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Six model categories for directed homotopy
Philippe Gaucher

Abstract. We construct a q-model structure, an h-model structure and an
m-model structure on multipointed d-spaces and on flows. The two q-model
structures are combinatorial and left determined and they coincide with the
combinatorial model structures already known on these categories. The four
other model structures (the two m-model structures and the two h-model
structures) are accessible. We give an example of multipointed d-space and
of flow which are not cofibrant in any of the model structures. We explain
why the m-model structures, Quillen equivalent to the q-model structure of
the same category, are better behaved than the q-model structures.

1 Introduction

Presentation This paper belongs to our series of papers which aims
at comparing the model category Flow of flows introduced in [11] (with
some updated proofs in [18] using Isaev’s work [23]) and the model category
GdTop of multipointed d-spaces introduced in [15]. Roughly speaking, the
former is a version of the latter without underlying topological space. And
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the latter is a variant of Grandis’ notion of d-space [19]. They are topological
models introduced to study concurrent processes from the point of view of
homotopy theory. Even if these model categories do not yet contain enough
weak equivalences (their homotopical localizations with respect to the re-
finement of observation remain to be understood: see the digression section
in [18]), the model category of flows enabled us anyway to understand ho-
mological theories detecting the non-deterministic branching and merging
areas of execution paths in the framework of flows [14] [13]. These homol-
ogy theories are interesting because they are invariant by the refinement of
observation.

Using the notion of topological graph (see Definition 5.5) and the Gar-
ner Hess Kędziorek Riehl Shipley theorem [20] [10] about accessible right-
induced model structures, we introduce a categorical construction which
takes as input an accessible model structure on the category Top of ∆-
generated spaces satisfying some mild conditions (the ones of Proposition 4.2)
and which gives as output an accessible model structure on multipointed d-
spaces and on flows. These mild conditions are satisfied in particular by 1 the
q-model structure (the Quillen model structure) of Top, the h-model struc-
ture (also called the Cole-Ström model structure) of Top and the m-model
structure (which is the mixing of the two preceding model structures in the
sense of [7, Theorem 2.1]). The latter is characterized as the unique model
structure on Top such that the weak equivalences are the weak homotopy
equivalences and the fibrations the h-fibrations. We obtain the following
results:

• a q-model structure, an h-model structure and an m-model structure on
multipointed d-spaces and on flows in one step (!)

• the identity functor induces a Quillen equivalence between the q-model
structure and the m-model structure on multipointed d-spaces (on flows,
respectively)

• the two q-model structures are combinatorial and left determined and they
coincide with that of [15] and of [11] [18], respectively

• the four other model structures (the two m-model structures and the two
h-model structures) are accessible
1We use the terminology of [28].
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• all objects are fibrant in these six model structures

• there are the implications q-cofibrant ⇒ m-cofibrant ⇒ h-cofibrant for
multipointed d-spaces and flows

• there exist multipointed d-spaces and flows which are not q-cofibrant, not
h-cofibrant and not m-cofibrant.

The two h-model structures and the two m-model structures are new.
They are conjecturally not combinatorial. Even if all topological spaces are
h-cofibrant, it is not true that all multipointed d-spaces and all flows are h-
cofibrant as well. Intuitively, the h-cofibrant objects correspond to objects
without algebraic relations in their spaces of execution paths. A rigorous
characterization of the h-cofibrant multipointed d-spaces and h-cofibrant
flows still remains to be find out.

The main interest of this categorical construction lies in the two m-model
structures. They are better behaved than the q-model structures for the
following reasons. Unlike the space of execution paths functor P : Flow →
Top which preserves q-cofibrancy, it is not true that the space of execution
paths functor PG : GdTop→ Top does as well: see Section 8. However we
have the following result which can be considered as an application of the
results of this paper:

Theorem 1.1. (Theorem 8.6 and Theorem 8.7) The space of execution paths
functors PG : GdTop→ Top and P : Flow→ Top preserve m-cofibrancy.

We want to end the introduction with a remark about the notion of
multipointed d-space. It is easy to prove that all theorems of this paper in-
volving multipointed d-spaces, except Proposition 8.5 coming from [12] and
Theorem 8.6, are still true by replacing the topological group G of nonde-
creasing homeomorphisms of the segment [0, 1] by the topological monoid
M of nondecreasing continuous maps from the segment [0, 1] to itself pre-
serving the extremities. However, we do not know whether Proposition 8.5
and Theorem 8.6 hold with this new definition of multipointed d-space. In-
deed, the results of [12], in particular Proposition 8.5 used in the proof of
Theorem 8.6, use the fact that all elements of G are invertible and we are
unable to remove completely this hypothesis by now from the proofs of [12].
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Outline of the paper

• Section 2 collects some basic facts about accessible model categories. It
is expounded the theorem we are going to use to right-induce accessible
model structures (Theorem 2.1).

• Section 3 proves two technical elementary facts about Grothendieck bifi-
brations that will be used in the sequel: a first one which is a toolkit to
easily prove that a functor is a bifibration (Proposition 3.1), and a sec-
ond one about the accessibility of two functors arising from an accessible
bifibration (Proposition 3.2).

• Section 4 gathers some information about ∆-generated spaces and their
three standard model structures. In particular, Proposition 4.2 makes
explicit and establishes that these three model structures satisfy the mild
conditions which are used in our construction.

• Section 5 explains how to construct an accessible model structure on V-
graphs from any accessible model category V (Theorem 5.4), with an im-
mediate application when V is the category of ∆-generated spaces (Corol-
lary 5.6).

• Section 6 applies the constructions of Section 5 to right-induce on the cat-
egory of multipointed d-spaces the three model structures (Theorem 6.14).
It is also proved that there exist multipointed d-spaces which are not h-
cofibrant, not q-cofibrant and not m-cofibrant (Proposition 6.19).

• Section 7 applies the same constructions to right-induce on the category
of flows the three model structures (Theorem 7.4). It is also proved that
there exist flows which are not h-cofibrant, not q-cofibrant and not m-
cofibrant (Proposition 7.9).

• Section 8 explains why the m-model structures are better behaved than
the q-model structures (Theorem 8.6 and Theorem 8.7).

Notations

• X := Y means that Y is the definition of X.
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• All categories are locally small (except the category of all locally small
categories).

• K always denotes a locally presentable category.

• Set is the category of sets.

• Top is the category of ∆-generated spaces.

• G is the topological group of nondecreasing homeomorphisms of [0, 1].

• R is the topological space of real numbers.

• K(X,Y ) is the set of maps in a category K.

• Mor(K) is the category of morphisms of K with the commutative squares
for the morphisms.

• A tB is the binary coproduct, A×B is the binary product.

• lim←− is the limit, lim−→ is the colimit.

• ∅ is the initial object.

• 1 is the final object.

• IdX is the identity of X.

• g.f is the composite of two maps f : A→ B and g : B → C; the composite
of two functors is denoted in the same way.

• f � g means that f satisfies the left lifting property (LLP) with respect
to g, or equivalently that g satisfies the right lifting property (RLP) with
respect to f .

• inj(C) = {g ∈ K,∀f ∈ C, f � g}.

• cof(C) = {f | ∀g ∈ inj(C), f � g}.

• cell(C) is the class of transfinite compositions of pushouts of elements of
C.
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• A cellular object X of a combinatorial model category is an object such
that the canonical map ∅ → X belongs to cell(I) where I is the set of
generating cofibrations.

• A model structure (C,W,F) means that the class of cofibrations is C, that
the class of weak equivalences is W and that the class of fibrations is
F in this order. A model category is a category equipped with a model
structure.

• `, `i, `
′, `′i always denote nonzero positive real numbers.

• The notation [0, `1] ∼=+ [0, `2] means a nondecreasing homeomorphism
from [0, `1] to [0, `2]. It takes 0 to 0 and `1 to `2. The group for the
composition of maps of nondecreasing homeomorphisms from [0, 1] to itself
is denoted by G, that is, G = {[0, 1] ∼=+ [0, 1]}.

