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Abstract. The quality of statistical calibration of hydraulic
and transport soil properties is studied for infiltration exper-
iments in which, over a given period, tracer-contaminated
water is injected into an hypothetical column filled with
a homogeneous soil. The saturated hydraulic conductivity,
the saturated and residual water contents, the Mualem–van
Genuchten shape parameters and the longitudinal dispersiv-
ity are estimated in a Bayesian framework using the Markov
chain Monte Carlo (MCMC) sampler. The impact of the kind
of measurement sets (water content, pressure inside the col-
umn, cumulative outflow and outlet solute concentration) and
that of the solute injection duration is investigated by ana-
lyzing the calibrated model parameters and their confidence
intervals for different scenarios. The results show that the in-
jection period has a significant effect on the quality of the
estimation, in particular, on the posterior uncertainty range
of the parameters. All hydraulic and transport parameters of
the investigated soil can be well estimated from the experi-
ment using only the outlet concentration and cumulative out-
flow, which are measured non-intrusively. An improvement
of the identifiability of the hydraulic parameters is observed
when the pressure data from measurements taken inside the
column are also considered in the inversion.

1 Introduction

The soil parameters that influence water flow and contami-
nant transport in unsaturated zones are not generally known
a priori and have to be estimated by fitting model responses

to observed data. The unsaturated soil hydraulic parameters
can be (more or less accurately) estimated from dynamic flow
experiments (e.g., Hopmans et al., 2002; Vrugt et al., 2003a;
Durner and Iden, 2011; Younes et al., 2013). Several authors
have investigated different types of transient experiments and
boundary conditions suited for a reliable estimation of soil
hydraulic properties (e.g., van Dam et al., 1994; Šimůnek and
van Genuchten, 1997; Inoue et al., 1998; Durner et al., 1999).
Soil hydraulic properties are often estimated using inversion
of one-step (Kool et al., 1985; van Dam et al., 1992) or mul-
tistep (Eching et al., 1994; van Dam et al., 1994) outflow ex-
periments or controlled infiltration experiments (Hudson et
al., 1996).

Kool et al. (1985) and Kool and Parker (1988) suggested
that the transient experiments should cover a wide range of
water contents to obtain a reliable estimation of the parame-
ters. Van Dam et al. (1994) have shown that more reliable pa-
rameter estimates are obtained by increasing the pneumatic
pressure in several steps instead of a single step. The mul-
tistep outflow experiments are the most popular laboratory
methods (e.g., Eching and Hopmans, 1993; Eching et al.,
1994; van Dam et al., 1994; Hopmans et al., 2002). How-
ever, their application is limited by expensive measurement
equipment (Nasta et al., 2011).

Infiltration experiments have been investigated by Mishra
and Parker (1989) to study the reliability of hydraulic- and
transport-estimated parameters for a soil column of 200 cm
using measurements of water content, concentration and wa-
ter pressure inside the column. They showed that the simulta-
neous estimation of hydraulic and transport properties yields
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smaller estimation errors for model parameters than the se-
quential inversion of hydraulic properties from the water con-
tent and/or pressure head followed by the inversion of trans-
port properties from concentration data (Mishra and Parker,
1989).

Inoue et al. (2000) performed infiltration experiments us-
ing a soil column of 30 cm. Pressure head and solute con-
centration were measured at different locations. A constant
infiltration rate was applied to the soil surface and a balance
was used to measure the cumulative outflow. They showed
that both hydraulic and transport parameters can be assessed
by the combination of flow and transport experiments.

Furthermore, infiltration experiments were often con-
ducted in lysimeters for pesticide leaching studies. Indeed,
lysimeter experiments are generally used to assess the leach-
ing risks of pesticides using soil columns of around 1.2 m
depth which is the standard scale for these types of ex-
periments (Mertens et al., 2009; Kahl et al., 2015). Be-
fore performing the column leaching experiment, several
infiltration–outflow experiments are often realized to esti-
mate the soil hydraulic parameters (Kahl et al., 2015; Dusek
et al., 2015).

