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Introduction

The impact of the geometry on the essential self-adjointness of the Laplacians is studied in many areas of mathematics on Riemannian manifolds; see ( [C], [EL], [M1]) and also on one-dimensional simplicial complexes; see ( [AT], [CTT], [FLW], [M2], [T]). Indeed, Laplacians on Riemannian manifolds and simplicial complexes share a lot of common elements. Despite of this, various geometric notions such as distance and completeness in the Riemannian framework have no immediate analogue in the discrete setting. Combinatorial Laplacians were originally studied on graphs, beginning with Kirchho¤ and hisstudy of electrical networks [K]. Simplicial complexes can be viewed as generalizations of graphs, we can form complex, a 3-simplicial complex whose faces and tetrahedrons correspond to the cliques of the graph. In this article, we take a connected oriented locally …nite graph and we introduce the oriented tetrahedrons, so we can regard it as a three-dimensional simplicial complex. This work presents a more general framework for the Laplacians de…ned in terms of the combinatorial structure of a simplicial complex. The main result of this work gives a geometric hypothesis to ensure essential self-adjointness for the discrete Laplacian.

We develop the -completeness hypothesis for 3-simplicial complex. This hypothesis on locally …nite graphs covers many situations that have been already studied in [AT]. The authors prove that the -completeness is satis…ed by graphs which are complete for some intrinsic metric, as de…ned in [FLW] and [HKMW].The paper is structured as follows: In the second section, we will …rst present the basic concepts about graphs or rather one-dimensional simplicial complexes and about structure of 2-simplicial complex that called triangulation. Next, we introduce the notion of oriented tetrahedrons. This special structure of 3-simplicial complex.We permit to de…ne the Gauss-Bonnet operator T = d + acting on triplets of functions, 1-forms, 2-forms and 3-forms. After that, we de…ne the discrete Laplacian by L = T 2 which admits a decomposition according to the degree L = L 0 L 1 L 2 L 3 .In the third, the fourth and …fth sections, we study the closability of the operators which are used in the following sections. Next, we get started with refer to [AT] for the notion -completness of the graphs and we develop this geometric hypothesis for the 3-simplicial complex in De…nition. In the case of complete manifolds, there is a result of Cherno¤ ; see [C], and we also have for the discrete setting; see [AT], which conclude that the Dirac operator is essentially self-adjoint. As a result, they prove essential self-adjointness of the Laplace-Beltrami operator. So, we take this idea to make the relationship between T and L about the essential self-adjointness, when the 3-simplicial complex is -complete. We can extend the results in this paper to more general 3-simplicial complex, where the oriented 3-simplex are not necessarily tetrahedrons. Particularly we can give a more general expression of the operator d 2 .

Preliminaries

2.1. The basic concepts. A graph K is a pair (V; E), where V is the countable set of vertices and E the set of oriented edges, considered as a subset of V V . When two vertices x and y are connected by an edge e, we say they are neighbors. We denote x y and e = (x; y) 2 E. We assume that E is symmetric, ie. (x; y) 2 E ) (y; x) 2 E. An oriented graph K is given by a partition of E: E = E [ E + such that (x; y) 2 E , (y; x) 2 E + . In this case for e = (x; y) 2 E , we de…ne the origin e = x, the termination e + = y and the opposite edge e = (y; x) 2 E + . Let c : V ! (0; 1) the weight on the vertices. We also have r : E ! (0; 1) the weight on the oriented edges with 8e 2 E, r( e) = r(e). A path between two vertices x, y 2 V is a …nite set of oriented edges e 1 ; :::; e n ; n 1 such that e 1 = x, e + n = y and, if n 2, 8j; 1 j n 1 =) e + j = e j + 1. The path is called a cycle or closed when the origin and the end are identical, ie. e 1 = e + n , with n 3. If no cycles appear more than once in a path, the path is called a simple path. The graph K is connected if any two vertices x and y can be connected by a path with e 1 = x and e + n = y. We say that the graph K is locally …nite if each vertex belongs to a …nite number of edges. The graph K is without loops if there is not the type of edges (x; x), ie.8x 2 V =) (x; x) = 2 E. The set of neighbors of x 2 V is denoted by V (x) = fy 2 V : y xg. The degree of x 2 V is by de…nition deg(x), the number of neighbors of x. The combinatorial distance d comb on K is d comb (x; y) = min fn; fe i g 1 i n E a path between the two vertices x and yg Let B be a …nite subset of V . We de…ne the edge boundary @ E B of B by @ E B := fe 2 E such that fe ; e + g \ B 6 = ; and fe ; e + g \ B c 6 = ;g. In the sequel, we assume that K is without loops, connected, locally …nite and oriented. An oriented triangular face of K is a surface limited by a simple closed path of lenght equals 3, considered as an element of E 3 , i. e $ is an oriented triangular face ) $ = (e 1 ; e 2 ; e 3 ) 2 E 3 such that fe i g 1 i 3 E is a simple closed path. Let F be the set of all oriented faces of K. In the sequel we will represent the oriented faces by their vertices For a face $ = (x; y; z) 2 F . Let us set $ = (x; y; z) = (y; z; x) = (z; x; y) 2 F ) $ = (y; x; z) = (x; z; y) = (z; y; x) 2 F . A triangulation T is a 2-simplicial complex such that all the faces are triangular. To de…ne weighted triangulations we need weights, let us give s : F ! (0; 1) the weight on oriented faces such that for all $ 2 F , s( $) = s($). The weighted triangulation(T; c; r; s) is given by the triangulation T = (V; E; F ). We say that T is simple if the weights of the vertices, the edges and faces equals 1. For an edge e 2 E, we also denote the oriented face (e ; e + ; x) by (e; x), with x 2 V (e ) \ V (e + ). The set of vertices belonging to the edge e 2 E is given by

