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Abstract. A high resolution time-series analysis of sta-
ble carbon isotopic signatures in particulate organic carbon
(δ13CPOC) and associated biogeochemical parameters in sea
ice and surface waters provides an insight into the factors
affecting δ13CPOC in the coastal western Antarctic Penin-
sula sea ice environment. The study covers two austral sum-
mer seasons in Ryder Bay, northern Marguerite Bay between
2004 and 2006. A shift in diatom species composition during
the 2005/06 summer bloom to near-complete biomass domi-
nance ofProboscia inermisis strongly correlated with a large
∼10 ‰ negative isotopic shift inδ13CPOC that cannot be ex-
plained by a concurrent change in concentration or isotopic
signature of CO2. We hypothesise that theδ13CPOC shift
may be driven by the contrasting biochemical mechanisms
and utilisation of carbon-concentrating mechanisms (CCMs)
in different diatom species. Specifically, very lowδ13CPOC
in P. inermismay be caused by the lack of a CCM, whilst
some diatom species abundant at times of higherδ13CPOC
may employ CCMs. These short-lived yet pronounced neg-
ative δ13CPOC excursions drive a 4 ‰ decrease in the sea-
sonal averageδ13CPOC signal, which is transferred to sedi-
ment traps and core-top sediments and consequently has the
potential for preservation in the sedimentary record. This
4 ‰ difference between seasons of contrasting sea ice condi-
tions and upper water column stratification matches the full
amplitude of glacial-interglacial Southern Oceanδ13CPOC

variability and, as such, we invoke phytoplankton species
changes as a potentially important factor influencing sedi-
mentaryδ13CPOC. We also find significantly higherδ13CPOC
in sea ice than surface waters, consistent with autotrophic
carbon fixation in a semi-closed environment and possible
contributions from post-production degradation, biological
utilisation of HCO−

3 and production of exopolymeric sub-
stances. This study demonstrates the importance of surface
water diatom speciation effects and isotopically heavy sea
ice-derived material forδ13CPOC in Antarctic coastal en-
vironments and underlying sediments, with consequences
for the utility of diatom-basedδ13CPOC in the sedimentary
record.

1 Introduction

During photosynthetic uptake of aqueous carbon dioxide,
marine phytoplankton preferentially assimilate the lighter
isotope, carbon-12, thus increasing the stable carbon iso-
topic signature,δ13C, of the residual pool of dissolved in-
organic carbon (DIC). As such, marine algae always display
lower δ13CPOC than the inorganic carbon source they assim-
ilate (Hayes, 1993). Several studies have demonstrated that
on large oceanic scales,δ13C of the product organic carbon
(δ13CPOC) is inversely correlated with the concentration of
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dissolved molecular carbon dioxide ([CO2(aq)]) in surface
waters (Rau et al., 1989, 1991). This inverse relationship
has been exploited to useδ13CPOC in marine sediment cores
as a proxy to reconstruct surface water [CO2(aq)] and atmo-
sphericpCO2 in the past (Jasper and Hayes, 1990; Freeman
and Hayes, 1992; Bentaleb and Fontugne, 1998).

However, several studies have demonstrated that this rela-
tionship cannot be applied universally and in high-southern
latitudes particularly, the anti-correlation betweenδ13CPOC
and [CO2(aq)] can be decoupled by physical and biological
factors. Amongst these factors are phytoplankton growth rate
and its regulation by temperature and light levels (O’Leary et
al., 2001), cell size and shape (Popp et al., 1998; Burkhardt
et al., 1999; Trull and Armand, 2001) and non-diffusive car-
bon uptake through carbon concentration mechanisms (Rau,
2001; Cassar et al., 2004).

Paleoceanographic studies of the Southern Ocean have ob-
served that theδ13C of diatom-bound organic matter was de-
pleted in 13C during glacial times relative to interglacials
and the Holocene (Singer and Shemesh, 1995; Rosenthal
et al., 2000; Crosta and Shemesh, 2002; Schneider-Mor et
al., 2005). However, ice core records show that glacial
pCO2 was lower than during interglacials (Berner et al.,
1980; Barnola et al., 1987; Masson-Delmotte et al., 2010),
which would be expected to driveδ13CPOC more positive.
Definitive explanations for low glacialδ13CPOC remain un-
clear but potential contributing factors include lower algal
growth rates during glacial periods (Rosenthal et al., 2000),
sea ice-triggered increase in [CO2(aq)] (Crosta and Shemesh,
2002) and the effects of changes in diatom abundance or
species composition (Crosta et al., 2005). Documenting
the processes that decouple carbon isotopes from the clas-
sic δ13CPOC versuspCO2 relationship used for paleo-CO2
reconstructions is important in understanding the role of the
Southern Ocean in glacial-interglacial climate change. This
study provides a detailed high-resolution time-series analy-
sis of carbon isotopes and associated biogeochemical param-
eters in surface waters, sea ice, sediment traps and core-top
sediments in order to elucidate the key factors influencing
surface and sinkingδ13CPOC in the Antarctic sea ice zone on
a seasonal timescale, as well as their potential for preserva-
tion in marine sediments.

2 Materials and methods

2.1 Study area

This study was conducted over two growing seasons and the
intervening winter of full sea ice cover between 2004 and
2006 in Ryder Bay and Marguerite Bay, located south of
Adelaide Island, west of the Antarctic Peninsula mainland
(Fig. 1). Ryder Bay is a coastal, seasonally sea ice-covered
Southern Ocean environment in which diatoms dominate the
summer assemblages, with biomass of other phytoplankton

such as prymnesiophytes and cryptophytes more than an or-
der of magnitude lower (Garibotti et al., 2005). Ryder Bay
adjoins Marguerite Bay and the principal study site is the
Rothera Oceanographic and Biological Time-Series (RaTS)
site at 67◦34.02′ S, 68◦14.02′ W (Clarke et al., 2008), situ-
ated in open water of depth 520 m. If access to the main
RaTS site is prevented by weather or ice conditions, a sec-
ondary station at 67◦34.85’S, 68◦09.34′ W of water depth
∼400 m is used as an alternative site also representative of
prevailing oceanographic conditions in Ryder Bay. The Mar-
guerite Bay site is located at 67◦55.39′ S, 68◦24.15′ W in
open water of depth 840 m.

2.2 Sea ice sampling

Sea ice brine was sampled according to sea ice availability
at three locations: the RaTS site, Hangar Cove and Lagoon
Island (Fig. 1). Fifteen samples were taken over the course
of the study: five Lagoon Island land-fast ice samples taken
in December 2004, two winter sea ice samples taken at the
RaTS site in September and October 2005 and eight early
spring samples from Hangar Cove in November and Decem-
ber 2005.