The key objective of the present study is to evaluate the
reliability of different experimental protocols for estimating
hydraulic and transport parameters and their associated un-
certainties for column experiments. We consider the flow
and the transport of an inert solute injected into a hypotheti-
cal column filled with a homogeneous sandy clay loam soil.
We assume that flow can be modeled by the Richards’ equa-
tion (RE) and that the solute transport can be simulated by
the classical advection–dispersion model. Furthermore, the
Mualem and van Genuchten (MvG) models (Mualem, 1976;
van Genuchten, 1980) are chosen to describe the retention
curve and to relate the hydraulic conductivity of the unsatu-
rated soil to the water content. The estimation of the flow and
transport parameters through flow–transport model inversion
is investigated for two injection periods of the solute and dif-
ferent data measurement scenarios.

Inverse modeling is often performed using local search al-
gorithms such as the Levenberg–Marquardt algorithm (Mar-
quardt, 1963). The latter is computationally efficient to evalu-
ate the optimal parameter set (Gallagher and Doherty, 2007).
Besides, the degree of uncertainty in the estimated param-
eters, expressed by their confidence intervals, is often cal-
culated using a first-order approximation of the model near
its minimum (Carrera and Neuman, 1986; Kool and Parker,
1988). However, as stated by Vrugt and Bouten (2002), pa-
rameter interdependence and model nonlinearity occurring
in hydrologic models may violate the use of this first approx-
imation to obtain accurate confidence intervals of each pa-
rameter. Therefore, in this work, the estimation of hydraulic
and transport parameters is performed in a Bayesian frame-
work using the Markov chain Monte Carlo (MCMC) sampler
(Vrugt and Bouten, 2002; Vrugt et al., 2008). Unlike classi-
cal parameter optimization algorithms, the MCMC approach

generates sets of parameter values randomly sampled from
the posterior joint probability distributions, which are useful
to assess the quality of the estimation. The MCMC samples
can be used to summarize parameter uncertainties and to per-
form predictive uncertainty (Ades and Lu, 2003).

Hypothetical infiltration experiments are considered for a
column of 120 cm depth, initially under hydrostatic condi-
tions, free of solute and filled with a homogeneous sandy
clay loam soil. Continuous flow and solute injection are per-
formed during a time period Tinj at the top of the column
and with a zero-pressure head at the bottom. The unknown
parameters for the water flow are the hydraulic parameters:
ks (L T−1), the saturated hydraulic conductivity; θs (L3 L−3),
the saturated water content; θr (L3 L−3), the residual water
content; and α (L−1) and n (−), the MvG shape parameters.
The only unknown parameter of the tracer transport is the
longitudinal dispersivity, aL(L).

Several scenarios corresponding to different sets of mea-
surements are investigated to address the following ques-
tions:

1. Can we obtain an appropriate estimation of all flow
and transport parameters from tracer-infiltration exper-
iments, even though a limited range of water contents
is covered (only moderately dry conditions are obtained
because of gravity drainage conditions prescribed at the
bottom of the soil column)?

2. What is the optimal set of measurements for the esti-
mation of all the parameters? Can we use only non-
intrusive measurements (cumulative outflow and con-
centration breakthrough curve) or are intrusive mea-
surements of pressure heads and/or water contents in-
side the column unavoidable?

3. Is there an optimal design for the tracer injection?

For this purpose, synthetic scenarios are considered in the
sequel in which data from numerical simulations are used to
avoid the uncontrolled noise of experiments that could bias
the conclusions.

The paper is organized as follows. The mathematical mod-
els describing flow and transport in the unsaturated zone are
detailed in Sect. 2. Section 3 describes the MCMC Bayesian
parameter estimation procedure used in the DREAM(ZS)
sampler. Section 4 presents the different investigated scenar-
ios and discusses the results of the calibration in terms of
mean parameter values and uncertainty ranges for each sce-
nario. Conclusions are given in Sect. 5.