2 Accessible model category

We refer to [2] for locally presentable categories, to [33] for combinatorial
model categories. We refer to [22] and to [21] for more general model cate-
gories.

A weak factorization system (L,R) of a locally presentable category K
is accessible if there is a functorial factorization

(A
f−→ B) � //(A

Lf−→ Ef
Rf−→ B)

with Lf ∈ L, Rf ∈ R such that the functor E : Mor(K) → K is accessi-
ble [10, Definition 2.4]. Since colimits are calculated pointwise in Mor(K),
a weak factorization system is accessible if and only if the functors L :
Mor(K)→ Mor(K) and R : Mor(K)→ Mor(K) are accessible. By [34, The-
orem 4.3], a weak factorization system is accessible if and only if it is small
in Garner’s sense. In particular, every small weak factorization system (that
is, of the form (cof(I), inj(I)) for a set I) is accessible. A model structure
(C,W,F) on a locally presentable category is accessible if the two weak
factorization systems (C,W ∩F) and (C ∩W,F) are accessible. Every com-
binatorial model category is therefore an accessible model category. This
inclusion is strict: by [31, Remark 4.7], the h-model structure of Top (see
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Section 4) is not combinatorial. But it is accessible by Proposition 4.2.
Moreover, there exist model categories which are not accessible. For exam-
ple, the model category of maps of spaces of [8] is conjecturally not accessible
(remark due to Boris Chorny [6]) but no proof has been given yet. There
is another example using the negation of Vopěnka’s principle given by Mike
Shulman [37]: by [2, Example 6.12], the locally presentable category Gra of
graphs has a reflective subcategory that is not accessible if we assume the
negation of Vopěnka’s principle, and by [35, Proposition 3.5], this reflector
is the fibrant replacement functor of a model structure on Gra.

The following theorem is the particular case of a general theorem due
to Garner Hess Kędziorek Riehl and Shipley about accessible right-induced
model structures (note that the Quillen Path Object argument dates back
to [30]).

Theorem 2.1. (Garner-Hess-Kędziorek-Riehl-Shipley) Let M and N be
two locally presentable categories. Let (C,W,F) be an accessible model struc-
ture ofM such that all objects are fibrant. Consider a categorical adjunction

M
L

))
⊥ N
U

ii .

Suppose that there exists a functorial factorization of the diagonal of N

X
τ // Path(X)

π // X ×X

such that U(τ) is a weak equivalence ofM and such that U(π) is a fibration
of M for all objects X of N . Then there exists a unique model structure
on N such that the class of fibrations is U−1(F) and such that the class of
weak equivalences is U−1(W). Moreover, this model structure is accessible
and all its objects are fibrant.

Sketch of proof. By the dual of [20, Theorem 2.2.1] which is also stated in
[29, Theorem 6.2], the hypotheses of the theorem imply that the Quillen Path
Object argument holds. The latter implies the acyclicity condition for right-
induced model structures, and therefore the existence of the right-induced
model structure (see also [10]). Since a model structure is characterized
by its class of weak equivalences and its class of fibrations, we deduce the
uniqueness.
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3 Accessible Grothendieck bifibration

Let p : E → B be a functor between locally small categories. The fibre
of p over X, denoted by EX , consists of the subcategory of E generated
by the vertical maps f , that is, the maps f such that p(f) = IdX . We
refer to [24, Chapter 1 and Chapter 9] and [5, Chapter 8] for (Grothendieck)
bifibrations (also called bifibred categories) and for (Grothendieck) fibrations
(also called fibred categories, the term fibration being quite confusing because
it is used in a completely different sense in this paper).

The following proposition is a toolkit to minimize the work required to
prove that a functor is a bifibration:

Proposition 3.1. Let p : E → B be a functor between locally small cate-
gories. Suppose that for every map u : A→ B of B, there exists an adjunc-
tion u! : EA a EB : u∗ such that:

(1)For all objects X of E, there exists a natural map u∗X → X such that
every map f : X → Y of E with p(f) = u factors uniquely as a composite

X −→ u∗Y −→ Y

with the left-hand map vertical.

(2)The natural map u∗v∗X → (v.u)∗X is an isomorphism for all X.
Then p : E → B is a bifibration.

Proof. In the language of [24], the first condition means that the map u∗X →
X is weakly cartesian and the second condition implies that compositions
of weakly cartesian maps are weakly cartesian. By [24, Exercice 1.1.6], the
functor p : E → B is a fibred category. By [24, Lemma 9.1.2], the existence
of the adjunctions implies that the functor p : E → B is a bifibration.

Let p : E → B be a bifibration between locally small categories. Consider
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the commutative square of solid arrows of E

X

f

((//

g

��

µ(f) := p(f)∗Y

∃! µ(g,h)

��

// Y

h

��

X ′

f ′

66
// µ(f ′) := p(f ′)∗Y ′ // Y ′.

Note that the diagram above is misleading: the maps g and h are not vertical.
On the contrary, the two maps X → µ(f) and X ′ → µ(f) are vertical. Since
µ(f ′)→ Y ′ is cartesian, there exists a unique map µ(g,h) : µ(f)→ µ(f ′) such
that p(µ(g,h)) = p(g) making the right-hand square commutative. Since the
composites X → µ(f) → µ(f ′) and X → X ′ → µ(f ′) have the same image
p(g) by p and since they yield two factorizations of h.f = f ′.g and since
µ(f ′) → Y ′ is cartesian, the left-hand square is commutative as well. For
dual reasons, there exists a unique map ν(g,h) : ν(f) → ν(f ′) such that
p(ν(g,h)) = p(h) making the following diagram of solid arrows of E

X

f

((//

g

��

ν(f) := p(f)!X

∃! ν(g,h)

��

// Y

h

��

X ′

f ′

66
// ν(f ′) := p(f ′)!X

′ // Y ′.

commutative. By the usual uniqueness argument, we obtain two well-defined
functors µ : Mor(E)→ E and ν : Mor(E)→ E .

Proposition 3.2. Let p : E → B be a bifibration between locally presentable
categories such that p is accessible. Then the functors µ : Mor(E) → E and
ν : Mor(E)→ E defined above are accessible.
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Proof. Suppose that p : E → B is λ-accessible. Let (fi : Xi → Yi)i∈I be
a λ-filtered diagram of Mor(E). By passing to the colimit, we obtain the
factorization of lim−→ fi

lim−→Xi −→ lim−→µ(fi) −→ lim−→Yi.

There are the isomorphisms

p(lim−→Xi) ∼= lim−→ p(Xi) = lim−→ p(µ(fi)) ∼= p(lim−→µ(fi)),

the first isomorphism since p is λ-accessible, the equality since each Xi →
µ(fi) is vertical, and the last isomorphism since p is λ-accessible. Let
u : p(lim−→Xi) → p(lim−→µ(fi)) be this isomorphism. Then we have the iso-
morphism

u∗(lim−→µ(fi)) ∼= lim−→µ(fi).

We obtain the factorization of lim−→ fi

lim−→Xi −→ u∗(lim−→µ(fi)) −→ lim−→Yi.

Since the left-hand map is vertical, we obtain the equality

µ(lim−→ fi) = u∗(lim−→µ(fi)).

We have proved that µ is accessible. In the same way, by passing to the
colimit, there is the factorization of lim−→ fi

lim−→Xi −→ lim−→ ν(fi) −→ lim−→Yi.

There are the isomorphisms

p(lim−→ ν(fi)) ∼= lim−→ p(ν(fi)) = lim−→ p(Yi) ∼= p(lim−→Yi),

the first isomorphism since p is λ-accessible, the equality since each ν(fi)→
Yi is vertical and the last isomorphism since p is λ-accessible. Let v :
p(lim−→ ν(fi)) → p(lim−→Yi) be this isomorphism. Then we have the isomor-
phism

v!(lim−→ ν(fi)) ∼= lim−→ ν(fi).

We obtain the factorization of lim−→ fi

lim−→Xi −→ v!(lim−→ ν(fi)) −→ lim−→Yi.
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Since the right-hand map is vertical, we obtain the equality

ν(lim−→ fi) = v!(lim−→ ν(fi)).