F e = fx 2 V; (e; x) 2 F g = V (e ) \ V (e + )
An oriented tetrahedron of K is a volume limited by four oriented triangular faces of F , considered as an element of V 4 , i. e is an oriented tetrahedron ) = (x; y; z; v) 2 V 4 . Let 3 be the set of all oriented tetrahedron of K. We consider the pair (T; 3 ) as a 3-simplicial complex, we denote it by . We can denote also = (V; E; F; 3 ). Odd pemutation means we exchange the position of any two vertices an odd number of times. Even permutation means we exchange the position of any two vertices an even number of times. For a ; 2 2 3 we have : = () is obtened from by an even permutation. = () is obtened from by an odd permutation. To de…ne weighted 3-simplicial complex we need weights, let us give t : 3 ! (0; 1) the weight on oriented tetrahedrons such that for all 2 3 , t( ) = t( ):The weighted 3-simplicial complex (V; c; r; s; t) is giving by the 3-simplicial complex = (V; E; F; 3 ). We say that is simple if the weights of the vertices, the edges, the tringular faces and tetrahedrons equals 1.The set of vertices belonging to the tetrahedron where (x; y; z) 2 F is an oriented triangular face is giving by:

3 (x; y; z) = fv 2 V; (x; y; z; v) 2 3 g = V (x) \ V (y) \ V (z):
2.2. Functions spaces. We denote the set of 0 cochains or functions on V by:

C(V ) = ff : V ! Cg
and the set of functions of …nite support by C c (V ). Similarly, we denote the set of 1 cochains or 1 forms on E by:

C(E) = f' : E ! C; '( e) = '(e)g
and the set of 1 forms of …nite support by C c (E). Moreover, we denote the set of 2 cochains or 2-forms on F by:

C(F ) = f : F ! C; ( $) = ($)g
and the set of 2-forms of …nite support by C c (F ). Further, we denote the set of 3 cochains or 3 forms on E by:

C( 3 ) = : 3 ! C; ( ) = ( )
and the set of 3 forms of …nite support by C c ( 3 ).

Let us de…ne the Hilbert spaces l 2 (V ), l 2 (E), l 2 (F ) and C( 3 ) as the sets of cochains with …nite norm, we have

l 2 (V ) = ( f 2 C(V ); X x2V c(x)jf (x)j 2 < 1 ) ; with the inner product hf; gi l 2 (V ) = X x2V c(x)f (x) g(x): l 2 (E) = f' 2 C(E); X e2E
r(e)j'(e)j 2 < 1g;

with the inner product

h'; i l 2 (E) = 1 2 X e2E
r(e)'(e) (e):

l 2 (F ) = ( 2 C(F ); X $2F s($)j ($)j 2 < 1 ) ;
with the inner product

h 1 ; 2 i l 2 (F ) = 1 6 X (x;y;z)2F s(x; y; z) 1 (x; y; z) 2 (x; y; z): l 2 ( 3 ) = 8 < : 2 C( 3 ); X 2 3 c( )j ( )j 2 < 1 9 = ; ;
with the inner product

h 1 ; 2 i l 2 ( 3) = 1 24 X (x;y;z;v)2 3 t(x; y; z; v) 1 (x; y; z; v) 2 (x; y; z; v)
The direct sum of the spaces l 2 (V ), l 2 (E), l 2 (F ) and l 2 ( 3 ) can be considered as a new Hilbert space denoted by H, that is

H = l 2 (V ) l 2 (E) l 2 (F ) l 2 ( 3 ), with the norm 8F = (f; ; '; ) 2 H, kF k 2 H = kf k 2 l 2 (V ) + k k 2 l 2 (E) + k'k 2 l 2 (F ) + k k 2 l 2 ( 3) . 2.3. Operators.
We give in this part the expressions of the operators introduced on graphs and on triangulations which are already well known and we also give other operators acting on 3-simplicial complex. The di¤erence operator.

d 0 : C c (V ) ! C c (E) by 8f 2 C c (V ); d 0 (f )(e) = f (e + ) f (e ):
The co-boundary operator. It is the formal adjoint of d 0 ; denoted 0