2 Unsaturated flow–transport model

We consider a uniform soil profile in the column and an in-
jection of a solute tracer such as bromide, as described in
Mertens et al. (2009). The unsaturated water flow in the ver-
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tical soil column is modeled with the one-dimensional pres-
sure head form of the RE:


(
c (h)+ Ss

θ

θS

)
∂h

∂t
=
∂q

∂z

q =K (h)

(
∂h

∂z
− 1

) , (1)

where h (L) is the pressure head; q (L T−1) is the Darcy
velocity; z (L) is the depth, measured as positive in the
downward direction; Ss (−) is the specific storage; θ and θs
(L3 L−3) are the actual and saturated water contents, respec-
tively; c (h) (L−1) is the specific moisture capacity; andK (h)
(L T−1) is the hydraulic conductivity. The latter two parame-
ters are both functions of the pressure head. In this study, the
relations between the pressure head, conductivity and water
content are described by the following standard models of
Mualem (1976) and van Genuchten (1980):
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where Se (−) is the effective saturation, θr (L3 L−3) is the
residual water content, Ks (L T−1) is the saturated hydraulic
conductivity, and m= 1− 1/n, α (L−1) and n (−) are the
MvG shape parameters.

The tracer transport is governed by the following
convection–dispersion equation:
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)
= 0, (3)

where C (M L−3) is the concentration of the tracer, D
(L2 T−1) is the dispersion coefficient in whichD = alq+dm
and al (L) is the dispersivity coefficient of the soil and dm
(L2 T−1) is the molecular diffusion coefficient, which is set
as 1.04 10−4 cm2 min−1.

The transport Eq. (3) is coupled with the flow Eq. (1) by
the water content θ and Darcy’s velocity q. The initial condi-
tions are as follows: a hydrostatic pressure distribution with
zero-pressure head at the bottom of the column (z= L) and
a solute concentration of zero inside the whole column. An
infiltration with a flux qinj of contaminated water with a con-
centration Cinj is then applied at the upper boundary condi-
tion (z= 0) during a period Tinj. Hence, the boundary condi-

tions at the top of the column can be expressed as

for 0< t ≤ Tinj


K
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)
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θD
∂C

∂z
+ qC = qinjCinj

(4)

for t > Tinj

 K

(
∂h

∂z
− 1

)
= 0

Cinj = 0
.

A zero-pressure head is maintained at the lower boundary
(z= L) of the column and a zero-concentration gradient is
used as the lower boundary condition for the solute transport,
namely

(h)z=l = 0
(
∂C

∂z

)
z=l

= 0. (5)

In the sequel, the infiltration rate and the injected solute con-
centration are qinj = 0.015 cm min−1 and Cinj = 1 g cm−3,
respectively. The system (Eqs. 1–5) is solved using the stan-
dard finite difference method for both flow and transport
spatial discretization. A uniform mesh of 600 cells is em-
ployed. Temporal discretization is performed with the high-
order method of lines (MOL) (e.g., Miller et al., 1998; Tocci
et al., 1997; Younes et al., 2009; Fahs et al., 2011). Error
checking, robustness, order selection and adaptive time step
features, available in sophisticated solvers, are applied to the
time integration of partial differential equations (Tocci et al.,
1997). The MOL has been successfully used to solve RE in
many studies (e.g., Farthing et al., 2003; Miller et al., 2006;
Li et al., 2007; Fahs et al., 2009). Details on the use of the
MOL for solving RE are described in Fahs et al. (2009).

3 Bayesian parameter estimation

The vector of unknown parameters that has to be iden-
tified by model calibration is ξ = (ks,θs,θr,α,n,aL). To
analyze the performance of the model calibration proce-
dures, a reference solution is generated by simulating the
flow–transport problem (Eqs. 1–5) using the following pa-
rameter values (corresponding to a sandy clay loam soil):
ks = 50 cm day−1, θs = 0.43, θr = 0.09, α = 0.04 cm−1, n=
1.4 and al = 0.2 cm. Four types of variables are extracted
from the results of the simulation: the pressure head and wa-
ter content 5 cm below the top of the column, the cumula-
tive outflow and the solute breakthrough concentration at the
outflow of the column. These four data series are modified
by adding a normally distributed white noise using the fol-
lowing standard deviations: σh = 1 cm for the pressure head,
σθ = 0.02 for the water content, σQ = 0.1 cm for the cumu-
lative outflow and σC = 0.01 g cm−3 for the exit concentra-
tion. These perturbations mimic measurement errors and the
resulting values of water pressure, water content, cumulative
outflow and solute breakthrough concentration are consid-
ered as measurements in the following.
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Table 1. Prior lower and upper bounds of the uncertainty parameters
and reference values.