Sea ice brine was sampled using a sack hole drilling
method, with samples for the stable carbon isotopic compo-
sition of CO2(δ

13CCO2) and [CO2(aq)] taken first to minimise
atmospheric contamination. Samples forδ13CCO2 were taken
using a 50 ml syringe and gently injected into a 12 ml glass
exetainer vial preloaded with 50 µL of 35 gL−1 copper (II)
sulphate to suppress bacterial activity (Winslow et al., 2001).

Samples for alkalinity and pH, for [CO2(aq)] determina-
tion, were taken by immersing a 250 ml glass biological oxy-
gen demand (BOD) bottle in the sack hole, ensuring no air
bubbles were included and sealing the bottle with a ground
glass stopper. On return to the laboratory, samples were
stored, unfiltered, in the dark overnight to allow them to
reach room temperature and thus maintain a steady tempera-
ture throughout subsequent analysis on the following day.

For particulate organic carbon measurements, sea ice brine
samples were filtered through muffle-furnaced (400◦C for
4 h) 47 mm diameter GF/F filters, of pore size∼0.7 µm,
within two hours of collection. The filters were then dried
at 50◦C overnight, and stored frozen until analysis. For di-
atom census counts, sea ice brine was filtered through 37 mm
diameter polycarbonate filters, of pore size 0.45 µm. Fil-
ters were dried overnight at 50◦C and stored in clean plastic
Petri-slides until analysis.

2.3 Surface water sampling

A high resolution time series of surface water samples was
taken in Ryder Bay, at the RaTS site during the austral spring
and summer of 2004/05 and 2005/06. Low resolution time
series sampling was conducted during winter 2005.

Biogeosciences, 9, 1137–1157, 2012 www.biogeosciences.net/9/1137/2012/
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Fig. 1. Map of Ryder Bay showing the RaTS site, Hangar Cove and Lagoon Island sampling stations. Map courtesy of the British Antarctic
Survey. Inset shows position of Ryder Bay on the western Antarctic Peninsula. After Clarke et al. (2007, 2008).

A normal sampling event consisted of collection of seawa-
ter samples from 15 m water depth, the average depth of the
chlorophyll maximum in Ryder Bay since sampling began
in 1997 (Clarke et al., 2008). Samples were taken for de-
termination of chlorophylla, [CO2(aq)], δ13CCO2, suspended
POC,δ13CPOC and diatom assemblages and measurements
were taken for temperature and salinity using a YSI-500
multi-parameter meter. Each sampling event was accompa-
nied by a full-depth Conductivity Temperature Depth (CTD)
cast to monitor changes in mixed layer depth.

CTD casts were taken to 500 m depth using a Sea Bird 19+
CTD module with a WetLabs in-line fluorometer and LiCor
PAR sensor. For measurement of temperature at the 15 m
sampling depth, a Sensoren Instrumente Systeme GmbH re-
versible thermometer was lowered to 15 m and allowed to
equilibrate for two minutes before a brass messenger was
sent down to initiate temperature recording.

Surface water samples were taken using a 5 L Niskin bot-
tle for chlorophylla, δ13CCO2 and [CO2(aq)] measurements.
For δ13CCO2, water was drawn from the Niskin bottle using
a 50 ml syringe and gently injected into a 12 ml glass exe-
tainer vial preloaded with 50 µL of 35 gL−1 copper sulphate
to suppress bacterial activity (Winslow et al., 2001). Sam-
ples for alkalinity and pH, for [CO2(aq)] determination, were
taken from the Niskin straight into a 250 ml glass BOD bot-
tle, which was immediately sealed with a ground glass stop-
per whilst overflowing and ensuring that no air bubbles were
present. These samples were left overnight, as for the equiva-
lent sea ice samples. Chlorophyll samples were collected and
treated as per Clarke et al. (2008). Particulate samples were
retrieved using a 12 V whale pump and 15 m of silicone tub-
ing weighted down at the end. Water from 15 m was pumped
into 10 L HDPE carboys for transfer back to the laboratory.
Surface water samples were prepared for particulate organic
carbon measurements and diatom census counts in the same
way as was sea ice brine.

www.biogeosciences.net/9/1137/2012/ Biogeosciences, 9, 1137–1157, 2012
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2.4 Sediment trap and surface sediment sampling

Two sediment trap mooring arrays were deployed to catch
sinking particles forδ13CPOC analysis and flux calculations,
concurrent with the time series water sampling programme;
one at the RaTS site and the other at the deeper Marguerite
Bay site.

Each mooring consisted of two time-series sediment traps,
at 200 m and 512 m for the RaTS mooring and 123 m and
745 m for the Marguerite Bay mooring. Each sediment trap
consisted of 21 rotating cups programmed to rotate at pre-
defined intervals. Cup turnover times were shorter giving
higher resolution during periods of potential sea ice melt and
the spring bloom, whilst lower resolution cup rotation was
used during the low flux winter periods.

Both sediment trap mooring arrays were deployed from
late-January 2005 to mid-February 2006. Upon recovery, all
sediment trap bottles were removed and replaced, and the
moorings redeployed.

Prior to deployment, each cup was filled with filtered sea-
water spiked with an extra 5 ‰ NaCl in order to increase its
density and prevent mixing with the overlying seawater. Fi-
nally, cups were spiked with formaldehyde to give an overall
concentration of 2 % (v/v) to prevent bioturbation, by killing
swimmers and stopping biological activity. Formaldehyde-
preservation of sediment trap material forδ13CPOC analy-
sis is widely used (Thunell et al., 2000; Struck et al., 2004;
Mincks et al., 2008) and is deemed appropriate for the pur-
poses of this study since formaldehyde preservative does not
add sufficient organic carbon to sediment trap material to al-
ter δ13CPOC (Altabet, 2001).

Box core samples were taken at the RaTS site and the Mar-
guerite Bay site in January 2005 and December 2006 aboard
R.R.S. James Clark Ross. In each case, the box core was
taken and then four sub-cores of approximately 30 cm were
taken by pushing plastic sleeves through the box core. Core-
top samples were collected from the top two 0.5 cm intervals
from each sub-core.

2.5 Surface water and sea ice [CO2(aq)] and δ13CCO2

determination

[CO2(aq)] was determined using measurements of salinity
and temperature, detailed above, with pH and alkalinity, both
determined on the day following sampling. pH measure-
ments were performed using a bench-top pH meter calibrated
to buffer solutions of pH 4.01, 7.00 and 10.01. Maximum
error on triplicate pH measurements across all samples was
±0.02. Alkalinity was determined by titration with 0.05
M HCl and the Gran plot method (Almgren et al., 1983).
[CO2(aq)] was calculated using constants from Dickson and
Millero (1987), Hannson (1973) and Mehrbach et al. (1973)
using the CO2SYS programme (Lewis and Wallace, 1998).
Maximum error on [CO2(aq)] calculations, taking into ac-
count the maximum error on all input parameters, is 11.0 %.