We have proved that ν is accessible.

4 Delta-generated space

We refer to [1, Chapter VI] or [5, Chapter 7] for the notion of topological
functor. The category Top denotes the category of ∆-generated spaces, that
is, the colimits of simplices. Let ∆n = {(t0, . . . , tn) ∈ [0, 1]n | t0 + · · ·+ tn =
1} be the topological n-simplex equipped with its standard topology. Then
Top is the final closure of the set of topological spaces {∆n | n > 0}. For a
tutorial about these topological spaces, see for example [15, Section 2]. The
category Top is locally presentable by [9, Corollary 3.7], cartesian closed
and it contains all CW-complexes. The internal hom functor is denoted
by TOP(−,−). We denote by ω : TOP → Set the underlying set functor
where TOP is the category of general topological spaces. It is fibre-small and
topological. The restriction functor ω : Top ⊂ TOP → Set is fibre-small
and topological as well. The category Top is a full coreflective subcategory
of the category TOP of general topological spaces. Let k : TOP → Top
be the kelleyfication functor, that is, the right adjoint. The category Top
is finally closed in TOP, which means that the final topology and the ω-
final structure coincides. On the contrary, the ω-initial structure in Top is
obtained by taking the kelleyfication of the initial topology in TOP. If A is
a subset of a space X of Top, the initial structure in Top of the inclusion
A ⊂ ωX is the kelleyfication of the relative topology with respect to the
inclusion.

Remark 1. It is important to keep in mind for the sequel that the kelleyfi-
cation functor does not change the underlying set. In particular, it does not
identify points. It only adds open sets to the topology.

Notation 4.1. Let n > 1. Denote by Dn = {b ∈ Rn, |b| 6 1} the n-
dimensional disk, and by Sn−1 = {b ∈ Rn, |b| = 1} the (n − 1)-dimensional
sphere. By convention, let D0 = {0} and S−1 = ∅.
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X ∼= {0} ×X f
//

⊂
��

Y

��

ΠY //

��

TOP(R+, Y )× R+

shift
��

Γf

��

// ΠY

p0

��

[0, 1]×X //Mf Y
const

// TOP(R+, Y ) X
f
// Y.

Figure 1: Mapping cylinder Mf and Moore path space Γf with R+ =
[0,+∞[

The category Top can be equipped at least with three model structures
(we use the notations of [28]):

• The q-model structure (Cq,Wq,Fq) [22, Section 2.4]: the cofibrations,
called q-cofibrations, are the retracts of the transfinite compositions of
the inclusions Sn−1 ⊂ Dn for n > 0, the weak equivalences are the weak
homotopy equivalences and the fibrations, called q-fibrations are the maps
satisfying the RLP with respect to the inclusions Dn ⊂ Dn+1 for n > 0,
or equivalently with respect to the inclusions Dn × {0} ⊂ Dn × [0, 1] for
n > 0; this model structure is combinatorial. A very simple way to obtain
this model structure is to use [23]. Its existence dates back to [30].

• The h-model structure (Ch,Wh,Fh): the fibrations, called the h-fibrations,
are the maps satisfying the RLP with respect to the inclusions X×{0} ⊂
X × [0, 1] for all topological spaces X, and the weak equivalences are the
homotopy equivalences; we have Cq ⊂ Ch becauseWh ⊂ Wq and Fh ⊂ Fq.
A modern exposition is given in [3, Corollary 5.23] but its construction
dates back to [39]. All topological spaces are h-cofibrant.

• The m-model structure (Cm,Wm,Fm) = (Cm,Wq,Fh): the fibrations are
the h-fibrations, and the weak equivalences are the weak homotopy equiv-
alences; we have Cq ⊂ Cm because Wm ∩ Fm = Wq ∩ Fh ⊂ Wq ∩ Fq. Its
existence is a consequence of [7, Theorem 2.1]. By [7, Corollary 3.7], a
topological space is m-cofibrant if and only if it is homotopy equivalent to
a q-cofibrant space.



Six model categories for directed homotopy 157

Proposition 4.2. The three model structures (Cq,Wq,Fq), (Ch,Wh,Fh) and
(Cm,Wm,Fm) of Top satisfy the following properties:

(1)They are accessible.
(2) All spaces are fibrant.
(3)All homotopy equivalences are weak equivalences.
(4) All q-cofibrations are cofibrations.
(5)For all topological spaces X of Top, the map

π : TOP([0, 1], X)→ TOP({0, 1}, X)

induced by the inclusion {0, 1} ⊂ [0, 1] is a fibration.

Proof. (1) The model structure (Cq,Wq,Fq) is accessible because it is com-
binatorial. The model structure (Cm,Wm,Fm) is accessible by [16, Corol-
lary 4.4]. Figure 1 recalls the definition of the Moore paths space ΠY of
Y of [3, Section 3.1] which actually dates back to [27]. The bottom map
Y → TOP(R+, Y ) is the constant path map. The shift map TOP(R+, Y )×
R+ → TOP(R+, Y ) takes the pair (γ, t) to the path u 7→ γ(t+u). By defini-
tion p0(γ) = γ(0). Since Top is locally presentable and cartesian closed, it is
easily seen that the Moore path functor Γ : f 7→ Γf of Figure 1 is accessible.
It provides a functorial factorization for (Ch∩Wh,Fh) by [3, Corollary 3.12].
The functorial factorization (Ch,Wh ∩ Fh) is given first by taking a map
f : X → Y of Top to the composite map X →Mf → Y and then by using
on the right-hand map the functorial factorization of (Ch ∩ Wh,Fh) using
the Moore path functor (see [36, Proposition 3.2]). This proves that the
model structure (Ch,Wh,Fh) is accessible. (2) and (3) are well-known. (4)
is recalled above. (5) deserves a short bibliographical justification. The in-
clusion {0, 1} ⊂ [0, 1] is a cofibration in the three model structures. And the
canonical map X → 1 is a fibration in the three model structures as well.
It suffices to use [22, Lemma 4.2.2(3)] and the fact that the three model
structures are monoidal for the binary product: for the q-model structure
of Top, see e.g. [22, Proposition 4.2.11]; for the h-model structure of Top,
see e.g. [36, Corollary 2.10] for a general treatment in the setting of enriched
categories; for the m-model structure, see e.g. [7, Proposition 6.6].
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5 Topological graph

In this section, V denotes a locally presentable category. It is supposed
to be equipped with an accessible model structure (C,W,F). We recall
the enriched version of the usual notion of graph and of morphism between
them [4, Definition 5.1.1]. This notion appears for example in [40, Definition
2.1.1] and in [25, Section 3]. We adapt the notations to our context.

Definition 5.1. A V-graph X consists of a pair
(
X0, (Pα,βX)(α,β)∈X0×X0

)

such that X0 is a set and such that each Pα,βX is an object of V. A map
of V-graphs f : X → Y consists of a set map f0 : X0 → Y 0 (called the
underlying set map) together with a map Pα,βX → Pf0(α),f0(β)Y of V for all
(α, β) ∈ X0 ×X0. The corresponding category is denoted by Gph(V).

Notation 5.2. We will denote Pf0(α),f0(β)Y by Pf(α),f(β)Y in order not to
overload the notations.

Proposition 5.3. The forgetful functor X 7→ X0 from Gph(V) to Set is a
bifibration.