Parameters Lower Upper Reference
bounds bounds values

ks (cm min−1) 0.025 0.1 0.0347
θs (−) 0.3 0.5 0.43
θr (−) 0.05 0.2 0.09
α (cm−1) 0.01 0.3 0.04
n (−) 1.2 5 1.4
al (cm) 0.05 0.6 0.2

The flow–transport model is used to analyze the effects of
different measurement sets on parameter identification. For
this purpose, we adopt a Bayesian approach that involves
the parameter joint posterior distribution (Vrugt et al., 2008).
The latter is assessed with the DREAM(ZS) MCMC sam-
pler (Laloy and Vrugt, 2012). This software generates ran-
dom sequences of parameter sets that asymptotically con-
verge toward the target joint posterior distribution (Gelman
et al., 1997). Thus, if the number of runs is sufficiently high,
the generated samples can be used to estimate the statistical
measures of the posterior distribution, such as the mean and
variance, among other measures.

The Bayes theorem states that the probability density func-
tion of the model parameters conditioned onto data can be
expressed as

p(ξ |ymes) ∝ p(ymes|ξ)p (ξ) , (6)

where p(ξ |ymes) is the likelihood function measuring how
well the model fits the observations ymes, and p(ξ) is the
prior information about the parameter before the observa-
tions are made. Independent uniform priors within the ranges
reported in Table 1 are chosen. In this work, a Gaussian dis-
tribution defines the likelihood function because the obser-
vations are simulated and corrupted with Gaussian errors.
Hence, the parameter posterior distribution is expressed as

p(ξ |ymes)∝ exp

(
−

SSh (ξ)

2σ 2
h
−

SSθ (ξ)

2σ 2
θ

−
SSQ (ξ)

2σ 2
Q

−
SSC (ξ)

2σ 2
C

)
, (7)

where SSh (ξ), SSθ (ξ), SSQ (ξ) and SSC (ξ) are the sums
of the squared differences between the observed and mod-
eled data of the pressure head, water content, cumulative
outflow and output concentration, respectively. For instance,

SSh (ξ)=
∑Nh
k=1

(
h
(k)
mes−h

(k)
mod (ξ)

)2
, which includes the ob-

served h(k)mes and predicted h(k)mod pressure heads at time tk for
the number of pressure head observations Nh.

Bayesian parameter estimation is performed hereafter with
the DREAM(ZS) software (Laloy and Vrugt, 2012), which is
an efficient MCMC sampler. DREAM(ZS) computes multi-
ple sub-chains in parallel to thoroughly explore the parame-
ter space. Archives of the states of the sub-chains are stored

and used to allow a strong reduction of the “burn-in” period
in which the sampler generates individuals with poor perfor-
mances. Taking the last 25 % of individuals of the MCMC
(when the chains have converged) yields multiple sets of pa-
rameters, ξ , that adequately fit the model onto observations.
These sets are then used to estimate the updated parameter
distributions, the pairwise parameter correlations and the un-
certainty of the model predictions. As suggested in Vrugt et
al. (2003b), we consider that the posterior distribution is sta-
tionary if the Gelman and Ruban (1992) criterion is ≤ 1.2.

4 Results and discussion

In this section, the identifiability of the parameters is investi-
gated for seven different scenarios of measurement sets (Ta-
ble 1). In the first scenario, only measured pressure heads and
cumulative outflow are used for the calibration. Scenarios 2
to 5 investigate the benefit of adding measured water contents
and/or solute outlet concentrations to pressure heads and out-
flow. The last scenarios (6, 7) investigate the use of mea-
sured cumulative outflow and concentration breakthrough at
the column outflow because these measurements do not re-
quire intrusive techniques. Scenarios 5 to 7 investigate the
effects of solute injection duration on the identifiability of
the parameters as well.