δ13CDIC analysis was conducted by GC-IRMS using a
method similar to Assayag et al. (2006). The 12 ml glass
exetainer vial containing 12 ml of seawater sample spiked
with CuSO4.5H2O was split into two samples by inserting
a closed syringe through the septum of the vial and inject-
ing 6 ml of Helium gas into the sample vial using a sepa-
rate needle and syringe. The 6 ml of sample forced into the
closed syringe by the He injection was then injected into a
clean 12 ml exetainer vial that had been under vacuum for
30 min. Each sample vial was then injected with 0.6 ml of
concentrated H3PO4 in order to convert the DIC into aque-
ous and gaseous CO2 for analysis. Three sets of isotopic
standards were prepared (MAB2, CaCO3 and NaHCO3) us-
ing a range of final DIC concentrations. The standards were
weighed into 12 ml glass exetainer vials and then placed on
a vacuum to remove all gases. 6 ml of 10 % H3PO4 was then
injected into each standard vial to reproduce the same con-
ditions as in the sample vials.δ13CDIC was analysed using
a custom-built GC-IRMS system, from which rawδ13C val-
ues were corrected using the isotopic standards. Precision
of δ13CDIC values was generally better than 0.2 ‰.δ13CCO2

was determined fromδ13CDIC and absolute temperature (TK

in Kelvin) using Eq. (1) from Rau et al. (1996):

δ13CCO2 = δ13CDIC +23.644−9701.5/TK (1)

2.6 POC, PN andδ13CPOC analysis

Bulk POC, particulate nitrogen (PN) andδ13CPOC analy-
ses were conducted using a method similar to Lourey et
al. (2004). Prior to analysis, the filters were decarbonated
by wetting with Milli-Q water and fuming with HCl for 48 h
and then drying at 50◦C. Filters were cut in half and analysed
for elemental POC, PN andδ13CPOC using a Carlo Erba NA
2500 elemental analyser in-line with a VG PRISM III isotope
ratio mass spectrometer. The two halves were analysed sepa-
rately and then data were summed, to achieve final represen-
tative values for the whole filters. Allδ13C data are presented
in the delta per mil notation versus V-PDB (‰VPDB).

2.7 Diatom species counts

Diatom assemblages were determined by analysing a sub-
sample of each polycarbonate filter by scanning electron
microscopy. Counting methods, surface area, volume and
biomass determinations and species identification in surface
samples are detailed in Annett et al. (2010). Sea ice samples
were analysed following identical protocols. Diatom cen-
sus counts were also conducted on sediment trap material,
according to the methods of Laws (1983) and Schrader and
Gersonde (1978). Full details on slide preparation and di-
atom identification are as per Crosta et al. (2004).

Biogeosciences, 9, 1137–1157, 2012 www.biogeosciences.net/9/1137/2012/
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Fig. 2. Time-series plots of sea ice cover (top panel) with the black line representing daily observations in Ryder Bay and the shaded
region representing regional sea ice cover of Marguerite Bay (from National Ice Centre – National Oceanic and Atmosphere Administration,
Bellingshausen-Amundsen Sea region sea ice cover satellite data, available online:http://www.natice.noaa.gov); mixed layer depth (see text
for definition; middle panel); and chlorophylla concentrations from July 2004 to October 2006 at the RaTS site, water depth 15 m (bottom
panel). Data courtesy of the British Antarctic Survey, with supplementary data from this study.

2.8 Sediment trap and core-top sedimentδ13CPOC
analysis

After recovery of the sediment trap mooring arrays, the so-
lution in each sample cup was allowed to settle, the super-
natant siphoned off and the swimmers removed manually us-
ing HCl-cleaned plastic forceps and a x10 dissecting binoc-
ular microscope. Each sample cup was then split into 10
fractions using a rotary splitter at the National Oceanogra-
phy Centre (NOC), Southampton, UK.

One fraction from each sediment collection cup was
washed, freeze-dried and ground for analysis ofδ13CPOC.
Duplicate 10 mg aliquots of this dried sediment were
weighed into silver capsules, acidified with 5 % HCl to re-
move carbonates and then dried at 60◦C overnight. Decar-
bonated samples were then analysed forδ13CPOCusing a VG
PRISM III isotope ratio mass spectrometer. One sub-core of
each box core was prepared and analysed forδ13CPOC in the
same way as the sediment trap cup fraction.

2.9 Data analysis and statistics

All statistical analyses were performed using R computing
software. Relevant information for each analysis is sum-
marised in Appendix Table 1, in the order in which results
appear in the text, and given due consideration in the discus-
sion that follows.

3 Results

3.1 Seasonal sea ice cover and productivity

Sea ice cover, mixed layer depth and chlorophylla data from
the austral summer growing seasons of 2004/05 and 2005/06
are presented in Fig. 2. Total sea ice cover was variable be-
tween the two seasons at the RaTS site, with full cover occur-
ring for 138 days from 16 June to 1 November during winter
2004 and 198 days from 10 June to 25 December 2005. The
mixed layer depth data show typical seasonality for Ryder
Bay, with a deep winter mixed layer and a shallow surface
layer in summer, influenced heavily by sea ice and surround-
ing glaciers (Meredith et al., 2004). Mixed layer depth is
defined as the depth at whichσ0 = σ0 (surface) + 0.05 (Barth
et al., 2001), whereσ0 is the potential density anomaly =
ρ – 1000, andρ is density in kg m−3. A stratified surface
ocean during summer reduces wind-induced vertical mixing
and provides a stable environment for proliferation of diatom
blooms and resultant seasonal drawdown of macro- and mi-
cronutrients (Clarke et al., 2008). In this study, both grow-
ing seasons lasted∼4 months, but the 2005/06 phytoplank-
ton bloom occurred around 6 weeks later in accordance with
later sea ice retreat. Summer surface water conditions were
also much more stable in 2005/06 with a longer period char-
acterised by a shallow mixed layer, in agreement with more
persistent sea ice cover during the preceding winter.

www.biogeosciences.net/9/1137/2012/ Biogeosciences, 9, 1137–1157, 2012
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Fig. 3. Surface water (closed symbols) and sea ice (open symbols) time-series plots of(a) Chlorophylla (b) [CO2 (aq)](c) δ13CCO2 (d) POC

and(e)δ13CPOCbetween December 2004 and April 2006. Error bars on [CO2 (aq)] depict 11 % maximum error associated with calculation
using the CO2SYS programme. Note different scales for sea ice (right hand y-axis) and surface water (left hand y-axis). The period of full
sea ice cover is indicated by grey shading. All water samples are from 15 m depth.

