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Introduction

Spectral graph theory represents an active area of research. In the last few years, the questions of the essential self-adjointness of discrete Laplacian operators on in…nite graphs have attracted a lot of interest, see [START_REF] De Verdière | Essential self-adjointness for combinatorial schrodinger operators. II metrically non complete graphs[END_REF][START_REF] Hung | A note on selfadjoint extensions of the Laplacian on weighted graphs[END_REF][START_REF] Milatovic | Essential self-adjointness of magnetic Schrodinger operators on locally …nite graphs[END_REF][START_REF] Golénia | The problem of de…ciency indices for discrete Schrodinger operators on locally …nite graph[END_REF]. There exist other de…nitions of the discrete Laplacian, e.g., [START_REF] Mohar | A survey on spectra of in…nite graphs[END_REF][START_REF] Golénia | Hardy inequality and assymptotic eigenvalue distribution for discrete laplacians[END_REF][START_REF] Balti | On the eigenvalues of weighted directed graphs[END_REF][START_REF] Ayadi | Spectra of Laplacians on an in…nite graph[END_REF]. The one we are studying here is the discrete Laplacian acting on 3-forms and denoted by L 3;skew , where skew stands for skew-symmetric. This operator was introduced by us in [START_REF] Azeddine | The discrete Laplacian of a 3-Simplicial complex[END_REF]. We have showed the relation between the completeness geometric hypothesis for the graph and essentially self-adjointness for the discrete Laplacian L 3;skew . More speci…cally, we have proved that L 3;skew is essential self-adjoint, when the 3simplicial complex is complete. The current study has two major aims. It …rst aims to discuss the question of essential self-adjointness for L 3;skew . It is worth noting that this operator depends on the weight t on oriented tetrahedrons, on the weight s on triangular oriented faces and the weight r on oriented edges. In the setting of electrical networks, the weight r correspond to the conductance. We establish a hypothesis on the weights and involve essential self-adjointness by using the Nelson commutator theorem. The technique of the proof are inspired from [START_REF] Baloudi | The adjacency matrix and the discrete Laplacian acting on forms[END_REF]. Moreover, we give an upper bound on the in…mum of the essential spectrum ess (L F 2;skew ), where L F 3;skew is the Friedreichs extension of L 3;skew . Note that this discrete Laplacian was introduced on a skew-symmetric statistic on the space of 3-forms. We can de…ne the discrete Laplacian L 3;sym in the symmetric case by the same expression of L 3;skew . In the case of a four-partite graph, we prove that the two operators are unitarily equivalent. We recall that the spectral theory of adjacency matrix acting on graphs is useful for the study of some gelling polymers, of some electrical networks, and in number theory, see [START_REF] Doyle | Random walks and electric networks[END_REF][START_REF] Davido¤ | Elementary number theory, group theory, and Ramanujan graphs[END_REF][START_REF] Mohar | The spectrum of in…nite graphs with bounded vertex degrees, Graphs, hypergraphsGraphs, hypergraphs and applications[END_REF]. As for the rest of this paper, it is structured as follows: The next section is devoted to some de…nitions and notations for graph. We …nd the de…nitions of two di¤erent Hilbert structures on the set of tetrahedrons, in Section 2. Both de…nitions have their own interest. This permits to de…ne two di¤erent types of discrete Laplacian associated to tetrahedrons. The relation between these two operators is clearly presented in Section 3. In Section 4, we discuss the question of essential self-adjointness for the discrete Laplacian L 3;skew . We establish a new criterion of essential self-adjointness using the Nelson lemma. In Section 5, we give an upper bound on the in…mum of the essential spectrum.