0 : C c (E) ! C c (V ) acts as 8' 2 C c (E); 0 (')(x) = 1 c(x) X e;e + =x
r(e)'(e):

The exterior derivative. It is the operator d 1 .

d 1 : C c (E) ! C c (F ); 8 2 C c (E); d 1 ( )(x; y; z) = (x; y) + (y; z) + (z; x): The co-exterior derivative. It is the formal adjoint of d 1 , denoted 1 . 1 : C c (F ) ! C c (E); which satis…es hd 1 ; i l 2 (F ) = h ; 1 i l 2 (E) ; 8( ; ) 2 C c (E) C c (F ):
Operators acting on a 3-simplicial complex. The operator d 2 .

d 2 : C c (F ) ! C c ( 3 ); given by 8' 2 C c (F ) d 2 (')(x; y; z; v) = '(y; z; v) + '(v; z; x) + '(x; y; v) + '(z; y; x). The formal adjoint of d 2 ; denoted 2 . 2 : C c ( 3 ) ! C c (F ) wich satisties hd 2 '; i l 2 ( 3) = h'; 2 i l 2 (F ) ; 8('; ) 2 C c (F ) C c ( 3 ): Lemma 1. The formal adjoint 2 : C c ( 3 ) ! C c (F )
is given by

8 2 C c ( 3 ); 2 ( )(y; z; v) = 1 s(y; z; v) X x2 3(y;z;v) t(x; y; z; v) (x; y; z; v): Proof. Let ('; ) 2 C c (F ) C c ( 3 ) We have hd 2 '; i l 2 ( 3) = h'; 2 i l 2 (F ) And hd 2 '; i l 2 ( 3) = 1 24 P (x;y;z;v)2 3 t(x; y; z; v)d 2 '(x; y; z; v) (x; y; z; v) = 1 24 P (x;y;z;v)2 3 t(x; y; z; v) ['(y; z; v) + '(v; z; x) + '(x; y; v) + '(z; y; x)] (x; y; z; v)
The expression of d 2 contributing to the …rst sum is divided into four similar parts.So we obtain hd 2 '; i l 2 ( 3) = 

Then 2 ( )(y; z; v) = 1 s(y; z; v) X x2 3(y;z;v) t(x; y; z; v) (x; y; z; v).
2.3.1. Gauss-Bonnet operator on . By analogy to Riemannian geometry, we use the decomposition of the operators in [EL] to de…ne the Gauss-Bonnet operator. Let us begin by de…ning the operator

d : C c (V ) C c (E) C c (F ) C c ( 3 ) by 8(f; ; '; ) 2 C c (V ) C c (E) C c (F ) C c ( 3 ), d(f; ; '; ) = (0; d 0 f; d 1 ; d 2 ');
and the formal adjoint of d. Thus it satis…es hd(f 1 ; 1 ; ' 1 ; 1 ); (f 2 ; 2 ; ' 2 ; 2 )i H = h(f 1 ; 1 ; ' 1 ; 1 )); (f 2 ; 2 ; ' 2 ; 2 )i H ; for all (f 1 ; 1 ; ' 1 ; 1 ); (f 2 ; 2 ; '

2 ; 2 ) 2 C c (V ) C c (E) C c (F ) C c ( 3 ).
Lemma 2. Let = (K; F; 3 ) be a 3-simplicial complex. Then

: C c (V ) C c (E) C c (F ) C c ( 3 )
is given by (f; ; '; ) = ( 0 ; 1 '; 2 ; 0);

8(f; ; '; ) 2 C c (V ) C c (E) C c (F ) C c ( 3 ). Proof. Let (f; ; '; ); (f 1 ; 1 ; ' 1 ; 1 ) 2 C c (V ) C c (E) C c (F ) C c ( 3 ).
We have

hd(f 1 ; 1 ; ' 1 ; 1 ); (f; ; '; )i H = h(f 1 ; 1 ; ' 1 ; 1 )); (f; ; '; )i H And hd(f 1 ; 1 ; ' 1 ; 1 ); (f; ; '; )i H = h(0; d 0 f 1 ; d 1 1 ; d 2 ' 1 ); (f; ; '; )i H = h0; f i l 2 (V ) + hd 0 f 1 ; i l 2 (E) + hd 1 1 ; 'i l 2 (F ) + hd 2 ' 1 ; i l 2 ( 3) = hf 1 ; 0 i l 2 (V ) + h 1 ; 1 'i l 2 (E) + h' 1 ; 2 i l 2 (F ) + h 1 ; 0i l 2 ( 3) = h(f 1 ; 1 ; ' 1 ; 1 ); ( 0 ; 1 '; 2 ; 0)i H Hence h(f 1 ; 1 ; ' 1 ; 1 ); ( 0 ; 1 '; 2 ; 0)i H = h(f 1 ; 1 ; ' 1 ; 1 )); (f; ; '; )i H Then (f; ; '; ) = ( 0 ; 1 '; 2 ; 0).
De…nition 1. Let = (K; F; 3 ) be a 3-simplicial complex, the Gauss-Bonnet operator de…ned as