3.2 Dissolved carbon dioxide andδ13CCO2 in surface
waters and sea ice

The concentration of CO2 and δ13CCO2 in surface waters
show a general trend of [CO2(aq)] decrease and13C enrich-
ment during spring and summer during both summer seasons
(Fig. 3). During the 2004/05 season, [CO2(aq)] decreased
from values as high as 54.2± 6.0 µM to 5.1± 0.6 µM whilst
δ13CCO2 values rose from –11.2 to –9.0 ‰. Similarly during
the 2005/06 season, [CO2(aq)] decreased from a high winter
value of 33.7± 3.7 µM to 13.6± 1.5 µM andδ13CCO2 val-
ues rose from –11.1 to –9.2 ‰. Important to note however, is
that the 2004/05 season was characterised by rapid and large
fluctuations in [CO2(aq)]; in fact, season maximum concen-
tration occurs after the first chlorophyll peak in the middle
of the growing season. Conversely, [CO2(aq)] shows a much
more systematic reduction over the duration of the 2005/06
growing season, albeit with a lesser overall drawdown. Sim-
ilarly, δ13CCO2 shows much more variability in 2004/05 than
the gradual increase seen in summer 2005/06. The greater

variability seen in the 2004/05 season depicts regular inputs
of CO2, which resulted in small negative shifts inδ13CCO2 to
values as low as –10.5 ‰ during January and February 2005.
The absence of such fluctuations inδ13CCO2 during summer
2005/06 shows that there is no regular mid-season input of
CO2. However, there is one marked increase in [CO2(aq)]
and simultaneous decrease inδ13CCO2, which provides evi-
dence for a one-off mid-season input of CO2, coincident with
a mid-season chlorophyll reduction between two periods of
greater phytoplankton productivity.

The δ13CCO2 in sea ice is generally enriched relative to
surface waters and exhibits greater temporal variability, with
values ranging from –10.7 to –4.8 ‰ (Fig. 3). CO2 concen-
trations in sea ice brine are lower than in surface waters, con-
sistent with higherδ13CCO2. In addition to temporal variabil-
ity in [CO2(aq)] andδ13CCO2, the greater variability seen here
than in surface water samples is partly spatial, as is common
in sea ice brine (Rau et al., 1992; Kennedy et al., 2002) since
samples were taken from different locations in the study area
according to availability of ice.

Biogeosciences, 9, 1137–1157, 2012 www.biogeosciences.net/9/1137/2012/
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Fig. 4. Time series plots of chlorophylla concentration, POC concentration, POC:PN and POC:chla in (a) surface water and(b) sea ice
from December 2004 to April 2006.

3.3 Particulate organic carbon in surface waters and
sea ice

Concentrations of POC in Ryder Bay surface waters mimic
levels of chlorophylla and show similar variability over sum-
mer 2004/05 and gradual trends in 2005/06 as do [CO2(aq)]

and δ13CCO2 (Fig. 3). However, surface waterδ13CPOC
shows high inter-annual variability between the two grow-
ing seasons. During the 2004/05 season,δ13CPOC increases
gradually over the course of the phytoplankton bloom from
–21.2 to –17.9 ‰, with a small∼1 ‰ decrease inδ13CPOC
during late December 2004 when chlorophylla declined and
[CO2(aq)] increased. In February 2005, when chlorophylla

began to decline at the end of the growing season, a large
yet short-lived∼9 ‰ negative shift is observed inδ13CPOC
to a season-low of –26.7 ‰. This occurs in concert with an
increase in [CO2(aq)] of ∼8 µM and a decrease inδ13CCO2

of ∼1.2 ‰. At the end of the growing season,δ13CPOC re-
turned to a near winter value of∼–23 ‰. During the 2005/06
growing season,δ13CPOC increased from a winter low of∼–
25 ‰ in September 2005 to a season high of –18.8 ‰ in De-
cember 2005 just prior to sea ice retreat. Once the open
water spring phytoplankton bloom was underway,δ13CPOC
was consistently around –21 ‰ until there was an injection
of ∼7 µM CO2 into the system during late January and con-
comitant decreases inδ13CCO2 and δ13CPOC of 0.7 ‰ and
∼2 ‰, respectively. In late January and early February 2006,

at the commencement of the second chlorophylla peak, there
was a large negative shift inδ13CPOC of ∼10 ‰ to values
as low as –28.7 ‰ (Fig. 3). This negative shift inδ13CPOC
was maintained throughout the second chlorophylla peak
and once chlorophyll had declined at the end of the grow-
ing season, towards the end of March 2006, theδ13CPOC
returned to a typical winter value of –25 ‰. In agreement
with this large and prolonged negative isotopic transition, a
seasonal POC concentration-weighted averageδ13CPOC of –
24.5 ‰ was significantly lower for 2005/06 than the 2004/05
season average of –20.0 ‰ (2-sample t-testp < 0.001).

POC:PN ratios of suspended material averaged 5.8 indi-
cating a wholly marine origin, as would be expected at a site
like Ryder Bay, due to the relative paucity of terrestrial or-
ganic matter in the vicinity (Fig. 4a). The dominant marine
phytoplankton source of Ryder Bay organic matter is con-
firmed by POC:chla <200 in the vast majority of suspended
samples.

Sea ice POC:PN is highly variable throughout the season
of sea ice coverage, but an average value of 10 is higher than
in surface waters (Fig. 4b). Most of our values for POC:chl
a in sea ice range from 83.7 to 497.0 (Fig. 4b) and there-
fore fall within the range of POC:chla values found in previ-
ous studies of marine biota (Eppley et al., 1973; Pollehne et
al., 1993) and sea ice algal assemblages (Gleitz and Thomas,
1993). We also observe significantly higher POC:chla val-
ues of 1250 to 1750 in late-December 2004. Conversely, at

www.biogeosciences.net/9/1137/2012/ Biogeosciences, 9, 1137–1157, 2012
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Fig. 5. Time-series analysis of diatom assemblages for(a) surface waters and(b) sea ice brine, presented as percentage of total diatom
biomass. Upper panel dots show community SA:V. Species/groups shown are theBanquisiagroup (as defined in Annett et al., 2010),
Chaetoceros(Hyalochaetasubgenus),Fragilariopsis curtagroup (see text),Fragilariopsis cylindrus, Minidiscus chilensis, Odontella weiss-
flogii and P. inermis. Size fractions of centric diatoms are<10 µm, 20 to 50 µm and>50 µm, for very small, medium and large cells,
respectively. The very small fraction is likely comprised ofThalassiosiraauxospores, while other centric size classes are predominantly
Thalassiosiraspecies but also include species from the generaActinocyclus PorosiraandStellarima.

the beginning of the 2004/05 season, we find sea ice POC:chl
a values of>20 000 (not shown in Fig. 4). We attribute these
values to extremely low chlorophyll levels, close to the de-
tection limit of the technique (Fig. 4b), which as the denom-
inator drive POC:chla ratios unrealistically high. As such,
we consider these values to be erroneous and discount them
from further consideration.