Preliminaries

2.1. The basic concepts. A graph K is a pair (V; E), where V is the countable set of vertices and E the set of oriented edges, considered as a subset of V V . When two vertices x and y are connected by an edge e, we say they are neighbors. We denote x y and e = (x; y) 2 E. We assume that E is symmetric, ie. (x; y) 2 E =) (y; x) 2 E. An oriented graph K is given by a partition of E: E = E [ E + (x; y) 2 E , (y; x) 2 E + . In this case for e = (x; y) 2 E , we de…ne the origin e = x, the termination e + = y and the opposite edge e = (y; x) 2 E + . Let c : V ! (0; 1) the weight on the vertices. We also have r : E ! (0; 1) the weight on the oriented edges with 8e 2 E; r( e) = r(e). A path between two vertices x; y 2 V is a …nite set of oriented edges e 1 ; :::; e n ; n 1 such that e 1 = x, e + n = y and, if n 2, 8j; 1 j n 1 =) e + j = e j + 1. The path is called a cycle or closed when the origin and the end are identical, ie. e 1 = e + n , with n 3. If no cycles appear more than once in a path, the path is called a simple path. The graph K is connected if any two vertices x and y can be connected by a path with e 1 = x and e + n = y. We say that the graph K is locally …nite if each vertex belongs to a …nite number of edges. The graph K is without loops if there is not the type of edges (x; x), ie.8x 2 V =) (x; x) = 2 E. The set of neighbors of x 2 V is denoted by V (x) = fy 2 V : y xg. The degree of x 2 V is by de…nition deg(x), the number of neighbors of x. In the sequel, we assume that K is without loops, connected, locally …nite and oriented. An oriented triangular face of K is a surface limited by a simple closed path of lenght equals 3, considered as an element of E 3 , i. e $ is an oriented triangular face ) $ = (e 1 ; e 2 ; e 3 ) 2 E 3 such that fe i g 1 i 3

E is a simple closed path. Let F be the set of all oriented faces of K. In the sequel we will represent the oriented faces by their vertices For a face $ = [(x; y; z)] 2 F . Let us set $ = (x; y; z) = (y; z; x) = (z; x; y) 2 F ) $ = (y; x; z) = (x; z; y) = (z; y; x) 2 F . A triangulation T is a 2-simplicial complex such that all the faces are triangular. To de…ne weighted triangulations we need weights, let us give s : F ! (0; 1) the weight on oriented faces such that for all $ 2 F , s( $) = s($). The weighted triangulation (T; c; r; s) is given by the triangulation T = (V; E; F ). We say that T is simple if the weights of the vertices, the edges and faces equals 1.

For an edge e 2 E, we also denote the oriented face (e ; e + ; x) by (e; x), with x 2 V (e ) \ V (e + ).The set of vertices belonging to the edge e 2 E is given by

F e = fx 2 V; (e; x) 2 F g = V (e ) \ V (e +
). An oriented tetrahedron of K is a volume limited by four oriented triangular faces of F , considered as an element of V 4 , i. e is an oriented tetrahedron ) = (x; y; z; v) 2 V 4 . Let 3 be the set of all oriented tetrahedron of K. We consider the pair (T; 3 ) as a 3-simplicial complex, we denote it by . We can denote also = (V; E; F; 3 ). Odd permutation means we exchange the position of any two vertices an odd number of times. Even permutation means we exchange the position of any two vertices an even number of times. For a ; 2 2 3 we have :

= ()
is obtened from by an even permutation. = () is obtened from by an odd permutation.

To de…ne weighted 3-simplicial complex we need weights, let us give t : 3 ! (0; 1) the weight on oriented tetrahedrons such that for all 2 3 , t( ) = t( ):The weighted 3-simplicial complex (V; c; r; s; t) is giving by the 3-simplicial complex = (V; E; F; 3 ). We say that is simple if the weights of the vertices, the edges, the triangular faces and tetrahedrons equals 1. The set of vertices belonging to the tetrahedron where (x; y; z) 2 F is an oriented triangular face si giving by:

3 (x; y; z) = fv 2 V; (x; y; z; v) 2 3 g = V (x) \ V (y) \ V (z).
When is simple, the degre of faces is d F (x; y; z) = # 3 (x; y; z).

Functions spaces.

We denote the set of 0 cochains or functions on V by:

C(V ) = ff : V ! Cg
and the set of functions of …nite support by C c (V ). Similarly, we denote the set of 1 cochains or 1 forms on E by:

C(E) = f' : E ! C; '( e) = '(e)g
and the set of 1 forms of …nite support by C c (E). Moreover, we denote the set of 2 cochains or 2-forms on F by:

C skew (F ) = f : F ! C; ( $) =
($)g and the set of 2 forms of …nite support by C c skew (F ).