T = d + : C c (V ) C c (E) C c (F ) C c ( 3 ) given by T (f; ; '; ) = ( 0 ; d 0 f + 1 '; d 1 + 2 ; d 2 '): for all (f; ; '; ) 2 C c (V ) C c (E) C c (F ) C c ( 3 )
.Moreover, the matrix representation of T is given by

T = 0 B B @ 0 0 0 0 d 0 0 1 0 0 d 1 0 2 0 0 d 2 0 1 C C A Lemma 3. If = (K; F; 3 ) is a 3-simplicial complex then d 2 d 1 = 1 2 = 0. Proof. Let f 2 C c (V ), we have that d 2 (d 1 f )(x; y; z; v) = d 1 f (y; z; v) + d 1 f (v; z; x) + d 1 f (x; y; v) + d 1 f (z; y; x) = f (y; z) + f (z; v) + f (v; y) + f (v; z) + f (z; x) + f (x; v) + f (x; y) + f (y; v) +f (v; x) + f (z; y) + f (y; x) + f (x; z). Then d 2 (d 1 f )(x; y; z; v) = 0.
Since d 2 d 1 = 0 and the operator 1 2 is the formal adjoint of d 2 d 1 . Then 1 2 = 0:

Before giving an important result for f 2 C(V ), we de…ne the three operators

s: C(V ) ! C(E) by f ! f t: C(V ) ! C(F ) by f ! t f and u: C(V ) ! C( 3 ) by f ! u f where f (e) = 1 2 f e + + f e : t f (x; y; z) = 1 3 f (x; y) + f (y; z) + f (z; x) = 1 3 d 1 f (x; y; z): u f (x; y; z; v) = 1 4 t f (y; z; v) + t f (v; z; x) + t f (x; y; v) + t f (z; y; x) = 1 4 d 2 t f (x; y; z; v):
The exterior product of two 2-forms de…ned as

^d : C (F ) C (F ) ! C ( 3 ) ;
is giving by ( ^d ') (x; y; z; v) = ' (y; z; v) ( (x; y; z) + (x; z; v) (x; y; v)) +' (v; z; x) ( (y; v; z) + (y; z; x) (y; v; x)) +' (x; y; v) ( (z; x; y) + (z; y; v) (z; x; v)) +' (z; y; x) ( (v; z; y) + (v; y; x)

(v; z; x)) . Lemma 4. (Derivation property) Let (f; ') 2 C (V ) C (F ) d 2 t f ' (x; y; z; v) = 4 u f (x; y; z; v) d 2 ' (x; y; z; v) + 1 3 d 1 f ^d ' (x; y; z; v) : Proof. Let (f; ') 2 C (V ) C (F ) We have d 2 ( t f ')(x; y; z; v) = t f '(y; z; v) + t f '(v; z; x) + t f '(x; y; v) + t f '(z; y; x) = t f (y; z; v)'(y; z; v)+ t f (v; z; x)'(v; z; x)+ t f (x; y; v)'(x; y; v)+ t f (z; y; x)'(z; y; x) Since u f (x; y; z; v) = 1 4 t f (y; z; v) + t f (v; z; x) + t f (x; y; v) + t f (z; y; x) Then t f (y; z; v) = 4 u f (x; y; z; v) t f (v; z; x) t f (x; y; v) t f (z; y; x) t f (v; z; x) = 4 u f (x; y; z; v) t f (y; z; v) t f (x; y; v) t f (z; y; x) t f (x; y; v) = 4 u f (x; y; z; v) t f (y; z; v) t f (v; z; x) t f (z; y; x) t f (z; y; x) = 4 u f (x; y; z; v) t f (y; z; v) t f (v; z; x) t f (x; y; v) Thus d 2 ( t f ')(x; y; z; v) = 4 u f (x; y; z; v) ['(y; z; v) + '(v; z; x) + '(x; y; v) + '(z; y; x)] +'(y; z; v) t f (x; y; z) + t f (x; z; v) t f (x; y; v) +'(v; z; x) t f (y; v; z) + t f (y; z; x) t f (y; v; x) +'(x; y; v) t f (z; x; y) + t f (z; y; v) t f (z; x; v) +'(z; y; x) t f (v; z; y) + t f (v; y; x) t f (v; z; x) = 4 u f (x; y; z; v) d 2 ' (x; y; z; v)+ 1 3 h '(y; z; v) h d 1 f (x; y; z) + d 1 f (x; z; v) d 1 f (x; y; v) i +'(v; z; x) h d 1 f (y; v; z) + d 1 f (y; z; x) d 1 f (y; v; x) i +'(x; y; v) h d 1 f (z; x; y) + d 1 f (z; y; v) d 1 f (z; x; v) + '(z; y; x) h d 1 f (v; z; y) + d 1 f (v; y; x) d 1 f (v; z; x) ii Then d 2 t f ' (x; y; z; v) = 4 u f (x; y; z; v) d 2 ' (x; y; z; v) + 1 3 d 1 f ^d ' (x; y; z; v) . Remark 1. Let (f; ') 2 C (V ) C (F )
We have 