Proof. Let f : X → Y be a map of V-graphs. Let

Pα,β(f0)∗Y := Pf(α),f(β)Y

for all (α, β) ∈ X0 ×X0. We obtain a well-defined V-graph (f0)∗Y . Then
by definition of a map of V-graphs, every map f : X → Y factors uniquely
as a composite

X −→ (f0)∗Y −→ Y

such that the left-hand map is vertical. Thus the map (f0)∗Y → Y is weakly
cartesian. The fact that (g0.f0)∗ = (f0)∗.(g0)∗ for two composable maps f
and g is obvious. Let

Pγ,δ(f0)!X =
⊔

(α, β) ∈ X0 ×X0

f(α) = γ, f(β) = δ

Pα,βX.
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for all (γ, δ) ∈ Y 0×Y 0. We obtain a well-defined V-graph (f0)!X. We have
the natural bijections of sets

Gph(V)X0(X, (f0)∗Y ) ∼=
∏

(α,β)∈X0×X0

V(Pα,βX,Pf(α),f(β)Y )

∼=
∏

(γ,δ)∈Y 0×Y 0

∏

(α, β) ∈ X0 ×X0

f(α) = γ, f(β) = δ

V(Pα,βX,Pγ,δY )

∼=
∏

(γ,δ)∈Y 0×Y 0

V(Pγ,δ(f0)!X,Pγ,δY )

∼= Gph(V)Y 0((f0)!X,Y ),

the first and the fourth isomorphisms by definition of a map of V-graphs,
the second isomorphism by rearranging the product and the third isomor-
phism by definition of the V-graph (f0)!X. The proof is complete thanks to
Proposition 3.1.

For every set S, the fibre of ()0 : Gph(V) → Set over S is the func-
tor category VS×S which is equipped for the sequel with the only model
structure such that the cofibrations (the fibrations, the weak equivalences,
respectively) are the pointwise ones: it is both the projective and the injec-
tive model structure on a functor category over a discrete category. This
model structure is obviously accessible.

Theorem 5.4. There exists a unique model structure on Gph(V) such that

• The weak equivalences are the maps of V-graphs f : X → Y such that
f0 is a bijection and such that the map X → (f0)∗Y is a pointwise
weak equivalence of VX0×X0, that is, for all (α, β) ∈ X0×X0, the map
Pα,βX → Pf(α),f(β)Y belongs to W.

• The fibrations are the maps of V-graphs f such that the map X →
(f0)∗Y is a pointwise fibration of VX0×X0, that is, for all (α, β) ∈
X0 ×X0, the map Pα,βX → Pf(α),f(β)Y belongs to F .

• The cofibrations are the maps of V-graphs f such that the map (f0)!X →
Y is a pointwise cofibration of VY 0×Y 0, that is, for all (γ, δ) ∈ Y 0×Y 0,
the map

⊔
(α, β) ∈ X0 ×X0

f(α) = γ, f(β) = δ

Pα,βX → Pγ,δY belongs to C.
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Moreover, this model structure is accessible.

Proof. We want to apply [32, Theorem 5.1] fixed in [38, Theorem page 23]
to the bifibration ()0 : Gph(V) → Set. We equip the base category Set
with the discrete model structure: all maps are cofibrations and fibrations
and the weak equivalences are the bijections. For every set map u : S → T ,
the functor u∗ : VT×T → VS×S preserves weak equivalences and fibrations
since they are pointwise. Therefore, the adjunction (u!, u

∗) is a Quillen
adjunction. We have to verify the two hypotheses of [38, Theorem page 23]:

1. if u : S → T is a weak equivalence of Set, then it is a bijection. Therefore
the functor u∗ : VT×T → VS×S reflects weak equivalences since it is an
equivalence of categories.

2. if u : S → T is a trivial cofibration of Set, then it is a bijection, which
means that we can suppose that S = T . In that case, both u! and u∗ are
the identity of VS×S and the unit of the adjunction X → u∗u!X is an
isomorphism, and therefore a weak equivalence of VS×S .

This proves the existence of the model structure. By [25, Proposition 4.4],
the category Gph(V) is locally presentable 2. Let f : X → Y be a map of
V-graphs. It factors as a composite

X �
� ' // Z // // µ(f) // Y

where the factorization trivial cofibration-fibration of the vertical map X →
µ(f) is carried out in VX0×X0 . Since the map Z → µ(f) is vertical, we have

µ(Z → Y ) = µ(f) = (f0)∗Y.

Thus the composite Z → µ(f) → Y is a fibration of Gph(V) by definition
of them. We have obtained a factorization trivial cofibration-fibration in
Gph(V). The functor (−)0 : Gph(V)→ Set is colimit preserving since it has
a right adjoint: the functor taking a set S to the constant diagram ∆S×S(1)
over S × S. By Proposition 3.2, the endofunctor of Mor(Gph(V)) taking f :
X → Y to X → µ(f) is accessible since colimits are calculated pointwise in

2This can be proved directly by observing that the fibred category (−)0 : Gph(V) →
Set corresponds to an accessible pseudo-functor in the sense of [26, Definition 5.3.1] and
by applying [26, Theorem 5.3.4].
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Mor(Gph(V)). Since the model structure of VX0×X0 is accessible, we deduce
that the factorization trivial cofibration-fibration in Gph(V) is accessible.
The map f : X → Y factors as well as a composite

X // ν(f) �
�

// T
' // // Y

where the factorization cofibration-trivial fibration of the vertical map ν(f)→
Y is carried out in VY 0×Y 0 . Since the map ν(f)→ T is vertical, we have

ν(X → T ) = ν(f) = (f0)!X.

Thus the composite X → ν(f)→ T is a cofibration of Gph(V) by definition
of them. We have obtained a factorization cofibration-trivial fibration in
Gph(V). Since colimits of maps are calculated pointwise, we deduce that
the endofunctor of Mor(Gph(V)) taking f : X → Y to ν(f) → Y is acces-
sible by Proposition 3.2. Since the model structure of VY 0×Y 0 is accessible,
we deduce that the factorization cofibration-trivial fibration in Gph(V) is
accessible. We have proved that the model category Gph(V) is an accessible
model category.

Definition 5.5. A topological graph is a V-graph with V = Top. The
corresponding category is denoted by Gph(Top).

Corollary 5.6. Let (C,W,F) be one of the three model structures

(Cq,Wq,Fq), (Ch,Wh,Fh), (Cm,Wm,Fm)

of Top. Then there exists a unique model structure on Gph(Top) such that:

• A map of topological graphs f : X → Y is a weak equivalence if and
only if f0 : X0 → Y 0 is a bijection and for all (α, β) ∈ X0 ×X0, the
continuous map Pα,βX → Pf(α),f(β)X belongs to W.

• A map of topological graphs f : X → Y is a fibration if and only if
for all (α, β) ∈ X0 × X0, the continuous map Pα,βX → Pf(α),f(β)X
belongs to F .

Moreover, this model structure is accessible and all objects are fibrant.

Proof. It is a consequence of Theorem 5.4 and Proposition 4.2 (1) and (2).
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6 Multipointed d-space

Definition 6.1. A multipointed space is a pair (|X|, X0) where

• |X| is a topological space called the underlying space of X.

• X0 is a subset of |X| called the set of states of X.

A morphism of multipointed spaces f : X = (|X|, X0)→ Y = (|Y |, Y 0) is a
commutative square

X0 f0
//

��

Y 0

��

|X| |f | // |Y |.
The corresponding category is denoted by MSpc.

For any topological space U , two continuous maps γ1 : [0, `1] → U and
γ2 : [0, `2] → U with `1, `2 > 0 are composable if γ1(`1) = γ2(0). Then one
can define the continuous map γ1 ∗ γ2 : [`1 + `2]→ U by

(γ1 ∗ γ2)(t) =

{
γ1(t) if t ∈ [0, `1]

γ2(t− `1) if t ∈ [`1, `1 + `2].

If γ3 : [0, `3] → U is a third continuous map, then there is the (strict)
equality

(γ1 ∗ γ2) ∗ γ3 = γ1 ∗ (γ2 ∗ γ3)

as soon as the composite exists.

Definition 6.2. The map γ1 ∗γ2 is called the composition of γ1 and γ2. The
composite

γ1 ∗N γ2 : [0, 1]
N :t7→2t // [0, 2]

γ1∗γ2
// U

is called the normalized composition.

Definition 6.3. [15] A multipointed d-space X is a triple

(|X|, X0,PGX)

where
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• The pair (|X|, X0) is a multipointed space.