C sym (F ) = f : F ! C; ( $) = ($)
g and the set of 2 forms of …nite support by C c sym (F ). Further, we denote the set of 3 cochains or 3 forms on E by:

C skew ( 3 ) = f : 3 ! C; ( ) =
( )g and the set of 3 forms of …nite support by C c skew ( 3 ).

C sym ( 3 ) = f : 3 ! C; ( ) = ( )g
and the set of 3 forms of …nite support by C c sym ( 3 ). Let us de…ne the Hilbert spaces l 2 (V ), l 2 (E), l 2 skew (F ), l 2 sym (F ), l 2 skew ( 3 ) and l 2 sym ( 3 ) as the sets of cochains with …nite norm, we have

l 2 (V ) = ( f 2 C(V ); X x2V c(x)jf (x)j 2 < 1 )
, with the inner product

hf; gi l2(V ) = X x2V c(x)f (x) g(x). l 2 (E) = ( ' 2 C(E); X e2E r(e)j'(e)j 2 < 1
) , with the inner product

h'; i l 2 (E) = 1 2 X e2E
r(e)'(e) (e).

l 2 skew (F ) = ( 2 C skew (F ); X $2F s($)j ($)j 2 < 1 )
, with the inner product

h 1 ; 2 i l 2 skew (F ) = 1 6 X (x;y;z)2F
s(x; y; z) 1 (x; y; z) 2 (x; y; z).

l 2 sym (F ) = ( 2 C sym (F ); X $2F s($)j ($)j 2 < 1
) , with the inner product

h 1 ; 2 i l 2 sym (F ) = 1 6 X (x;y;z)2F s(x; y; z) 1 (x; y; z) 2 (x; y; z). l 2 skew ( 3 ) = 8 < : 2 C skew ( 3 ); X 2 3 t( )j ( )j 2 < 1 9 =
; , with the inner product

h 1 ; 2 i l 2 skew ( 3) = 1 24 
X (x;y;z;v)2 3 t(x; y; z; v) 1 (x; y; z; v) 2 (x; y; z; v). l 2 sym ( 3 ) = 8 < : 2 C sym ( 3 ); X 2 3 t( )j ( )j 2 < 1 9 =
; , with the inner product

h 1 ; 2 i l 2 sym ( 3) = 1 24 
X (x;y;z;v)2 3
t(x; y; z; v) 1 (x; y; z; v) 2 (x; y; z; v).

Operators

In this section, we recall the concept of exterior derivative operator associated to a tetrahedrons space, we refer to [START_REF] Azeddine | The discrete Laplacian of a 3-Simplicial complex[END_REF] for more details. This permits to de…ne the discrete Laplacian acting on 3-forms.

3.1. Skew-symmetric case. We start with de…ning the operators in the skewsymmetric case. The skew-symmetric exterior operator is the operator 2 Both operators are closable (see [START_REF] Azeddine | The discrete Laplacian of a 3-Simplicial complex[END_REF]Lemme 6]). We denote their closure by the same symbol. The skew-symmetric discrete Laplacian operator acting on 3-forms is given by ) is closable. We denote their closure by the same symbol. The symmetric discrete Laplacian operator on 3-forms is the operator

d 2 skew : C c skew (F ) ! C c skew ( 
skew : C c skew ( 3 ) ! C c skew (F ) satis…es hd 2 skew '; i l 2 skew ( 3) = h'; 2 skew i l 2 skew (F ) ; 8('; ) 2 C c skew (F ) C c skew ( 3 ) 
L 3;skew (x; y; z; v) = d 2 skew 2 skew (x; y; z; v) = 1 s (y; z; v) X u2 3(y;z;v) t(u; y; z; v) (u; y; z; v) + 1 s (v; z; x) X w2
L 3;sym = d 2 sym 2 sym ,
given by the same expression of L 3;skew .

3.3. Relationship between L 3;skew and L 3;sym . The two operators L 3;skew and L 3;sym have the same expression. However, they do not act on the same spaces. Namely, when is four-partite, we shall prove that the two operators are unitarily equivalent. A four-partite graph is a graph whose vertices can be partitioned into 4 disjoint sets so that there are no two vertices within the same set are adjacent. A four-partite 3-simplicial complex is a 3-simplicial complex = (V; E; F; 3 ) such that G = (V; E) is four-partite.