d 2 t f ' (x; y; z; v) = 4 u f ( 
f; ) 2 C (V ) C ( 3 ) 2 u f (y; z; v) = 1 4 t f (y; z; v) 2 (y; z; v) + 1 12s (y; z; v) X x2 3(y;z;v) t(x; y; z; v) (x; y; z; v) h d 1 f (v; z; x) + d 1 f (x; y; v) + d 1 f (z; y; x) i . Proof. Let (f; ) 2 c (V ) c ( 3 )
We have 

h d 1 f (v; z; x) + d 1 f (x; y; v) + d 1 f (z; y; x) i .
2.3.2. Laplacian. Through the Gauss-Bonnet operator T , we can de…ne the discrete Laplacian on T . So, Lemma 2.8 induces the following de…nition.

De…nition 2. Let = (K; F; 3 ) be a 3 simplicial complex, the Laplacian on de…ned as

L = T 2 : C c (V ) C c (E) C c (F ) C c ( 3 )
is given by

L(f; '; ; ) = ( 0 d 0 f; d 0 0 + 1 d 1 '; d 1 1 + 2 d 2 ; d 2 2 ) for all (f; '; ; ) 2 C c (V ) C c (E) C c (F ) C c ( 3 ).
Remark 2. We can write

L = L 0 L 1 L 2 L 3 .
where L 0 is the discrete Laplacian acting on functions given by

L 0 (f ) (x) = 0 d 0 f (x) = 1 c (x) X e;e + =x r (e) d 0 f (e) ;
with f 2 C c (V ). And where L 1 is the discrete Laplacian acting on 1 forms given by with ' 2 C c (E). And where also L 2 is the discrete Laplacian acting on 2 forms given by

L 1 (') (x; y) = d 0 0 + 1 d 1 ' (x; y) = 1 c (y)
L 2 (y; z; v) = d 1 1 + 2 d 2 (y; z; v) = 1 (y; z) + 1 (z; v) + 1 (v; y) + 2 d 2 (y; z; v)
with 2 C c (F ). And where also L 3 is the discrete Laplacian acting on 3 forms given by

L 3 (x; y; z; v) = d 2 2 (x; y; z; v) = 2 (y; z; v) + 2 (v; z; x) + 2 (x; y; v) + 2 (z; y; x) = 1 s (y; z; v) X u2 3(y;z;v) t(u; y; z; v) (u; y; z; v) + 1 s (v; z; x) X w2 3(v;z;x) t(w; v; z; x) (w; v; z; x) + 1 s (x; y; v) X b2 3(x;y;v)
t(b; x; y; v) (b; x; y; v) + 1 s (z; y; x) X a2 3(z;y;x) t(a; z; y; x) (a; z; y; x) :

with 2 C c ( 3 ).
Remark 3. The operator L 1 is called the full Laplacian and de…ned as

L 1 = L 1 + L + 1 , where L 1 = d 0 0 resp.L + 1 = 1 d 1 and L 2 = L 2 + L + 2 , where L 2 = d 1 1 resp.L + 2 = 2 d 2 .

Closability

On a connected locally …nite graph, the operators d 0 , 0 ,d 1 and 1 are closable (see [AT] and [YC] ). The next lemma proves the closability of the operators d 2 and 2 on a 3 simplicial complex. Lemma 6. Let = (k; F; 3 ) be a weighted 3 simplicial complex. Then the operators d 2 and 2 are closable.

Proof.

Let (' n ) n2N be a sequence from C c ( F ) and 2 l 2 ( 3 ) such that lim

n!1 k' n k l 2 (F ) + kd 2 ' n k l 2 ( 3) = 0: Then for each face $, ' n ($)
converges to 0 and for each tetrahedron , d 2 ' n converges to . But by the expression of d 2 and local …niteness of , for each tetrahedron , d 2 ' n converges to 0. Thus we have that = 0. Then the operator d 2 is closable.

Let ( n ) n2N be a sequence from C c (F ) and ' 2 l 2 ( 3 ) such that lim n!1 k n k l 2 ( 3 ) + k 2 n 'k l 2 (F )
= 0. Then for each face tetrahedron , n converges to 0 and for each face $, 2 n ($) converges to ' ($). But by the expression of 2 and local …niteness of , for each face $, 2 n ($) converges to 0. Thus we have that ' = 0. Then the operator 2 is closable.