3.4 Diatom assemblages and size classes

The surface water phytoplankton bloom in Ryder Bay is typ-
ically dominated by the microplankton fraction (>20 µm), so
large solitary or chain-forming diatoms dominate over the
smaller nanoplankton and picoplankton (Clarke et al., 2008).
Diatom assemblages show distinct changes throughout the
two growing seasons in surface waters and sea ice (Fig. 5;
Annett et al., 2010). Briefly, diatom biomass in 2004/05

was initially relatively diverse, with substantial contributions
from Minidiscus chilensisand Chaetoceros(Hyalochaeta
subgenus) species. Mid-season assemblages were dominated
by Odontella weissflogii, accounting for up to 80 % of the
estimated diatom community. Late-season assemblages re-
turned to a more diverse composition. The early part of the
2005/06 season showed a mixed diatom assemblage, con-
sisting largely ofFragilariopsis cylindrus, large and medium
centrics (>50 µm and 20 to 50 µm, respectively) and a small
contribution fromProboscia inermis. A shift towards the al-
most complete dominance ofP . inermisoccurred at the time
of the late-season negative excursion inδ13CPOC. In both
seasons, surface area to volume ratios (SA:V) estimated for
the diatom community are initially high (∼0.76 µm2:µm3)

and decline thereafter (0.2 to 0.3 µm2:µm3). More variability
is seen in SA:V in 2004/05 than in 2005/06, in accordance
with the more diverse assemblages in the earlier season.
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Fig. 6. Time-series plots of diatom species composition in sediment traps between December 2004 and March 2006, location and depth of
traps as described on each plot.

In sea ice, we observe less species variability than in sur-
face waters (Fig. 5). In December 2004, sea ice biomass
is made up of medium centric groups, such asPorosiraand
Thalassiosiraspecies. In the 2005/06 season, sea ice diatom
assemblages were dominated initially byChaetoceros sim-
plex and very small centric species (<10 µm). In early De-
cember 2005, the main contribution comes from theFragi-
lariopsis curtagroup, primarilyF. cylindrusbut alsoF. curta.

Diatom census counts in the sediment traps show that
species composition at depth is broadly similar to that in sur-
face waters, but with different proportions of each species
(Fig. 6), presumably a result of differential dissolution during
sinking through the water column. Shallow traps are domi-
nated by cold water species such as theF. curtaandChaeto-
cerosgroups, although higher resolution sampling in Mar-
guerite Bay shows minor contributions from theF. oblique-
costatagroup andThalassiosiraspp. throughout the sam-
pling period. Both deeper traps are overwhelmingly domi-
nated byChaetoceroswith minor contributions fromF. curta
andT. antarctica groups.P. inermisabundance was low in
all sediment traps throughout the study period.

3.5 Sinking particulate organic carbon

Sediment trap carbon flux andδ13CPOCdata from Ryder Bay
and Marguerite Bay are shown in Fig. 7, and Table 1 pro-
vides a summary of sediment trap isotopic data. Carbon
fluxes were highly variable between traps and between sea-
sons, but the Ryder Bay traps show greater overall export
than the Marguerite Bay traps (Fig. 7). There is no signifi-
cant change in seasonal flux-weighted averageδ13CPOCwith
water depth at either mooring site in either growing season.

Seasonal variability in surface waterδ13CPOC is, to some
extent, reflected in the sediment trap data (Fig. 7). During
the 2004/05 season, surface waterδ13CPOC ranged from –
21.2 ‰ to –17.5 ‰ from early December to the beginning of
February (Fig. 3). Whilst this 4 ‰ enrichment is not fully ex-
pressed in the sediment trap data, we do see a slightδ13CPOC
increase in the RaTS 200 m sediment trap from –20.7 ‰ to
–19.7 ‰ between late January and late February. We see
a more pronounced negative shift to –22.5 ‰ in sediment
trapδ13CPOCat the beginning of March 2005, approximately
one month after the negative shift in surfaceδ13CPOC to –
26.7 ‰ observed at the beginning of February 2005. A simi-
lar response is not observed in the Marguerite Bay traps, pos-
sibly due to different diatom assemblages in the more open
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Fig. 7. δ13CPOC and carbon (C) flux data from time-series sediment traps from December 2004 until March 2006, as per legend. RaTS
is the trap mooring at the routine sampling site in Ryder Bay, MB is the deeper trap mooring in Marguerite Bay. The top panel shows sea
ice coverage as measured daily in Ryder Bay (data from the British Antarctic Survey). Maximum error on sediment trapδ13CPOCvalues is
1.0 ‰ associated with formaldehyde preservation (Mincks et al., 2008) since this vastly exceeds analytical error.

Table 1. Sediment trap seasonal flux-weighted averageδ13CPOC
presented in ‰ versus VPDB; maximum error quoted as the
1.0 ‰ uncertainty associated with formaldehyde preservation
(Mincks et al., 2008), as this vastly exceeds analytical error.

Trap δ13CPOC
(2004/05)

δ13CPOC
(2005/06)

RaTS 200 m
RaTS 512 m
MB 123 m
MB 745 m

–20.3± 1.0
–20.4± 1.0
–19.1± 1.0
–19.1± 1.0

–23.3± 1.0
–24.7± 1.0
–20.5± 1.0
–22.3± 1.0

ocean site that do not have the same effect onδ13CPOCas the
coastal site.

As in surface waters, 2005/06 sediment trap data show
very differentδ13CPOCcharacteristics to those from 2004/05.
Although data are somewhat sparse for the Ryder Bay trap,
they do highlight a similar negative transition to very low
δ13CPOC values at the end of the 2005/06 growing season as
seen in surface values. In surface waters,δ13CPOCundergoes
a large negative shift at the end of January to –28.7 ‰. Al-

though there is a time lag, the same negative shift is seen in
late February in the 200 m RaTS trap (δ13CPOC = –28.7 ‰)
and the 512 m trap, whereδ13CPOC drops from –21.8 ‰ in
early February to –27.8 ‰ in late February (Fig. 7).