Theorem 1. Let = (V; E; F; 3 ) be a four-partite weighted 3-simplicial complex. Then, L 3;skew and L 3;sym are unitarily equivalent.

Proof. We consider the four-partite decomposition fV 1 ; V

2 ; V 3 ; V 4 g. Set V 1 V 2 V 3 V 4 = f (x; y; z; v) j (x; y; z; v) 2 V 1 V 2 V 3 V 4 g : Let h : l 2 skew ( 3 ) ! l 2 sym (
3 ) be the unitary map given by h ( ) (x; y; z; v) = t(x; y; z; v) (x; y; z; v);

Where t(x; y; z; v) = 1, if(x; y; z; v) 2 V 1 V 2 V 3 V 4 , 1, if(x; y; z; v) 2 V 4 V 2 V 3 V 1 .
Let be the following mapping from l 2 sym ( 3 ) into l 2 skew ( 3 ) such that ( ) (x; y; z; v) = t(x; y; z; v) (x; y; z; v). Then

hh ; i l 2 sym ( 3) = h ; i l 2 skew ( 3) , and
(h ( )) = for all 2 l 2 skew ( 3 ) and 2 l 2 sym ( 3 ). So we have

( ) = h 1 ( ) = h ( )
for all 2 l 2 sym ( 3 ). Therefore, hL 3;skew h 1 ( ) (x; y; z; v) = L 3;sym ( ) (x; y; z; v) for all 2 C c sym ( 3 ). Then L 3;skew and L 3;sym are unitarily equivalent.

A Nelson criterium

For the general theory of unbounded Hermitian operators and their extensions, we refer the reader to [START_REF] Palle | Essential self-adjointness of semibounded operators[END_REF][START_REF] Kato | Perturbation theory for linear operators[END_REF][START_REF] Schechter | Principles of functional analysis[END_REF]. Let L skew be the following mapping from C skew ( 3 ) into itself:

L skew (x; y; z; v) = 1 s (y; z; v) X u2 3(y;z;v) t(u; y; z; v) (u; y; z; v) + 1 s (v; z; x) X w2 3(v;z;x)
t(w; v; z; x) (w; v; z; x) + 1 s (x; y; v) X b2 3(x;y;v) t(b; x; y; v) (b; x; y; v) + 1 s (z; y; x) X a2 3(z;y;x) t(a; z; y; x) (a; z; y; x) : Let L 3;max;skew be the restrictions of L skew to

D (L 3;max;skew ) = 2 l 2 skew ( 3 ) such that L skew 2 l 2 skew ( 3 ) . Lemma 3. L 3;skew = L 3;max;skew . Proof. Let 2 C c skew ( 3 ) and 2 C c sym ( 3 ).
Let T 00 the support of and set T 0 = f(x; y; z; v) 2 3 j 9m 2 V; f (m; y; z; v) + (m; v; z; x) + (m; x; y; v) + (m; z; y; x)g \ T 00 6 = ;g which is a …nite set. Then, supp(L 3;skew ) T 0 and the following relation holds:

1 24 X (x;y;z;v)2T0 t(x; y; z; v)L 3;skew ( ) (x; y; z; v) (x; y; z; v) = 1 24 
X (x;y;z;v)2T0 t(x; y; z; v)( 1 s (y; z; v) X u2 3(y;z;v) t(u; y; z; v) (u; y; z; v) + 1 s (v; z; x) X w2 3(v;z;x) t(w; v; z; x) (w; v; z; x) + 1 s (x; y; v) X b2 3(x;y;v) t(b; x; y; v) (b; x; y; v) + 1 s (z; y; x) X a2 3(z;y;x) t(a; z; y; x) (a; z; y; x)) (x; y; z; v) = 1 24 
X (x;y;z;v)2T00 t(x; y; z; v) (x; y; z; v) " 1 s (y; z; v) X m2V t(m; y; z; v) (m; y; z; v) + 1 s (v; z; x) X m2V t(m; v; z; x) (m; v; z; x) + 1 s (x; y; v) X m2V t(m; x; y; v) (m; x; y; v) + 1 s (z; y; x) X m2V t(m; z; y; x) (m; z; y; x) # = 1 24 
X x;y;z;v2V t(x; y; z; v) (x; y; z; v) L 3 (x; y; z; v). (1) 
Let 2 D(L 

! 2 j f (v; z; y; x) j 2 12 k N (f ) k 2 .
Moreover, we notice that N (:; :; :; :) is symmetric and f (x; y; z; v) = f (v; y; z; x) and let J = jhf; [L 3;skew ,N ] f ij. We get: 

P

x y, x z, y z, v2 k N 1 2 (f ) k. Applying [26, Theorem X.37], the result follows. The proof of L 3;sym may be checked in the same way as the proof of L 3;skew .