The smallest extension is the closure (see [S], [START_REF] Reed | Methods of Modern Mathematical Physics[END_REF]), denoted

d 0 = d 0 min (resp. 0 = 0 min , d 1 = d 1 min , 1 = 1 min , d 2 = d 2 min , 2 = 2 min , T = T min , L = L min ) has the domain Dom d 0 min = f 2 l 2 (V ) ; 9 (f n ) n2N ; f n 2 C (V ) ; lim n!1 kf n f k l 2 (V ) = 0; lim n!1 d 0 f n exists in l 2 (E)
for such an f , one puts

d 0 min f = lim n!1 d 0 (f n ). We notice that d 0 min f is independent of the sequence (f n ) n2N because d 0 is closable. The largest is d 0 max = 0
, the adjoint operator of 0 min (resp. 0 max = d 0 , the adjoint operator of d 0 min ). We denote d 1 max = 1 , the adjoint operator of 1 min (resp. 1 max = d 1 , the adjoint operator of d 1 min ). We also denote d 2 max = 2 , the adjoint operator of 2 min (resp. Proof. Let F = (f; '; ; ) 2 Dom ( min ) :so there exists a sequence

(F n ) n = ((f n ; ' n ; n ; n )) n C c (V ) C c (E) C c (F ) C c ( 3 ) such that lim n!1 F n = F in H and (T F n ) n2N converges in H.
Let us denote by l 0 = (f 0 ; ' 0 ; 0 ; 0 ) this limit. Therefore

kT F n l 0 k 2 H = k 0 ' n f 0 k 2 l 2 (V ) + k d 0 + 1 (f n ; n ) ' 0 k 2 l 2 (E) +k d 1 + 2 (' n ; n ) 0 k 2 l 2 (F ) + kd 2 n 0 k 2 l 2 ( 3) Hence 0 ' n ! f 0 and d 2 n ! 0 respectively in l 2 (V ) and l 2 ( 3 ). So, by de…nition, f 0 = 0 min ', 0 = d 1 min , ' 2 Dom 0 min \ Dom d 1 min
and 2 Dom 1 min \ Dom d 2 min . Moreover, we have

k d 0 + 1 (f; ) k 2 l 2 (E) = kd 0 f k 2 l 2 (E) + k 1 k 2 l 2 (E) 8n 2 N, 8 (f; ) 2 C c (V ) C c (F ). Since d 0 + 1 (f n ; n ) n converges in l 2 (E)
;then by completeness of l 2 (E). d 0 (f n ) n and 1 ( n ) n are convergent in l 2 (E) :Thus, we conclude that 2 Dom 1 min and f 2 Dom d 0 min :

Further, we have Proof.

k d 1 + 2 ('; ) k 2 l 2 (F ) = kd 1 'k 2 l 2 (F ) + k 2 k 2 l 2 (F ) ; 8n 2 N; 8 ('; ) 2 C c (E) C c ( 3 ). Since d 1 + 2 (' n ; n ) n converges in l 2 (F ), then by completeness of l 2 (F ). d 1 (' n ) n and 2 ( n ) n are convergent in l 2 (F ).
(1) We have (L 0 ) min

0 min d 0 min and (L 1 ) min d 0 min 0 min + 1 min d 1 min see [YC proposition 3.3] (2) Since for any ; 2 C c (F ). We have hL 2 ; i l2(F ) = h d 1 1 + 2 d 2 ; i l2(F ) = hd 1 1 ; i l2(F ) + h 2 d 2 ; i l2(F ) = h 1 ; 1 i l2(E) + hd 2 ; d 2 i l2( 3) .
Using the same meyhod as in [YC proposition 3.3.i] we obtain that

L 2 min d 1 min 1 min and L + 2 min 2 min d 2 min . Now we need to show that (L 2 ) min L 2 min + L + 2 min . let ' 2 Dom ((L 2 ) min ), So there exists a sequence (' n ) n C c (F ) such that ' = lim n!1 ' n in l 2 (F ) and (L 2 ' n ) n2N converges in l 2 (F ). Thus, we obtain k L 2 + L + 2 (' n ) k 2 l 2 (F ) = kL 2 (' n ) k 2 l 2 (F ) + kL + 2 (' n ) k 2 l 2 (F ) ; 8n 2 N:
Then L 2 ' n n and L + 2 ' n n are convergent in l 2 (F ). Moreover, by the closability of L 2 and L + 2 . We conclude that ' 2 Dom L 2 min \ Dom L + 2 min . Then (L 2 ) min L 2 min + L + 2 min :

(3) We will show that (L 3 ) min d 2 min 2 min . Since, for any ; 2 C c ( 3 ), we have hL 2 ; i l2( 3) = hd 2 2 ; i l2( 3) = h 2 ; 2 i l2(F ) Using the same method as in [YC proposition 3.3.i] 

Geometric hypothesis

In this section, we give the geometric hypothesis for the 3 simplicial complex . First we recall the de…nition of completeness given in [AT] for the case of graphs and also for the case of triangulations. A graph K = (V; E) is complete if there exists an increasing sequence of …nite sets

(B n ) n2N such that V = [ n2N B n
and there exist related functions n satisfying the following three conditions:

i) n 2 C c (V ), 0 n 1. ii) x 2 B n =) n (x) = 1. iii) 9C > 0 such that 8n 2 N, x 2 V 1 c(x) P e2E;e =x r (e) jd 0
n (e) j 2 C:

Morever, a triangulation T = (K; F ) is complete, if 1-K is complete. 2-9M > 0, 8n 2 N, e 2 E such that 1 r(e) P x2F (e)
s (e; x) jd 0 n (e ; x) + d 0 n (e + ; x) j 2 M .