In all cases, the MCMC sampler was run with three simul-
taneous chains for a total number of 50 000 runs. Depend-
ing on the scenario, the MCMC required between 5000 and
20 000 model runs to reach convergence and was terminated
after 30 000 runs. The last 25 % of the runs that adequately fit
the model onto observations are used to estimate the updated
probability density function (pdf).

4.1 The data sets for parameter estimation

The data sets obtained from solving the flow–transport prob-
lems (Eqs. 1–5) using the parameters given in Sect. 2 are
shown in Fig. 1. The pressure head at 5 cm from the top of the
column (Fig. 1a) increases from its initial hydrostatic nega-
tive value (−115 cm) and reaches a plateau (−1.75 cm) in
less than 100 min during the injection period. After the injec-
tion is finished, it progressively decreases due to the drainage
caused by the gravity effect. A similar behavior is observed
for the water content at the same location (Fig. 1b), where the
value of the plateau is close to the saturation value. The cu-
mulative outflow (Fig. 1c) starts to increase at approximately
1000 min after the beginning of the injection. It shows an al-
most linear behavior until 5500 min. It then slowly increases
with an asymptotic behavior due to the natural drainage af-
ter the end of the injection period. Fig. 1d displays the water
saturation as a function of the pressure head. It is worth not-
ing that only a few parts of this curve are described during
the infiltration experiment. Indeed, only moderate dry con-
ditions are established because the minimum pressure head
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Table 2. Measurement sets and injection periods for the different
scenarios. The pressure head h and the water content θ are measured
at 5 cm from the top of the column. The cumulative outflow Q and
the concentration C are measured at the exit of the column.

Scenario Measured variables Injection period

h θ Q C Tinj = 5000 min Tinj = 3000 min

1 ν ν ν

2 ν ν ν ν

3 ν ν ν ν ν

4 ν ν ν ν

5 ν ν ν ν

6 ν ν ν

7 ν ν ν

reached in the column is −120 cm, which corresponds to the
initial pressure head at the top of the column.

The breakthrough concentration curve (Fig. 1e) shows a
sharp front, which starts shortly after 3000 min. Note that
if the injection of both water and contaminant are stopped
once the solute reaches the output. For an injection period of
3000 min, the breakthrough curve exhibits a smoother pro-
gression (Fig. 1f).

The data considered as measurements, which are used
as conditioning information for model calibration, are also
shown in Fig. 1. In Fig. 1b, the water content seems to be
more affected by the perturbation of data than the pressure
head and cumulative outflow. This phenomenon is due to
the relative importance of the measurement errors of the wa-
ter content often observed with time-domain reflectometry
probes and to the weak variations of the water content dur-
ing the infiltration experiment. The perturbation of the break-
through curve is relatively small because of the low added
noise since output concentrations can be accurately mea-
sured. The perturbations of the pressure head and cumulative
outflow seem weak because of the large variation of these
variables during the experiment.

4.2 Results of the parameter estimation

The uncertainty model parameters are assumed to be dis-
tributed uniformly over the ranges reported in Table 1. This
table also lists the reference values used to generate data ob-
servations before perturbation. Seven scenarios are consid-
ered, corresponding to different sets of measurements for the
estimation of the hydraulic and transport soil parameters (Ta-
ble 2).

The MCMC results of the seven studied scenarios are
given in Figs. 2–8. The “on-diagonal” plots in these fig-
ures display the inferred parameter distributions, whereas the
“off-diagonal” plots represent the pairwise correlations in the
MCMC sample. If the draws are independent, non-sloping
scatterplots should be observed. However, if a good value of
a given parameter is conditioned by the value of another pa-
rameter, then their pairwise scatterplot should show a narrow

sloping stripe. The sensitivity of parameters is obtained by
comparing prior to posterior parameter distribution. A signif-
icant difference between the two distributions for a parameter
indicates high model sensitivity to that parameter (Dusek et
al., 2015).

To facilitate the comparison between the different scenar-
ios, Figs. 9–14 show the mean and the 95 % confidence inter-
vals of the final MCMC sample that adequately fit the model
onto observations for each scenario, and Table 3 summarizes
the pairwise parameter correlations.