4 Discussion

4.1 δ13CPOC and [CO2(aq)] in surface waters and sea ice

According to the classic CO2–δ13CPOC relationship
(François et al., 1993), we would expectδ13CPOC to vary
depending on the balance between supply and demand of
the photosynthetic carbon source. This supply and demand
model is regulated by two steps in the photosynthetic
process: transport of the inorganic carbon reactant into
the internal cell carbon pool and subsequent fixation to
organic carbon (Popp et al., 1999; Trull and Armand, 2001).
According to this model, an increase in external [CO2(aq)]
would increase the fractionation factor (εp) of inorganic
carbon assimilation and decreaseδ13CPOC, independent of
the initial δ13CCO2 (François et al., 1993; Rau et al., 1996;
Burkhardt et al., 1999; Lourey et al., 2004).
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Fig. 8. δ13CPOC versus [CO2 (aq)] in (a) surface sea water and(b) sea ice brine. Open circles are data points observed. X-axis error
bars depict 11 % maximum error associated with [CO2 (aq)] calculation using the CO2SYS programme. Solid lines show the modelled
relationships betweenδ13CPOC and [CO2 (aq)] under open system dynamics, whereεp = 25 ‰. Dashed lines show modelled relationships
under closed system dynamics, assuming an accumulated product andεp = 25 ‰.f is fraction used compared to maximum values for CO2
(aq). A full explanation of equations used is in the text.

We investigate the influence of changing [CO2(aq)] on εp

and δ13CPOC in Fig. 8, which presentsδ13CPOC data from
this study plotted against concurrent [CO2(aq)] in sea water
and sea ice brine, as well as theoretical relationships between
δ13CPOC and [CO2(aq)]. These theoretical relationships are
based onεp = 25 ‰ which is within the commonly accepted
range of maximumεp values, 25 to 28 ‰ (Raven and John-
ston, 1991; Goericke et al., 1994), and closed and open sys-
tem isotope fractionation approaches. Open system isotopic
evolution is calculated using Eq. (2), whereδ13CCO2 ini is the
initial isotopic value of reactant CO2, for which we use –
11 ‰ for surface water and sea ice.f is the fraction of CO2
utilised compared to maximum values of 60 µM in sea water
and 10 µM in sea ice (Fig. 3).

δ13CPOC= δ13CCO2 ini +εp f (2)

Closed system isotopic evolution is calculated using the
Rayleigh accumulated product equation (Eq. 3).

δ13CPOC= δ13CCO2ini −εp

(
f ln(f )

(1−f )

)
(3)

Unlike the strong negative correlation observed between
δ13CPOCand [CO2(aq)] in open-ocean studies in the Southern
Ocean (Lourey et al., 2004), we demonstrate no significant
relationship in coastal sea ice or surface waters, assuming
either closed or open system dynamics (Fig. 8). We see no
correlation between observedδ13CPOC and [CO2(aq)] in sur-
face water (r2

= 0.247; p = 0.120) or sea ice (r2
= 0.200;

p = 0.511) and the data clearly do not fit a modelled isotopic
evolution at any value ofεp assuming closed or open sys-
tem dynamics.δ13CCO2 can be excluded as a possible driver
of the observed negative shifts inδ13CPOC, since aδ13CCO2

shift of only –2.2 ‰ in surface waters cannot account for the
large shift inδ13CPOC of ∼–10 ‰ (Fig. 3). Therefore, al-
though some more subtle changes inδ13CPOC are consistent
with minor changes in [CO2(aq)] andδ13CCO2 during biolog-
ical uptake and/or nutrient injections, inorganic carbon avail-
ability is not the primary control onδ13CPOC in sea ice or
surface waters in Ryder Bay.

4.2 Factors influencingδ13CPOC in surface waters

Phytoplankton growth rates typically show a positive rela-
tionship with δ13CPOC, since higher growth rates increase
carbon demand and restrictεp (Laws et al., 1995; Rau et
al., 1996; Popp et al., 1998; Burkhardt et al., 1999; Villinski
et al., 2000; Trull et al., 2008). While growth rate data are
not available for the study period, a role for algal growth rate
cannot be ruled out. However, this would more likely be sig-
nificant at the onset of the phytoplankton bloom and growth
rate-relatedδ13CPOCchanges in iron-replete Southern Ocean
environments typically account for up to 2 ‰ (Trull et al.,
2008). Growth rate cannot therefore explain the full extent
of the rapid late-season isotopic shifts seen in Ryder Bay.
Since Ryder Bay surface waters do not conform to the widely
published growth rate/[CO2(aq)] vs. δ13CPOC relationship
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Fig. 9. Comparison of surface water diatom assemblage SA:V ratio (triangles) withδ13CPOC (circles) in time-series data(a) and regression
analysis(b). Sea ice data are denoted in(b) by open symbols and sea water samples by filled symbols. The two water samples circled in(b)
are early season samples postulated to be influenced by sea ice material and are not included in the “open” water regression line shown (see
text).

(e.g. Jasper et al., 1994), an alternative mechanism must be
driving the large decreases inδ13CPOC observed in the latter
part of the Ryder Bay growing seasons.

In this study, the largest demonstrated determinant on
seasonalδ13CPOC changes in surface waters is diatom as-
semblage. However, least-squares linear regression analy-
sis shows that there is only a weak negative relationship be-
tween diatom SA:V andδ13CPOC, even when early season
samples likely dominated by sea ice-derived organics (those
plotting on the same line as sea ice samples) are excluded
(r2

= 0.472; p = 0.017, Fig. 9). Time-series data (Fig. 9)
clearly show that whilst the negative excursions inδ13CPOC
are accompanied by slight changes in SA:V, there is no sig-
nificant SA:V control onδ13CPOC. We deduce therefore
that in contrast to Popp et al. (1998, 1999), Burkhardt et
al. (1999) and Trull and Armand (2001), diatom species con-
trol of δ13CPOC is not related to cell size or SA:V in this

study, but rather that these parameters are all responding to
an additional factor.