De…nition 3. A 3 simplicial complex = (T; 3 ) is complete, if C 1 ) T is complete. C 2 ) 9N > 0, 8n 2 N, (y; z; v) 2 F such that 1 s(y;z;v) P x2 3(y;z;v) t (y; z; v; x) jd 1 ~ n (y; z; x)+d 1 ~ n (z; v; x)+d 1 ~ n (v; y; x) j 2 N .
Proposition 3. Let be a 3 simplicial complex of bounded degree, i.e 9 > 0, 8x 2 V , deg(x)

. Then is complete 3 simplicial complex.

Proof. Let us consider an in…nite 3 simplicial complex. Given 2 V , let B n be a ball of radius n 2 N centered by the vertex . B n = fx 2 V; d comb ( ; x) ng.

We set the cut-o¤ function n 2 C c (V ) as follow: 

n (x) = 2n d comb ( ;x) n _ 0 ^1, 8n 2 N ? . -if x 2 B n =) n (x) = 1 and x 2 B c 2n =) n (x) = 0. -For (x; y) 2 E,
;v) d 1 ~ n (x; z; v) + d 1 ~ n (v; y; x) + d 1 ~ n (x; y; z) 2 N P (y;z;v)2F P x2 3 (y;z;v)(n)
t(y; z; v; x)j (y; z; v; x)j 2 this term tends to 0.

Corollary 1. Let = (K; F; 3 ) be a complete 3 simplicial complex then the operator L

+ 2 L 3 is essentially self-adjoint on C c (F ) C c ( 3 ) : Proof. First we have that L + 2 L 3 = d 2 + 2 2 and L + 2 L 3 (C c (F ) C c ( 3 )) C c (F ) C c ( 3 ). As proposition 13 in [AT] we prove that d 2 + 2 is essentially self-adjoint if and only if L + 2 L 3 is essentially self-adjoint.
Theorem 1. Let = (K; F; 3 ) be a complete 3 simplicial complex then the operator T is essentially essentially self-adjoint on C

c (V ) C c (E) C c (F ) C c ( 3 ).
Proof.

We will show that Dom 

(f n ) n C c (V ) and ( n ) n C c ( 3 ) such that: f n ! f in l 2 (V ) and d 0 f n ! d 0 min f in L 2 (E). n ! in l 2 ( 3 ) and 2 n ! 2 min in L 2 (F ). On the other hand, let ' 2 Dom 0 min \Dom d 0 min and 2 Dom 1 min \ Dom d 1 min . From [YC theorem 5-3 …rst step] we have k' ~ n 'k l 2 (E) + k 0 (' ~ n ') k l 2 (V ) + kd 1 (' ~ n ') k l 2 (F ) ! 0, when n ! 1.
By the completeness of , we consider the sequence

n n C c (F ). It remains to show that k n k l 2 (F ) +k 1 n k l 2 (E) +kd 2 n k l 2 ( 3) ! 0, when n ! 1.
The …rst and the third terms has already been shown in Proposition 4. For the following we need a derivation formula of 1 taken in [YC]. s (e; x) d 0 n (x; e ) + d 0 n (x; e + ) (e; x) as a consequence, because 1 2 l 2 (E), we have lim

n!1 k (1 ~ n ) 1 k l 2 (E) = 0.
For the second term, we combine the property 2) of completeness for a triangulation with the Cauchy-Schwarz inequality to obtain for all

x 2 V , P Dom 2 max : Let F = (f; '; ; ) 2 Dom (T max ) then T F 2 H. This implies that 0 ' 2 l 2 (V ), d 0 f + 1 2 l 2 (E), d 1 ' + 2 2 l 2 (F ) and d 2 2 l 2 ( 3 ). As consequence, by the de…nition of 0 max and d 1 max we have ' 2 Dom 0 max \ Dom d 1 max : Moreover, by completeness of , there exists a sequence of cut-o¤ functions ( n ) n C c (V ). Then, the parallelogram identity with lemma 2 8 in [YC] we get kd 0 +d 1 ~ n (z; y; x) . Therefore, we have