Figure 2 shows the inferred distributions of the parameters
identified with the MCMC sampler using only the pressure
and cumulative outflow measurements (scenario 1). The pa-
rameters ks, α and n are well estimated; their prior intervals
of variation are strongly narrowed and they essentially show
bell-shaped posterior distributions. This shows the high sen-
sitivity of the model responses to these parameters.

The parameter ks is strongly correlated to α (0.94) and
n (−0.97). These results confirmed the results of Eching
et al. (1994) from multistep outflow experiments where it
was found that the inverse solution technique is greatly im-
proved when both cumulative outflow and pressure head
data from some positions inside the column are used. The
two water-content-related parameters are strongly correlated
(0.96) and cannot be identified accurately because the wa-
ter retention relationship depends on the difference between
θs and θr, and only this difference is identifiable. Note that
the prior intervals of θr and θs, which are, respectively,
[0.05,0.2] and [0.3,0.5], have changed to the posterior inter-
vals [0.05,0.16] and [0.39,0.5] because the target difference
should be θs− θr = 0.34. In the literature, van Genuchten
and Nielsen (1985), Eching and Hopmans (1993) and Zur-
mühl (1996) considered that saturated water content is deter-
mined independently and considered only θr to be an empir-
ical parameter that should be fitted to the data.

The dispersivity coefficient al has not been identified in
this first scenario.

The MCMC results in Fig. 3 show that water content mea-
surements throughout the experiment (scenario 2) allow the
estimation of both the residual and saturated water contents.
The parameter θr strongly correlates to ks (−0.94) and n
(0.98) and the parameter ks remains strongly related to α
(0.94) and n (−0.98). Although the water content data are
subject to relatively high measurement errors, a good esti-
mation is obtained for θs and θr. The parameters ks, α and
n are estimated with the same accuracy as for the first sce-
nario. All parameters (except the dispersivity coefficient) are
highly sensitive since their posterior intervals of variations
are strongly reduced compared to the prior intervals. More-
over, the prior uniform distributions give place to almost
Gaussian posterior distributions. These results show that, al-
though Kool et al. (1985) and Kool and Parker (1988) sug-
gested that the transient experiments should cover a wide
range of water contents, an appropriate estimation of all pa-
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Figure 1. (a) Pressure head at 5 cm below the soil surface, (b) water content at 5 cm below the soil surface, (c) cumulative outflow, (d) reten-
tion curve, (e) output concentration for Tinj = 5000 and (f) for Tinj = 3000 min. Solid lines represent model outputs and dots represent the
sets of perturbed data serving as conditioning information for model calibration.

Table 3. Summary of the pairwise parameter correlations.

Scenario

1 (ks,n)=−0.97 (ks,α)= 0.94 (θr,θs)= 0.96
2 (ks,n)=−0.98 (ks,α)= 0.94 (ks,θr)=−0.94 (θr,n)= 0.98
3 (ks,n)=−0.97 (ks,α)= 0.91 (ks,θr)=−0.94 (θr,n)= 0.99
4 (ks,n)=−0.98 (ks,α)= 0.95 (ks,θr)=−0.96 (θr,n)= 0.99
5 (ks,n)=−0.96 (ks,α)= 0.93 (ks,θr)=−0.91 (θr,n)= 0.98
6 (ks,n)=−0.95 (θr,n)= 0.95
7 (ks,n)=−0.95 (θr,n)= 0.94

rameters can be obtained with the infiltration experiment
even though a limited range of water contents is covered.

When the concentration measurements are also considered
in the inversion (scenario 3), the results depicted in Fig. 4

show very significant correlations between ks and θr (−0.94),
ks and α (0.91), ks and n (−0.97) and n and θr (0.99). The
posterior uncertainty ranges of ks, α, n and θr are similar to
the previous scenarios. Those of θs and al are strongly re-
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Figure 2. MCMC solutions for the transport scenario 1. The diagonal plots represent the inferred posterior probability distribution of the
model parameters. The off-diagonal scatterplots represent the pairwise correlations in the MCMC drawing.

Figure 3. MCMC solutions for transport scenario 2 (see Fig. 2 caption).

duced, leading to a good identification of these parameters
when using C measurements (Figs. 10 and 14). A better es-
timate of the saturated water content is obtained because ad-
vective transport is a function of this variable.