The most striking change in surface water diatom assem-
blages concurrent with the large negative shift inδ13CPOC
is the shift to near total dominance ofProbosciaspecies,
particularlyP. inermis, during the second chlorophyll peak
of summer 2005/06 (Fig. 10). Least-squares linear regres-
sion analysis reveals an extremely significant relationship
(r2

= 0.968; p = 0.000243) between the percentage of total
biomass made up ofP . inermisandδ13CPOC for 2005/06.
Although diatom species changes appear to have a much
greater effect onδ13CPOC during the 2005/06 season when
P. inermismakes a significantly greater contribution to total
diatom biomass, the relatively high abundance (21 %) ofP.
inermis in one sample of the 2004/05 growing season also
seems related to isotopically lighter POC (–22.4 ‰). How-
ever, presence ofP. inermiscannot explain the lowest value
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Fig. 10. Comparison of the fraction of surface water diatom biomass made up ofP. inermis(triangles),δ13CPOC (circles; solid line) andεp

(crosses; dashed line) for 2004/05 and 2005/06. Time-series data is shown in(a), note the reversal of the right hand y-axis (%P. inermis) to
better illustrate the coupling betweenP. inermisbiomass andδ13CPOC. Variation ofδ13CPOC andεp vs.P. inermisbiomass for all 2005/6
samples and the only sample from 2004/5 whereP. inermisaccounts for>2 % of total biomass are shown in(b).

of the season (–26.7 ‰) on 12 February 2005. Least-squares
linear regression analysis on all samples whereP. iner-
mis is expected to exert a significant control onδ13CPOC
(>2 % of total biomass) shows a very strong relationship
betweenP. inermis abundance andδ13CPOC (r2

= 0.918;
p = 0.000423, Fig. 10) and therefore suggests that the ma-
jority of δ13CPOC variability can be attributed to species ef-
fects. Similar biomass dominance byO. weissflogiiin 2004/5
corresponds with no appreciable shift inδ13CPOC to either
lighter or heavier values, so we argue that species-specific
effects onδ13CPOC are not exerted by all diatom species in
Ryder Bay. Instead, it is the unusual biochemistry ofP. iner-
mis that drives distinct negative shifts toδ13CPOC values as
low as –29 ‰ in this study.

Proboscia diatoms are known to synthesise a unique
set of long-chain 1,14-diols and 12-hydroxy methyl alka-
noates with strongly depleted carbon isotope signatures
of <–32 ‰ and<–34 ‰, respectively (Sinninghe Damsté
et al., 2003). While theseProboscia lipids can con-
tribute up to 35 % of total lipid flux in sediment traps
(Wakeham et al., 2002), it is unlikely that they alone ac-
count for the lowδ13CPOC signatures seen in this study,
as they typically make up less than 1 % of total or-
ganic carbon (raw data from Wakeham et al. (2002), pub-
lished online athttp://usjgofs.whoi.edu/PI-NOTES/arabian/
Wakeham/sedtraplipid raw.html). However, the13C deple-
tion of these lipids is greater than those of alkenones from
haptophytes or dinosterol from dinoflagellates and points
to a substantially depleted pool of intracellular carbon in
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Proboscia spp. not readily explained by factors such as
SA:V (Sinninghe Damsté et al., 2003). Sinninghe Damsté
et al. (2003) found that allProbosciaspecies analysed syn-
thesised these “Proboscialipids”, thus it is likely that the
potential influence onδ13CPOC is not limited toP. inermis.
Accordingly, samples in this study where otherProboscia
species were observed (Proboscia truncata), albeit at low
abundances, fall on the same trend presented in Fig. 10 and
least-squares linear regression analysis yields an almost iden-
tical r2 value as forP . inermis alone (r2

= 0.922, p =

0.00037; data not shown). However, theProbosciabloom
presented here was overwhelmingly dominated byP. iner-
mis, so we restrict our conclusions regarding species effects
to this species.

A detailed examination of why the internal carbon pool of
P. inermisis so depleted is beyond the scope of this study.
However, we suggest that carbon concentrating mechanisms
(CCMs) employed by many diatom species to buffer the
impacts of variability in [CO2(aq)] may play an important
role in the species-related differences inδ13CPOC seen here
(Sharkey and Berry, 1985; Descolas-Gros and Fontugne,
1985; Goericke et al., 1994; Laws et al., 1995).

Phytoplankton employing typical C3 biochemistry in the
absence of CCMs, i.e. diffusive CO2 transfer to the inter-
nal cell carbon pool and eukaryotic Rubisco carboxylation
(Kerby and Raven, 1985), fractionate CO2 by ∼29 ‰ and
produce organic carbon of –25 to –30 ‰ (Raven et al., 1994).
We propose therefore thatP. inermisutilises a simple C3 pho-
tosynthetic pathway with no employment of CCMs. An ad-
ditional contribution to lowδ13CPOC values associated with
P. inermismay arise from the production of isotopically light
“Proboscialipids”.

Why a more mixed phytoplankton assemblage prior to the
bloom of P. inermiscoincides with higherδ13CPOC (–25 to
–15 ‰ ) remains unclear. However, direct active HCO−

3 up-
take, which is significant in the marine environment (Tortell
et al., 1997, 2006; Cassar et al., 2004;), can driveδ13CPOC
to values> –10 ‰ (Raven, 1997 and references therein),
since HCO−

3 is isotopically enriched relative to CO2 by ap-
proximately 12 ‰ at 0◦C (Deines et al., 1974; Mook et
al., 1974). HCO−3 utilisation mediated by phosphoenolpyru-
vate carboxylase (PEPC) would also driveδ13CPOCrelatively
high due to a much smallerεp than the initial HCO−3 enrich-
ment relative to CO2 (O’Leary, 1981; O’Leary et al., 1992).
We speculate therefore that higherδ13CPOCprior to theP. in-
ermisbloom may have been driven by some diatom species
in the mixed assemblage employing CCMs and/or utilising
HCO−

3 as a carbon substrate.

In summary, we find a striking relationship between di-
atom species composition andδ13CPOC in surface waters
such that large and rapid increases in abundance ofP. in-
ermisappear to explain the large negative shifts in surface
waterδ13CPOC. Although the exact nature of the biochemi-
cal mechanisms employed by Ryder Bay diatom species re-

mains unknown, we speculate that the unusual biochemistry
of P. inermisand its lack of a CCM during photosynthetic up-
take give it a characteristically light isotopic signature. The
large negative shift in surface waterδ13CPOC accompanying
the large and rapid increase inP. inermisabundance can then
be explained by the lowδ13CPOC signature of the large pro-
portion of diatom biomass attributable to this species.

4.3 Factors influencingδ13CPOC in sea ice

Carbon isotopic signatures in sea ice are important because
sea ice-derived organic material is released to the underly-
ing water column during brine drainage events with impli-
cations for the sinking flux ofδ13CPOC. Input from sea ice
melting is thought to be less significant in Ryder Bay than in
other coastal Antarctic environments as sea ice tends to blow
out of the bay rather than undergoing extensive melting in
situ (Clarke et al., 2008). However based on POC:chla and
POC:PN ratios, we estimate that the maximum contribution
to suspended organic carbon from sea ice material is 10 to
34 % in 2004/05 and 18 to 53 % in 2005/06. These estimates
are based on minimum POC:chla of 84 for sea ice material
and 22 for surface waters and minimum POC:PN of 5.35 in
surface waters and 6.94 and 6.26 for sea ice in 2004/5 and
2005/6 respectively. These end-member ratios were used to
calculate the relative proportions of sea ice and surface water
material required to produce the ratios measured in surface
waters on 13 December 2004 and 23 December 2005, the
two samples where sea ice material is likely to have had the
strongest impact onδ13CPOC. Although approximate, these
estimations suggest that the input of sea ice-derived organics
does exert a control on surface waterδ13CPOC and support
observations of increased surface waterδ13CPOC when sea
ice was present in Ryder Bay.