• The set PGX is a set of continous maps from [0, 1] to |X| called the
execution paths, satisfying the following axioms:

– For any execution path γ, one has γ(0), γ(1) ∈ X0.

– Let γ be an execution path of X. Then any composite γ.φ with
φ ∈ G is an execution path of X.

– Let γ1 and γ2 be two composable execution paths of X; then the
normalized composition γ1 ∗N γ2 is an execution path of X.

A map f : X → Y of multipointed d-spaces is a map of multipointed spaces
from (|X|, X0) to (|Y |, Y 0) such that for any execution path γ of X, the
map f.γ is an execution path of Y . The category of multipointed d-spaces
is denoted by GdTop. The subset of execution paths from α to β is the set
of γ ∈ PGX such that γ(0) = α and γ(1) = β; it is denoted by PGα,βX. It is
equipped with the kelleyfication of the initial topology making the inclusion
PGα,βX ⊂ TOP([0, 1], |X|) is continuous.

Definition 6.4. Let X be a multipointed d-space X. Let PGX be the
topological space

PGX =
⊔

(α,β)∈X0×X0

PGα,βX.

The category of multipointed d-spaces GdTop is locally presentable and
the forgetful functor X 7→ ω(|X|) is topological and fibre-small by [15, The-
orem 3.5]. The following examples play an important role in the sequel.

1. Any set E will be identified with the multipointed d-space

(E,E,∅).

2. The topological globe of Z, which is denoted by GlobG(Z), is the multi-
pointed d-space defined as follows

• the underlying topological space is the quotient space

{0̂, 1̂} t (Z × [0, 1])

(z, 0) = (z′, 0) = 0̂, (z, 1) = (z′, 1) = 1̂
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• the set of states is {0̂, 1̂}
• the set of execution paths is the set of continuous maps

{t 7→ (x, φ(t)) | t ∈ [0, 1], φ ∈ G, x ∈ Z}.

In particular, GlobG(∅) is the multipointed d-space

{0̂, 1̂} = ({0̂, 1̂}, {0̂, 1̂},∅).

3. The directed segment is the multipointed d-space
−→
I G = GlobG({0}).

4. The multipointed d-space
−−−−→
[`1, `2] where `1 < `2 are two real numbers has

the underlying space the segment [`1, `2], the set of states {`1, `2} and
the unique space of execution paths

PG`1,`2
−−−−→
[`1, `2] = {[0, 1] ∼=+ [`1, `2]}.

Proposition 6.5. The mapping Ω : X 7→ (|X|, X0) induces a functor from
GdTop to MSpc which is topological and fibre-small.

Proof. The statement is very close to the statement of [15, Proposition 3.6].
The proof of the latter proposition uses the final structure. We prefer to
use the Ω-initial structure because it will be reused in Corollary 6.7. Let
(|X|, X0) be a multipointed space. Consider a cone (which can be large)
(fi : (|X|, X0) → Ω(Xi))i∈I . For all (α, β) ∈ X0 × X0, consider the set of
paths

Pα,β = {γ ∈ Top([0, 1], |X|) | γ(0), γ(1) ∈ X0

and ∀i, fi.γ ∈ PGfi(α),fi(β)Xi}.

Let γ ∈ Pα,β . Let φ ∈ G. Then γ(φ(0)) = γ(0), γ(φ(1)) = γ(1) and fi.γ.φ ∈
PGfi(α),fi(β)Xi for all i by definition of Pα,β . It also means that γ.φ ∈ Pα,β .
Let γ1 ∈ Pα,α′ and γ2 ∈ Pα′,α′′ . Then fi.(γ1 ∗N γ2) = (fi.γ1) ∗N (fi.γ2) for
all i by definition of ∗N . Therefore fi.(γ1 ∗N γ2) ∈ PGfi(α),fi(α′′)

Xi for all i.
We deduce that γ1 ∗N γ2 ∈ Pα,α′′ by definition of Pα,α′′ . We deduce that
the family of (Pα,β) yields a structure of multipointed d-space on (|X|, X0)
and it is clearly the biggest one because all fi must be lifted to maps of
multipointed d-spaces. It is therefore the Ω-initial structure.
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Notation 6.6. Let u ∈ [0, 1]. Let (Z,Z0) ∈MSpc. Let

evu : (TOP([0, 1], Z), Z0)→ (Z,Z0)

be the evaluation at u where Z0 is identified to the corresponding set of
constant maps of TOP([0, 1], Z).

Corollary 6.7. Let X be a multipointed d-space. Let PathG(X) be the
Ω-initial lift of the cone (evu : (TOP([0, 1], |X|), X0) → (Ω(X))u∈[0,1])
where X0 is identified to the corresponding the set of constant maps of
TOP([0, 1], |X|). Then the space of execution paths of PathG(X) from α
to β is the topological space TOP([0, 1],PGα,βX).

Proof. By construction of the Ω-initial structure explained in the proof of
Proposition 6.5, we have the equality of sets

PGα,β PathG(X) = {γ ∈ Top([0, 1],TOP([0, 1], |X|)) |
∀u ∈ [0, 1], evu .γ ∈ PGα,βX}.

By endowing the two members of the equality with their topology (that is,
their initial structure in Top making the inclusion into

TOP([0, 1],TOP([0, 1], |X|))

continuous), we obtain the homeomorphism

PGα,β PathG(X) ∼= {γ ∈ TOP([0, 1],TOP([0, 1], |X|)) |
∀u ∈ [0, 1], evu .γ ∈ PGα,βX}.

The point is that Top is cartesian closed. Therefore, we can switch the left-
hand copy and the right-hand copy of the segment [0, 1] in
TOP([0, 1],TOP([0, 1], |X|)). We obtain the homeomorphism

PGα,β PathG(X) ∼= TOP([0, 1],PGα,βX)

by taking γ to the continuous mapping u 7→ evu .γ.

Notation 6.8. The map of multipointed d-spaces induced by

evu : (TOP([0, 1], |X|), X0)→ (|X|, X0)

is denoted by πu : PathG(X)→ X.
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Proposition 6.9. Let X be a multipointed d-space. There exists a unique
map τ : X → PathG(X) of multipointed d-spaces such that the underlying
map of multipointed spaces

τ : (|X|, X0)→ (TOP([0, 1], |X|), X0)

takes x ∈ |X| to the constant path τ(x) : t 7→ x of X.

Proof. Since the functor Ω : X 7→ (|X|, X0) is topological, there exists at
most one such a map. Let γ : [0, 1] → |X| be an element of PGα,βX. Then
for all t, u ∈ [0, 1], one has evu.τ(γ(t)) = γ(t). It means that evu .τ.γ = γ ∈
PGα,βX.

Corollary 6.10. The mapping X 7→ PathG(X) gives rise to a well-defined
functor from GdTop to itself. The map π = (π0, π1) together with the map
τ : X → PathG(X) above defined gives rise to a path functor, that is, the
composite (π0, π1).τ is the codiagonal.

Notation 6.11. Let X be a multipointed d-space. Then the pair

(X0, (PGα,βX)α,β)

is a well-defined topological graph denoted by GphG(X).

Proposition 6.12. Let U be a topological space. Let X be a multipointed
d-space. Then we have the natural bijection

GdTop(GlobG(U), X) ∼=
⊔

(α,β)∈X0×X0

Top(U,PGα,βX).

Proof. A map of multipointed d-spaces from GlobG(U) to X is characterized
by the choice of two states α and β ofX for the image of 0̂ and 1̂, respectively,
and by a continuous map f from |GlobG(U)| to X such that f(u,−) ∈ PGα,βX
for all u ∈ [0, 1]. In other terms, the mapping f 7→ (u 7→ f(u,−)) yields a
natural set map

GdTop(GlobG(U), X) −→
⊔

(α,β)∈X0×X0

Top(U,PGα,βX).
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Conversely, consider an element g ∈ Top(U,PGα,βX) for some (α, β) ∈ X0 ×
X0. Then the mapping (t, u) 7→ g(u)(t) induces a map of multipointed d-
spaces from GlobG(U) to X. The proof is complete because Top is cartesian
closed.