In the inversion procedure of scenario 4, the measurements
of the water content are not considered. This scenario leads
to the same quality of the estimation for the parameters ks,
θr, α and n (Figs. 9, 11, 12, 13) and similar correlations be-
tween the parameters as in the previous scenario. This result
shows that the intrusive water content measurements, which
are subject to more significant measurement errors than the
output concentration, are not required if the output concen-
tration is measured. Compared with the results of scenario 2,

it can be concluded that better parameter estimations are ob-
tained using h, Q and C data than using h, Q and θ data,
especially for θs. Therefore, using C instead of θ measure-
ments in combination with h and Q measurements allows
the estimation of al and yields a better estimate of θs.

The pressure head, cumulative outflow and concentra-
tion measurements are used in the estimation procedure
of scenario 5, but the injection period is now reduced to
Tinj = 3000 min. The obtained results (Fig. 6) show the same
correlations between the parameters as for Tinj = 5000 min.
For the parameters ks, θs, θr, α and n, almost the same mean
estimates are obtained as for scenario 4. However, the pa-
rameters are better identified (Figs. 9–13). Indeed, the un-
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Figure 4. MCMC solutions for transport scenario 3 (see Fig. 2 caption).

Figure 5. MCMC solutions for transport scenario 4 (see Fig. 2 caption).

certainty of these parameters is smaller because the credible
interval is reduced by a factor of 25 % for ks, 8 % for θs, 26 %
for θr, 10 % for α and 25 % for n when compared to the re-
sults obtained using Tinj = 5000 min. The parameter al is also
much better estimated than in the previous scenario. Its mean
value approaches the reference solution and the posterior un-
certainty range is reduced by approximately 75 % (Fig. 14).

In scenario 6, the pressure head measurements are re-
moved and only non-intrusive measurements (Q and C data)
are used for the calibration with an injection period of
Tinj = 5000 min. These kinds of non-intrusive measures have
been used by Mertens et al. (2009) to estimate some of the
hydraulic and pesticide leaching parameters. The results de-

picted in Fig. 7 show high correlations only between ks and
n (−0.95) and θr and n (0.95). On the one hand, these results
show that all the parameters are well estimated since, as com-
pared to the prior intervals (given in Table 1), the confidence
intervals of the estimated parameters (plotted in Figs. 9–14)
are strongly reduced, especially for the parameters α, n and
θs. On the other hand, compared to the results of scenario 4,
which also considers pressure data, ks is not as well estimated
(the mean value is not as close to the reference value and the
confidence interval is 27 % larger). The mean estimated val-
ues for θr and n also degraded (not as close to the reference
solution), although their confidence intervals are similar to
those of scenario 4 (Figs. 11, 13). The estimated mean value
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Figure 6. MCMC solutions for transport scenario 5 (see Fig. 2 caption).

Figure 7. MCMC solutions for transport scenario 6 (see Fig. 2 caption).

of the parameter α is similar to that in scenario 4. However,
its uncertainty is much larger because the credible interval is
77 % larger (Fig. 14). The parameters θs and al are estimated
as well as in scenario 4 (in terms of mean estimated value
and credible interval).

The last scenario (scenario 7) is similar to the previous
one, but the injection period is reduced to Tinj = 3000 min.
The results depicted in Fig. 8 show similar correlations
between the parameters as for Tinj = 5000 min. However,
a significant improvement is observed for the mean esti-
mated values, which approach the reference solution for
ks, θr, n and al (Figs. 9, 11, 13, 14). The uncertainties

of ks, α and al are also reduced by approximately 40, 15
and 70 %, respectively. The parameter θs is estimated as
well as in scenario 6. The improvement of the parame-
ter estimation in this last scenario compared to the previ-
ous one can be explained by the fact that the injection of
water and solute contaminant is stopped once the concen-
tration reaches the column outlet. Hence, the injected vol-
ume (0.015× 3000= 45 cm3 cm−2) is slightly less than the
pore volume (120× 0.43= 51 cm3 cm−2). Thus, when the
injection is stopped, the column is not fully saturated and
the outlet flux strongly reduces (see the asymptotic behav-
ior of the cumulative outflow when the injection is stopped
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Figure 8. MCMC solutions for transport scenario 7 (see Fig. 2 caption).