( n f ) + 1 n k 2 l 2 (E) = kd 0 n f k 2 l 2 (E) + k 1 n k 2 l 2 ( 
kd 1 f ~ n f + 2 u n k 2 l 2 (F ) = k 1 t n d 1 f + 2 + t f d 1 ~ n + K n k 2 L 2 (F ) 4 " 1 t n d 1 f + 2 2 l 2 (F ) + t f d 1 ~ n 2 l 2 (F ) + kK n k 2 l 2 (F ) # Because d 1 f + 2 2 l 2 (F ), we have lim n!1 k 1 t n d 1 f + 2 k 2 l 2 (F ) = 0
By proposition 4 we have lim n!1 kK n k 2 l 2 (F ) = 0. Moreover, by the hypothesis 2 of completeness we have

  y; z) d 1 ' (e) (x; y; z) :

2

  max = d 2 , the adjoint operator of d 2 min ). Proposition 1. Let = (K; F; 3 ) be a weighted 3 simplicial complex.then Dom (T min )

  Let = (k; F; 3 ) be a weighted 3 simplicial complex. then Dom (L min )

  we obtain that (L 3 ) min d

  Let e 2 E, for each (f; ) 2 C c (V ) C c (F ) we have 1 f (e) = f (e) 1 (ex) d 0 n (e ; x) + d 0 n (e + ; x) (e; x). Thereore, by derivation formula, we get

x2Fes

  (e; x) d 0 n (x; e ) + d 0 n (x; e + ) (e; x) 0 n ), x2Fe s (e; x) j (e; x) j 2 . M P e2supp(d 0 n )s (e; x) j (e; x) j 2 ! 0 when n ! 1.Hence F n ! F in H, T F n ! T min F in H, where F n = f n ; ~ n '; n ; n and T min F (f; '; ; ) = 0 min '; d 0 min f + 1 min ; d 1 min ' + 2 min ; d 2 min . So F 2 Dom (T min ).Then Dom (T min ) = Dom d 0 show that T is essentially self-adjoint, we will prove that T max = T min . By the …rst step, Theorem 1 in[AT] and Proposition 4 it remains to show that:

  E) :We have d 0 ( n f )+ 1 n converges in l 2 (E) from theorem 5 3 seconde step in[YC]. Now, By the de…nition of 1 max and d 2 max . We have 2 Dom 1 max \ Dom d 2 max . Moreover, by completeness of , there exists a sequence of cut-o¤ functions ( n ) n C c (V ). Then, the parallelogram identity with Lemma 3 in we getkd 1 ~ n f + 2 u n k 2 l 2 (F ) = kd 1 ~ n f k 2 l 2 (F ) +k 2 u n k 2 l 2 (F ) . It remains to prove that d 1 ~ n f + 2 u n converges in l 2 (F ).From lemma 4 and 5, we getd 1 ~ n f = n d 1 f + 1 6 d 0 n ^disc f : z; v) 2 (y; z; v)+ 1 12s(y;z;v) P x2 3(y;z;v) t(x; y; z; v) (x; y; z; v) d 1 ~ n (v; z; x) + d 1 ~ n (x; y; v) + d 1 ~ n (z; y; x) We put K n (y; z; v) = 1 12s(y;z;v) P x2 3(y;z;v)t(x; y; z; v) (x; y; z; v) d 1 ~ n (v; z; x) + d 1 ~ n (x; y; v)

jd 1 ~ n (y; z; v) j = j~ n (y; z) + ~ n (z; v) + ~ n (v; y) j = j n (y) + n (z) + n (v) j 1 n jd comb ( ; y) + d comb ( ; z) + d comb ( ; v) j Then 8 (y; z; v) 2 F; P x2 3(y;z;v)

jd 1 ~ n (y; z; x) + d 1 ~ n (z; v; x) + d 1 ~ n (v; y; x) j 2 3 n 2 . Hence is complete 3 simplicial complex.

Essential self-adjointness

In [AT], the authors use the completeness hypothesis on a graph to ensure essential self-adjointness for the Gauss-Bonnet operator and the Laplacian. In this section, with the same idea we will prove the main result, when the 3 simplicial complex is complete. Let us begin from Proposition 4. Let = (K; F; 3 ) be a complete 3 simplicial complex then the operator

Proof. 

On the other hand, P (x;y;z;v)2 3 t (x; y; z; v) j' (y; z; v) j 2 jd 1 ~ n (x; z; y)+d 1 ~ n (x; v; z) d 1 ~ n (x; v; y) j 2 = P (y;z;v)2F j' (y; z; v) j 2 P x2 3(y;z;v) t (y; z; v; x) jd 1 ~ n (y; z; x)

We conclude that this term tends to 0 as n ! 1. Applying the same process to other terms. 2) Let 2 Dom 2 max , we will show that k

By the derivation formula in lemme (5), we have Where E n = (y; z) 2 E; 9$ 2 supp d 1 ~ n such that $ 2 F (y;z) This term tends to 0. So Corollary 2. Let = (K; F; 3 ) be a complete 3 simplicial complex then the operator L is essentially self-adjoint on C c (V ) C c (E) C c (F ) C c ( 3 ).