Corollary 1. Let = (V; E; F; 3 ) be a simple 3-simplicial complex. Assume that sup x y, x z, y z, v2 3(x;y;z) P r2 3(z;y;x) j # 3 (y; z; v)+# 3 (v; z; x)+# 3 (x; y; v) # 3 (y; z; r) # 3 (r; z; x) # 3 (x; y; r)) j 2 < 1. Then L 3;skew is essentially self-adjoint on C c skew ( 3 ) and L 3;sym is essentially self-adjoint on C c sym ( 3 ).

Essential spectrum

Let A be a closed, densely de…ned linear operator on a Banach space X, and let (A) denote the spectrum of A. We denote by K (X) the set of compact operators on X to itself. We de…ne the essential spectrum of the operator A by ess (A) = \ k2K(X)

(A + k) :
It is well known that if A is a self-adjoint operator on a Hilbert space, the essential spectrum of A is the set of limit points of the spectrum of A, i.e., all points of the spectrum except isolated eigenvalues of …nite multiplicity, see [START_REF] Wolf | On the essential spectrum of partial di¤erential boundary problems[END_REF]. Let = (V; E; F; 3 ) be a weighted 3-simplicial complex. Note that L 3;skew is non-negative symmetric operator on C c skew ( 3 ). We consider q (f; g) = hf; L 3;skew gi + hf; gi On C c skew ( 3 ) C c skew ( 3 ). Let H 1 be the completion of C c skew ( 3 ) under the norm

k f k q = q hL 3;skew f; f i + k f k 2 :
We de…ne the Friedrichs extension L F 3;skew of L 3;skew by: i) A vector f is in domain D L F 3;skew if and only if f 2 H 1 and C c skew ( 3 ) 3 g ! hf; L 3;skew gi + hf; gi extends to a norm continuous function on l 2 skew ( 3 ). ii) For each f 2 D L F 3;skew , there is a unique u f such that hf; L 3;skew gi + hf; gi = hu f ; gi by Riesz'Theorem. The Friedrichs extension of L 3;skew , is given by L F 3;skew f = u f f . It is a self-adjoint extension of L 3;skew , e.g.

2 skew

 2 ( )(y; z; v) = 1 s(y; z; v) X x2 3(y;z;v)t(x; y; z; v) (x; y; z; v).

L 3 ; 3 P

 33 skew = L 3;max;skew . Remark 1. Let L sym be the mapping from C sym ( 3 ) into itself given by the same expression of L 3;sym . Then, L 3;sym = L 3;max;sym where L 3;max;sym is the restrictions of L sym toD(L 3;max;sym ) = 2 l 2 sym ( 3 ) such that L sym 2 l 2 sym ( 3 ). Using the Nelson commutator theorem, we prove the criterium of essential selfadjointness for L 3;skew and L 3;sym .Theorem 2. Let = (V; E; F; 3 ) be a weighted 3-simplicial complex. SetN (x; y; z; v) = 1 + d F (y; z; v) + d F (v; z; x) + d F (x; y; v) + d F (z; y; x).Suppose that sup x y, x z, y z, v2 3(x;y;z) X r2 3(x;y;z) 1 s(x; y; z) t(x; y; z; r) j N (x; y; z; r) N (x; y; z; v) j 2 < 1:Then L 3;skew is essentially self-adjoint on C c skew ( 3 ) and L 3;sym is essentially selfadjoint on C c skew( 3 ). Proof. Let N be the operator of multiplication by N (:; :; :; :) ant take f 2 C c skew ( 3 ). Going over the same techniques of the proof of [3, Theorem 5.13], we obtain:k L 3;skew f k 2 2x y, x z, y z, v2

  The formal adjoint of d 2 skew , denoted 2 skew .