Proposition 6.13. The mapping X 7→ GphG(X) induces a well-defined
functor from GdTop to Gph(Top). It is a right adjoint.

Proof. Roughly, the left adjoint is the free multipointed d-space generated
by a topological graph. The left adjoint GphG! : Gph(Top)→ GdTop is con-
structed as follows. Let X = (X0, (Xα,β)) be a topological graph. We start
from the set X0 equipped with the discrete topology. We add a topological
globe GlobG(Xα,β) with 0̂ identified with α and 1̂ identified with β for each
(α, β) ∈ X0 × X0. We obtain a multipointed d-space GphG! (X). A map
f of multipointed d-spaces from GphG! (X) to Y is equivalent to choosing
a set map from GphG! (X)0 = X0 to Y 0 and for each (α, β) ∈ X0 × X0 a
map of multipointed d-spaces from GlobG(Xα,β) to Y , which is equivalent
by Proposition 6.12 to choosing a map from Xα,β to PGf(α),f(β)Y .

Theorem 6.14. Let (C,W,F) be one of the three model structures

(Cq,Wq,Fq), (Ch,Wh,Fh), (Cm,Wm,Fm)

of Top. Then there exists a unique model structure on GdTop such that:

• A map of multipointed d-spaces f : X → Y is a weak equivalence if
and only if f0 : X0 → Y 0 is a bijection and for all (α, β) ∈ X0 ×X0,
the continuous map PGα,βX → PGf(α),f(β)X belongs to W.

• A map of multipointed d-spaces f : X → Y is a fibration if and only
if for all (α, β) ∈ X0 ×X0, the continuous map PGα,βX → PGf(α),f(β)X
belongs to F .

Moreover, this model structure is accessible and all objects are fibrant.

Proof. A model structure is characterized by its fibrations and its weak
equivalences. For all topological spaces U , the constant path map τ :
U → TOP([0, 1], U) is equal to the composite U ∼= TOP({0}, U) →
TOP([0, 1], U), and is therefore a homotopy equivalence. By Proposition 4.2,
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the map π = (π0, π1) : TOP([0, 1], U) → TOP({0, 1}, U) ∼= U × U (the
latter homeomorphism coming from the fact that Top is cartesian closed)
is a fibration in the three model structures. We deduce that for all mul-
tipointed d-spaces X and all (α, β) ∈ X0 × X0, the continuous map τ :
PGα,βX → TOP([0, 1],PGα,βX) belongs to W and the continuous map π :

TOP([0, 1],PGα,βX) → PGα,βX × PGα,βX belongs to F . By Corollary 6.7, we
deduce that the factorization of the diagonal

X
τ // PathG(X)

π // X ×X

satisfies the hypotheses of Theorem 2.1 applied to the right adjoint GphG :
GdTop→ Gph(Top). The proof is complete thanks to Corollary 5.6.

Definition 6.15. The three model structures on GdTop are called the q-
model structure, the h-model structure and the m-model structure respec-
tively. They are denoted by (GdTop)q, (GdTop)h and (GdTop)m, respec-
tively.

Theorem 6.16. The q-model structure of GdTop is combinatorial and left
determined. It coincides with the combinatorial model structure of [15]. A
set of generating cofibrations is {GlobG(Sn−1) ⊂ GlobG(Dn) | n > 0} ∪ {C :
∅→ {0}, R : {0, 1} → {0}}.

Proof. The q-model structure of GdTop coincides with the model structure
of [15], since fibrations and weak equivalences determine a model structure.
Therefore it is combinatorial. It is left determined by a proof similar to
the one of [18, Theorem 4.3] for the category of flows: it suffices to replace
{[0, 1], Y }S (which is denoted by Path(Y ) in the proof of Theorem 7.4) by
PathG(Y ), Glob by GlobG and PY by PGY .

Theorem 6.17. The m-model structure of GdTop is the mixed model struc-
ture of the q-model structure and the h-model structure in the sense of [7,
Theorem 2.1].

Proof. A model structure is characterized by its class of weak equivalences
and by its class of fibrations. The m-model structure of GdTop is therefore
the unique model structure such that a map of multipointed d-spaces f :
X → Y is
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• a weak equivalence if and only if it is a weak equivalence of the q-model
structure of GdTop.

• a fibration if and only if it is a fibration of the h-model structure of
GdTop.

Hence the proof is complete.

Proposition 6.18. There are the implications

q-cofibrant⇒ m-cofibrant⇒ h-cofibrant

for GdTop. The identity functor yields a Quillen equivalence

Id : (GdTop)q a (GdTop)m : Id .

Proof. The first assertion is a consequence of [7, Corollary 3.7]. The second
assertion is obvious.

Proposition 6.19. There exists a multipointed d-space which is not cofi-
brant in any of the three model structures of Theorem 6.14.

Proof. Consider the poset P̂ consisting of the set {0, a, b, 1} equipped with
the partial order 0 < a < 1 and 0 < b < 1: a and b are not comparable.
Let X be the multipointed d-space defined as follows. Let |X| = [0, 1]. Let
X0 = {0, a, b, 1} with a = 1/3 and b = 2/3. Let PGα,βX = {[0, 1] ∼=+ [α, β]} if
and only if α < β in P̂ and PGα,βX = ∅ otherwise. These data clearly satisfy
the axioms of multipointed d-space. Consider the multipointed d-space X
defined as follow:

1. We start from the multipointed d-space

(
−−→
[0, a] ∗ −−→[a, 1]) t (

−−→
[0, b] ∗ −−→[b, 1])

where the symbol ∗ means that the two copies of a (of b, respectively)
are identified.
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2. We make the identifications 0 = 0 and 1 = 1, we obtain a multipointed
d-space Z whose underlying space is homeomorphic to S1. We consider
the pushout diagram of multipointed d-spaces

GlobG({0, 1})

��

φ
// Z

��

GlobG([0, 1]) // X

such that φ(0̂) = 0, φ(1̂) = 1, φ maps (0, t) to t ∈ |−−→[0, a] ∗−−→[a, 1]| and maps
(1, t) to t ∈ |−−→[0, b] ∗ −−→[b, 1]|. Intuitively, the hole in the middle of Z is filled
by a homotopy between the execution path (0, 1) of

−−→
[0, a] ∗ −−→[a, 1] and the

execution path (0, 1) of
−−→
[0, b] ∗ −−→[b, 1]. It is depicted in Figure 2.

The projection map (z, t) → t from [0, 1] × [0, 1] to [0, 1] induces a map of
multipointed d-spaces p : X → X preserving the set of states. It is depicted
in Figure 2 as well. The maps PGα,βX → PGp(α),p(β)X are either Id∅, IdG , and
for (α, β) = (0̂, 1̂), it is the projection map [0, 1]×G → G which is homotopy
equivalence and an h-fibration of Top. Therefore the map p : X → X is a
trivial fibration of the h-model structure of GdTop.

If X were h-cofibrant, then there would exist a section s : X → X of p :

X → X. Since p induces a bijection fromX
0 to X0, the map of multipointed

d-spaces s : X → X must induce a bijection from X0 to X0. It means that
s(0) = 0̂, s(a) = (0, a), s(b) = (1, b) and s(1) = 1̂. Let γ ∈ PGa,1X. Then the
continuous map γ : [0, 1]→ [a, 1] is a nondecreasing homeomorphism. Since
s : X → X is a map of multipointed d-spaces, the composite s.γ belongs to
PG

(0,a),1̂
X. The point is that s(γ(γ−1(b))) = s(b) = (1, b). It means that s.γ is

an execution path of X from (0, a) to 1̂ passing by (1, b). Such an execution
path does not exist in X by construction: all execution paths inside the
globe are parallel to the boundary indeed. Contradiction. We deduce that
X is not h-cofibrant. The proof is complete thanks to Proposition 6.18.
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(0,a)•

$$
X

p

��

0̂• // --11++33
))
55
''
77
%%
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//

1̂•

(1,b)•

@@

X
0• a• b• //

1•

Figure 2: Symbolic representation of p : X → X

7 Flow

Definition 7.1. [11] A flow X consists of a topological space PX of execu-
tion paths, a discrete space X0 of states, two continuous maps s and t from
PX to X0 called the source and target map, respectively, and a continuous
and associative map

∗ : {(x, y) ∈ PX × PX; t(x) = s(y)} −→ PX

such that s(x ∗ y) = s(x) and t(x ∗ y) = t(y). A morphism of flows f :
X −→ Y consists of a set map f0 : X0 −→ Y 0 together with a continuous
map Pf : PX −→ PY such that f(s(x)) = s(f(x)), f(t(x)) = t(f(x)) and
f(x∗y) = f(x)∗f(y). The corresponding category is denoted by Flow. Let
Pα,βX = {x ∈ PX | s(x) = α and t(x) = β}.