Figure 9. Posterior mean values and 95 % confidence intervals of
the saturated hydraulic conductivity for the different scenarios.

in Fig. 1c). As a consequence, the concentration profile in-
creases smoothly (see Fig. 1f) until reaching its maximum
value, in contrast to the sharp front observed for Tinj =

5000min in scenario 6 (see Fig. 1e). Hence, the breakthrough
curve obtained with Tinj = 3000 min is more affected by the
hydraulic parameters than the breakthrough curve obtained
with Tinj = 5000 min. This explains why a better estimation
of the parameters is observed for the last scenario compared
to scenario 6.

5 Conclusions

In this work, estimation of hydraulic and transport soil pa-
rameters have been investigated using synthetic infiltration

Figure 10. Posterior mean values and 95 % confidence intervals of
the saturated water content for the different scenarios.

experiments performed in a column filled with a sandy clay
loam soil, which was subjected to continuous flow and solute
injection over a period Tinj.

The saturated hydraulic conductivity, the saturated and
residual water contents, the Mualem–van Genuchten shape
parameters and the longitudinal dispersivity are estimated in
a Bayesian framework using the MCMC sampler. Parameter
estimation is performed for different scenarios of data mea-
surements.

The results reveal the following conclusions:

1. All hydraulic and transport parameters can be appropri-
ately estimated from the described infiltration experi-
ment. However, the accuracy differs and depends on the
type of measurement and the duration of the injection

Hydrol. Earth Syst. Sci., 21, 2263–2275, 2017 www.hydrol-earth-syst-sci.net/21/2263/2017/



A. Younes et al.: Hydraulic and transport parameter assessment 2273

Figure 11. Posterior mean values and 95 % confidence intervals of
the residual water content for the different scenarios.

Figure 12. Posterior mean values and 95 % confidence intervals of
the shape parameter α for the different scenarios.

Tinj, even if the water content remains close to saturated
conditions.

2. The use of concentration measurements at the column
outflow, in addition to traditional measured variables
(water content, pressure head and cumulative outflow),
reduces the hydraulic parameter uncertainties, espe-
cially those of the saturated water content (comparison
between scenarios 2 and 3).

3. The saturated hydraulic conductivity is estimated with
the same order of accuracy, independent of the observed
variables.

4. The estimation of the dispersivity is sensitive to the in-
jection duration. Scenarios 5 and 7 with Tinj = 3000 min
yield much more accurate dispersivity estimations
than scenarios 4 and 6 with Tinj = 5000 min due to

Figure 13. Posterior mean values and 95 % confidence intervals of
the shape parameter n for the different scenarios.

Figure 14. Posterior mean values and 95 % confidence intervals of
dispersivity for the different scenarios.

the extended spreading of the solute observed for
Tinj = 3000 min.

5. A better identifiability of the soil parameters is obtained
usingC instead of θ measurements, in combination with
h and Q data (comparison between scenarios 2 and 4).

6. Using only non-intrusive measurements (cumulative
outflow and output concentration) yields satisfactory es-
timation of all parameters (scenario 7). The uncertainty
of the parameters significantly decreases when the in-
jection of water and solute is maintained for a limited
period (comparison between scenarios 6 and 7).

This last point has practical applications for designing sim-
ple experimental setups dedicated to the estimation of hy-
drodynamic and transport parameters for unsaturated flow
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in soils. The setup has to be appropriately equipped to mea-
sure the cumulative water outflow (e.g., weighing machine)
and the solute breakthrough at the column outflow (e.g.,
flow through electrical conductivity). The injection should be
stopped as soon as the solute concentration reaches the out-
flow. The accuracy of the estimation of θr, α and n improves
by adding pressure measurements inside the column, close to
the injection.

These results are of course related to the models and ex-
perimental conditions we used. This work can be extended
to different types of soils, water retention and/or relative per-
meability functions to evaluate the interest of coupling flow
and transport for parameter identification. This work can also
be extended to reactive solutes.
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