	3 );
	given by 8' 2 C c skew (F )
	d 2

skew (')(x; y; z; v) = '(y; z; v) + '(v; z; x) + '(x; y; v) + '(z; y; x):

:

  Lemma 1. The formal adjoint

			1 6	X (x;y;z;v)2 3	t(x; y; z; v)'(y; z; v) (x; y; z; v) =	1 6	(y;z;v)2F X	s(y; z; v)'(y; z; v)
			2					3	2 skew (y; z; v).
	1 6	X (y;z;v)2F	4 '(y; z; v) x2 3(y;z;v) X	t(x; y; z; v) (x; y; z; v) 5 =	1 6	(y;z;v)2F X	s(y; z; v)'(y; z; v)
								2 skew (y; z; v)
		Then					
							2 skew : C c skew ( 3 ) ! C c skew (F )
	is given by				
		8 2 C c skew ( 3 ); 2 skew ( )(y; z; v) =	1 s(y; z; v)	x2 3(y;z;v) X	t(x; y; z; v) (x; y; z; v):
	skew (F ) C c skew ( 3 ) Proof. Let ('; ) 2 C c We have
					d 2 skew '; l 2 skew ( 3) = '; 2 skew	l 2 skew (F )
		And					
			'; 2 skew	l 2 skew (F ) =	1 6	(y;z;v)2F X	s(y; z; v)'(y; z; v) 2 skew (y; z; v)
		Moreover,			
	hd 2 skew '; i l 2 skew ( 3)	=	1 24	(x;y;z;v)2 3 X	t(x; y; z; v)d 2 '(x; y; z; v) (x; y; z; v)
					=	1 24	(x;y;z;v)2 3 X	t(x; y; z; v) ['(y; z; v) + '(v; z; x) + '(x; y; v)

+ '(z; y; x)] (x; y; z; v)

The expression of d 2 skew contributing to the …rst sum is divided into four similar parts. So we obtain

  which implies that L 3;skew = L 3;max;skew 2 l 2 skew ( 3 ) by the de…nition of the adjoint, it follows that 2 D (L 3;max;skew ). Hence

	for all	2 C c skew ( 3 ), which implies that	2 D L 3;skew . Now let	2
	D L 3;skew . Let (x; y; z; v) 2 3 and let
		=	1 t(x; y; z; v)	1 (x;y;z;v) 1 (x;y;z;v) .
	Then, 2 C c skew ( 3 ) and we obtain from (1):
	L 3;skew (x; y; z; v) =		; L 3;skew
		= hL 3;skew ; i = 1 (m; ; ; )2 3 24 X	t (m; ; ; ) L 3;skew ( ) (m; ; ; ) (m; ; ; )
		=	1 24	(m; ; ; )2 3 X	t (m; ; ; ) (m; ; ; ) L 3;max;skew (m; ; ; )
		= (L 3;max;skew ) (x; y; z; v).

3;max;skew ). It follows from (1) that hL 3;skew ; i = h ; L 3;max;skew i

see [START_REF] Reed | Methods of modern mathematical physics tome I-IV[END_REF]Theorem X.23]. Note that L F 3;skew is bounded if and only if d F (:) is bounded, e.g. see [START_REF] Chebbi | Laplacien discret d'un 2-complexe simplicial[END_REF].

Theorem 3. Let = (V; E; F; 3 ) be a weighted 3-simplicial complex and let

.

and

In particular, if is a simple 3-simplicial complex then L F 3;skew is not with compact resolvent.

Proof. Let (x 0 ; y 0 ; z 0 ; v 0 ) 2 3 and let f = 1 (x0;y0;z0;v0) 1 (x0;y0;z0;v0) p t (x 0 ; y 0 ; z 0 ; v 0 ) Where 1 (x0;y0;z0;v0) denotes the indicator function of (x0;y0;z0;v0) . Then k f k= 1 and hf; L 3;skew f i = t (x 0 ; y 0 ; z 0 ; v 0 ) 1 s(y 0 ; z 0 ; v 0 ) + 1 s(v 0 ; z 0 ; x 0 ) + 1 s(x 0 ; y 0 ; v 0 ) + 1 s(z 0 ; y 0 ; x 0 ) Applying [21, Proposition 3], the result follows.