Journal of Voice, vol. 27, no.
6, pp. 691–697, 2013.

[21] Gunnar Fant, Johan Liljencrants, and Q. Lin, “A four-
parameter model of glottal flow,” Quarterly Progress
and Status Report 4, Royal Institute of Technologies -
Dept. for Speech, Music and Hearing, 1985.

[22] Bernard Gold and Lawrence Rabiner, “Analysis of digi-
tal and analog formant synthesizers,” IEEE Trans. Audio
and Elect., vol. 16, no. 1, pp. 81–94, 1968.

[23] Manu Airaksinen, Tuomo Raitio, Brad Story, and Paavo
Alku, “Quasi closed phase glottal inverse filtering anal-
ysis with weighted linear prediction,” IEEE Trans. on
Audio, Speech, and Signal Processing, vol. 22, no. 3,
pp. 596–607, March 2014.

[24] Marc Schroder and Martine Grice, “Expressing vocal
effort in concatenative synthesis,” in Int. Congress of
Phonetic Sciences (ICPhS), Barcelona, Spain, August
3-9 2003, pp. 2589–2592.