The category Flow is locally presentable by [15, Theorem 7.7]. Three
examples of flows are important for the sequel:

1. For a topological spaceX, let Glob(X) be the flow defined by Glob(X)0 =
{0, 1} and PGlob(X) = X with s = 0 and t = 1. This flow has no
composition law.

2. The flow
−→
I is by definition Glob({0}).
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3. Let (P,6) be a poset. Then it can be viewed as a flow with Pα,βP equal
to the singleton {(α, β)} if and only if α < β and empty otherwise. In
particular, a set can be viewed as a flow without execution paths.

Notation 7.2. Let X be a flow. Then the pair (X0, (Pα,βX)α,β) is a well-
defined topological graph denoted by Gph(X).

Proposition 7.3. The mapping X 7→ Gph(X) induces a well-defined func-
tor from Flow to Gph(Top). It is a right adjoint.

Proof. Roughly, the left adjoint is the free flow generated by a topological
graph. The left adjoint Gph! : Gph(Top)→ Flow is constructed as follows.
Let X = (X0, (Xα,β)) be a topological graph. The set of states of Gph!(X)
is X0. For α, β ∈ X0, let

Pα,βX =
⊔

(α1, . . . , αn) ∈ (X0)n

n > 2, α1 = α, αn = β

Xα1,α2 × · · · ×Xαn−1,αn .

The composition law is defined by concatening tuples:

(x1, . . . , xm) ∗ (y1, . . . , yn) = (x1, . . . , xm, y1, . . . , yn).

We obtain a flow Gph!(X). A map f of flows from Gph!(X) to Y is equiv-
alent to choosing a set map from Gph!(X)0 = X0 to Y 0 and for each
(α, β) ∈ X0 ×X0 a continous map from Xα,β to Yf(α),f(β).

Theorem 7.4. Let (C,W,F) be one of the three model structures

(Cq,Wq,Fq), (Ch,Wh,Fh), (Cm,Wm,Fm)

of Top. Then there exists a unique model structure on Flow such that:

• A map of flows f : X → Y is a weak equivalence if and only if f0 :
X0 → Y 0 is a bijection and for all (α, β) ∈ X0 ×X0, the continuous
map Pα,βX → Pf(α),f(β)X belongs to W.

• A map of flows f : X → Y is a fibration if and only if for all (α, β) ∈
X0 ×X0, the continuous map Pα,βX → Pf(α),f(β)X belongs to F .

Moreover, this model structure is accessible and all objects are fibrant.
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Sketch of proof. The proof is similar to the proof of Theorem 6.14. Roughly
speaking, it suffices to replace everywhere PGα,βX by Pα,βX and to use the
right adjoint Gph : Flow → Gph(Top). We also have to use the path
functor Path : Flow → Flow defined on objects by Path(X)0 := X0, for
all (α, β) ∈ X0 ×X0, Pα,β Path(X) := TOP([0, 1],Pα,βX) with an obvious
definition of the composition law. It is the flow denoted by {[0, 1], X}S
in [11, Notation 7.6] and in [18, Notation 3.8].

Definition 7.5. The three model structures on Flow are called the q-model
structure, the h-model structure and the m-model structure, respectively.
They are denoted by (Flow)q, (Flow)h and (Flow)m, respectively.

Theorem 7.6. The q-model structure of Flow is combinatorial and left
determined. It coincides with the combinatorial model structure of [11]. A
set of generating cofibrations is {Glob(Sn−1) ⊂ Glob(Dn) | n > 0} ∪ {C :
∅→ {0}, R : {0, 1} → {0}}

Proof. The q-model structure of Flow coincides with the model structure
of [11], since fibrations and weak equivalences determine a model structure.
Therefore it is combinatorial. It is left determined by [18, Theorem 4.3].

Theorem 7.7. The m-model structure of Flow is the mixed model structure
of the q-model structure and the h-model structure in the sense of [7, Theo-
rem 2.1].

Proof. A model structure is characterized by its class of weak equivalences
and by its class of fibrations. The m-model structure of Flow is therefore
the unique model structure such that a map of flows f : X → Y is

• a weak equivalence if and only if it is a weak equivalence of the q-model
structure of Flow.

• a fibration if and only if it is a fibration of the h-model structure of
Flow.

Hence the proof is complete.

Proposition 7.8. There are the implications

q-cofibrant⇒ m-cofibrant⇒ h-cofibrant
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for Flow. The identity functor yields a Quillen equivalence

Id : (Flow)q a (Flow)m : Id .

Proof. The first assertion is a consequence of [7, Corollary 3.7]. The second
assertion is obvious.

Proposition 7.9. There exists a flow which is not cofibrant in any of the
three model structures of Theorem 7.4.

Proof. As in the proof of Proposition 6.19, consider the poset P̂ consisting
of the set {0, a, b, 1} equipped with the partial order 0 < a < 1 and 0 <
b < 1: a and b are not comparable. We denoted in the same way the flow
associated with the poset P̂ . We consider a q-cofibrant replacement P̂ cof of
P̂ constructed as follows:

1. We start from the flow

(
−→
I ∗ −→I ) t (

−→
I ∗ −→I )

where the symbol ∗ means that the final state of the left-hand flow is
identified with the initial state of the right-hand flow. The middle state
of the left-hand copy of

−→
I ∗ −→I is denoted by a and the middle state of

the right-hand copy of
−→
I ∗ −→I is denoted by b.

2. We make the identifications 0̂ = 0̂ and 1̂ = 1̂, we obtain a flow T . We
consider the pushout diagram of multipointed d-spaces

Glob({0, 1})

��

φ
// T

��

Glob([0, 1]) // P̂ cof

such that φ(0̂) = 0̂, φ(1̂) = 1̂, φ maps the path 0 to the unique execution
path of the left-hand copy of

−→
I ∗ −→I from 0̂ to 1̂ and the path 1 to the

unique execution path of the right-hand copy of
−→
I ∗−→I from 0̂ to 1̂. It is

depicted in Figure 3.
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a•

""
P̂ cof

q

��

0̂• // --11++33
((
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::
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b•

BB
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0• ..11

a• 00
b• --

1•

Figure 3: Symbolic representation of q : P̂ cof → P̂

There is a unique map of flows q : P̂ cof → P̂ . It preserves the set of
states. It is a h-fibration of Flow since all topological spaces Pα,βP̂ are
either singleton, or empty and in this case Pα,βP̂ cof is (and must be) empty
as well. It is a trivial fibration of (Flow)h because all nonempty path spaces
of P̂ cof are contractible.

If P̂ were h-cofibrant, then there would exist a section s : P̂ → P̂ cof of q.
Since q : P̂ cof → P̂ induces a bijection between the set of states, we would
have s(0) = 0̂, s(a) = a, s(b) = b and s(1) = 1̂. The only execution path
(0, a) of P from 0 to a is mapped to the only execution path s(0, a) of P cof

from 0̂ to a. In the same way, s(a, 1) is the only execution path of P̂ cof from
a to 1̂, s(0, b) is the only execution path of P cof from 0̂ to b and finally s(b, 1)
is the only execution path of P̂ cof from b to 1̂. We obtain s(0, a) ∗ s(a, 1) =
s(0, 1) = s(0, b)∗s(b, 1). Contradiction, because there is only a homotopy in
P̂ cof between s(0, a) ∗ s(a, 1) = φ(0) and s(0, b) ∗ s(b, 1) = φ(1). The proof
is complete thanks to Proposition 7.8.

8 Path space functor and m-cofibrancy

Let us mention the erratum in [17] correcting some proofs of [12]. We con-
clude this paper by explaining why the m-model structures of multipointed
d-spaces and of flows are better behaved than their q-model structures. Let
us start with the following observation:
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Theorem 8.1. Let X be a q-cofibrant flow. Then the space of execution
paths PX is q-cofibrant.

Proof. This fact, stated in various papers before this one, has a correct proof
in [17].

The analogue fact for multipointed d-spaces is wrong. Indeed, the mul-
tipointed d-space GlobG(D1) is q-cofibrant. Its space of paths is equal to
D1 × G which is far from being q-cofibrant in Top. However, it is a m-
cofibrant space by [7, Corollary 3.7] because the topological group G is con-
tractible. It turns out that this phenomenon is general. We need first to
recall some results of [15] and [12] to facilitate the reading of the proof for
a reader who would not be familiar with our work.

Notation 8.2. Let X be a multipointed d-space. For every (α, β) ∈ X0 ×
X0, let Pα,βX := PGα,βX/G be the quotient of the space PGα,βX by the actions
of G equipped with the final structure, that is, the final topology.

Let X be a multipointed d-space. Then there exists a unique flow cat(X)
with cat(X)0 = X0, Pα,βcat(X) = Pα,βX for every (α, β) ∈ X0 × X0

and the composition law ∗ : Pα,βX × Pβ,γX → Pα,γX is for every triple
(α, β, γ) ∈ X0 × X0 × X0 the unique map making the following diagram
commutative:

PGα,βX × PGβ,γX
∗N //

��

PGα,γX

��

Pα,βX × Pβ,γX
∃! // Pα,γX.

The mapping X 7→ cat(X) induces a functor from GdTop to Flow (see [15,
Section 7] for a complete exposition). In particular, for all topological Z, we
have

cat(GlobG(Z)) = Glob(Z).

Notation 8.3. Let X,Y ∈ GdTop. Let GdTOP(X,Y ) be the set
GdTop(X,Y ) equipped with the ω-initial structure coming from the in-
clusion of sets

GdTop(X,Y ) ⊂MSpc((|X|, X0), (|Y |, Y 0)).
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Notation 8.4. Let X,Y ∈ Flow. Let

FLOW(X,Y )

be the set Flow(X,Y ) equipped with the ω-initial structure coming from
the inclusion of sets

Flow(X,Y ) ⊂ Set(X0, Y 0)×Top(PX,PY ),

with Set(X0, Y 0) equipped with the discrete topology.

Proposition 8.5. [12, Proposition IV.3.1] Let Z be a compact topological
space. Let U be a cellular object of the q-model structure of GdTop (in [12],
such an object is called a globular complexe). Then the continuous map
induced by the functor cat : GdTop→ Flow

cat : GdTOP(GlobG(Z), U) −→ FLOW(Glob(Z), cat(U))

is a homotopy equivalence.

In fact, this proposition is a particular case of a more general theorem.
In [12, Theorem IV.3.10], it is proved that GlobG(Z) can be actually replaced
by any cellular object X of the q-model structure of GdTop, and Glob(Z)
must then be replaced by cat(X). It is even proved in [12, Theorem IV.3.14]
that this map is an h-fibration of Top. The proofs of these theorems, written
down within the category of weakly Hausdorff k-spaces, are still valid in our
framework, since they lie on three facts:

1. All maps of G are invertible: see the introduction for a short discussion
about this hypothesis.

2. The underlying category of topological spaces must be bicomplete, carte-
sian closed and must contain all CW-complexes.

3. The underlying category of topological spaces must be endowed with an
h-model structure which is required for the homotopical part of the proofs
which uses model category techniques.

We are now able to generalize the observation above:
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Theorem 8.6. Let U be a m-cofibrant multipointed d-space. Then the space
of paths PGU is m-cofibrant.

Proof. By Theorem 6.17 and [7, Corollary 3.7], there exists a q-cofibrant
multipointed d-space V and a map f : U → V which is a weak equivalence of
the h-model structure of GdTop. It means that f induces a bijection from U0

to V 0 and that for each (α, β) ∈ U0×U0, the map f : PGα,βU → PGf(α),f(β)V is
a homotopy equivalence. Therefore we can suppose without loss of generality
that U is q-cofibrant. Since any q-cofibrant object is a retract of a cellular
one, we can suppose that U is a cellular object of the q-model structure of
GdTop. From a pushout diagram of multipointed d-spaces with U1 (and
therefore U2) cellular

GlobG(Sn−1)

��

// U1

��

GlobG(Dn) // U2,

one obtains a pushout diagram of cellular flows

Glob(Sn−1)

��

// cat(U1)

��

Glob(Dn) // cat(U2).

This point is explained in the body of the proof of [12, Theorem IV.3.10]. It
is also easily seen that the functor cat : GdTop→ Flow preserves transfinite
colimits of q-cofibrations between cellular objects. It is even the method used
in [12] to construct the mapping cat. Note that the functor cat : GdTop→
Flow does not preserve colimits in general. Indeed, it does not have any
right adjoint by [15, Proposition 7.3] and being colimit-preserving and being
a left adjoint are equivalent where the source and the target categories of a
functor are locally presentable.

These facts are sufficient to conclude the proof. The flow cat(U) is cel-
lular, and therefore q-cofibrant. By Theorem 8.1, we deduce that the space
Pcat(U) is q-cofibrant. By Proposition 8.5 applied with Z a singleton, the
quotient map PGU → Pcat(U) is a homotopy equivalence. By [7, Corol-
lary 3.7], we obtain that PGU is a m-cofibrant space and the proof is com-
plete.



Six model categories for directed homotopy 179

The same phenomenon holds for the category of flows:

Theorem 8.7. Let U be a m-cofibrant flow. Then the space of paths PU is
m-cofibrant.

Sketch of proof. There exists a map f : U → V which a weak equivalence of
the h-model structure of Flow towards a q-cofibrant flow V . Thus PU and
PV are homotopy equivalent. By Theorem 8.1, the space PV is q-cofibrant.
By [7, Corollary 3.7], the space PU is therefore m-cofibrant.

Acknowledgments

I thank the MathOverflow community. Many contributions drew my atten-
tion to the recent breakthroughs in the theory of accessible model categories.
I also thank the contributors of the nLab website. Finally, I thank the referee
for the helpful comments.

References

[1] Adámek, J., Herrlich, H., and Strecker, G.E., “Abstract and Concrete Categories:
the Joy of Cats”, Repr. Theory Appl. Categ. 17 (2006), 1-507 (electronic), Reprint
of the 1990 original [Wiley, New York].

[2] Adámek, J. and Rosický, J., “Locally Presentable and Accessible Categories”, Cam-
bridge University Press, 1994.

[3] Barthel, T. and Riehl, E., On the construction of functorial factorizations for model
categories, Algebr. Geom. Topol. 13(2) (2013), 1089-1124.

[4] Borceux, F.,“Handbook of Categorical Algebra 1: Basic Category Theory”, Cam-
bridge University Press, 1994.

[5] , “Handbook of Categorical Algebra 2: Categories and Structures, Cambridge
University Press, 1994.

[6] Chorny, B., Example of non accessible model categories, MathOverflow, 2019,
URL:https://mathoverflow.net/q/326490 (version: 2019-03-27).

[7] Cole, M., Mixing model structures, Topology Appl. 153(7) (2006), 1016-1032.

[8] Dror Farjoun, E., Homotopy theories for diagrams of spaces, Proc. Amer. Math. Soc.
101(1) (1987), 181-189.



180 P. Gaucher

[9] Fajstrup, L. and Rosický, J., A convenient category for directed homotopy, Theory
Appl. Categ. 21(1) (2008), 7-20.
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