In general, sea iceδ13CPOC was enriched relative to sur-
face waters, consistent with generally higherδ13CCO2, par-
ticularly in December 2005, and lower CO2 concentration
in the sea ice brine (Fig. 3). This is in agreement with au-
totrophic carbon fixation by phytoplankton in a closed or
semi-closed system and, as such, a higher degree of CO2 util-
isation than in the open surface water system (Gibson et al.,
1999; Villinski et al., 2000). Consequently, Ryder Bay sea
ice is characterised by seasonal deficits of all major nutrients,
higher dissolved oxygen concentrations and lower total alka-
linity compared to surface waters (Carson, 2008). Sea ice
thickness in Ryder Bay rarely exceeds 0.5 m (Meredith et al.,
2008), so we assume that the relatively thin first year ice was
undergoing some exchange with surrounding sea water. Al-
though sea ice porosity data are not available for Ryder Bay
specifically, we know that sea ice in Marguerite Bay is com-
paratively porous due to relatively warm conditions (Fritsen
et al., 2008), ice formation through the pancake ice cycle
(Eicken, 1992; Thomas and Dieckmann, 2002) and subse-
quent deformation and snow-ice formation (Perovich et al.,
2004). Our observations agree with the expected occasional
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nutrient inputs from, and brine drainage to, surrounding sea
water, and consequently less extreme environmental condi-
tions in Ryder Bay sea ice than in more permanent sea ice
environments (Gleitz et al., 1995; Kattner et al., 2004; Pa-
padimitriou et al., 2007).

In comparison to organic carbon synthesised under closed
system dynamics in multiyear ice (Papadimitriou et al.,
2009),δ13CPOC values found here in 2005/06 are somewhat
lower, as would be expected for a semi-closed system setting.
Conversely, sea iceδ13CPOC in 2004/05 is more13C-enriched
than those of Papadimitriou et al. (2009) whilst [CO2(aq)]
was lower and significantly higher POC:chla ratios com-
pared well with values of 1262± 2276 found in intact ice
floes (Kennedy et al., 2002). This suggests that 2004/05 sea
ice, albeit short-lived, was closer to a closed system, but this
is contested by lowerδ13CCO2 and is not thought to be repre-
sentative of prevailing sea ice conditions in Ryder Bay.

The prevailing semi-closed system dynamics at work in
Ryder Bay sea ice explain higherδ13CPOC than in sur-
face waters, since photosynthesis is partially carbon-limited.
We find no good correlation betweenδ13CPOC and ambient
[CO2(aq)] (r2

= 0.200; p = 0.511, Fig. 8) due to occasional
exchange with seawater and therefore ambient CO2 is not
necessarily representative of CO2 assimilated during POC
synthesis.δ13CCO2 is also not necessarily in equilibrium with
δ13CPOC sampled at the same time and may instead reflect
recent replenishment of isotopically light CO2. This would
explain why sea iceδ13CCO2 shows no response to the pref-
erential biological uptake of12C, which drives enrichment
of δ13CPOC, and its utility for describing sea ice processes is
therefore limited.

In addition to biological production, nutrient drawdown
and isotopic enrichment in the semi-closed sea ice ecosys-
tem, relatively high sea iceδ13CPOC may be influenced by
some species utilising HCO−3 as CO2 becomes limiting (Pa-
padimitriou et al., 2009). This would increaseδ13CPOC in the
same way as discussed for surface waters and would impact
on δ13CDIC rather than specificallyδ13CCO2. CO2 degassing
and carbonate mineral precipitation due to CO2 saturation
or supersaturation in brine inclusions upon sea ice forma-
tion may further affectδ13CCO2 (Romanek et al., 1992; Pa-
padimitriou et al., 2003, 2007) and thereforeδ13CPOC. How-
ever, low CO2 concentrations in Ryder Bay sea ice make
this scenario unlikely and occasional flushing by seawater
would overprint any small contribution of these processes to
δ13CCO2.

Post-production degradation processes may also con-
tribute to higherδ13CPOC in sea ice since12C is preferentially
degraded, leaving the remaining organic carbon enriched in
13C. This is in agreement with higher POC:chla ratios found
here than in previous studies (Gosselin et al., 1990; Li-
zotte and Sullivan, 1992), due to additional detrital and non-
algal carbon from grazing activity and high retention (Daly,
1990; Gleitz and Thomas, 1993; Bentaleb et al., 1998). Ac-

tive degradation in sea ice is also consistent with the high
POC:PN ratios (Fig. 4), as organic nitrogen is preferen-
tially degraded over carbon-bearing compounds (Rosenfeld,
1981; Hedges et al., 1986; Ganeshram et al., 1999). How-
ever, POC:PN>10 is common for sea ice microalgae and
often implies nitrate-deprived algal metabolism (Gleitz and
Thomas, 1993 and references therein), as we would expect
from a semi-closed system setting. High POC:PN could also
be explained by the influence of exopolymeric substances
produced by diatoms and bacteria, which are abundant in the
Antarctic marine environment, especially in sea ice (Meiners
et al., 2004; Mancuso Nichols et al., 2005), and so may not be
diagnostic of post-production degradation alone. We cannot
useδ13CCO2 to confirm whether in situ degradation is an im-
portant influence on sea iceδ13CPOC, because the aforemen-
tioned exchange with isotopically light seawater CO2 would
mask anyδ13CCO2 depletion that would accompany prefer-
ential degradation of organic12C. Proboscia species were
found in only one sea ice sample, but abundance was negli-
gible, therefore we observe noP. inermiscontrol on sea ice
δ13CPOC such as we demonstrate in surface waters. How-
ever, unlike surface waters, least-squares linear regression
analysis of sea ice brine samples shows a good relationship
between SA:V andδ13CPOC (r2

= 0.713,p = 0.101,n = 4;
Fig. 9), which becomes statistically significant when we in-
clude early season surface water samples thought to be dom-
inated by sea ice material (r2

= 0.761, p = 0.0146,n = 6).
However, given the difference inδ13CPOC between sea ice
and water samples with similar SA:V ratios, as well as dif-
ferent SA:V in sea ice versus water samples with similar
δ13CPOC values, the effect of diatom SA:V onεp alone is
unable to account for higherδ13CPOC in sea ice than surface
waters.

In summary, higherδ13CPOC in sea ice than surface wa-
ters is likely attributable to a higher degree of CO2 utilisation
due to the semi-closed nature of the sea ice ecosystem. Post-
production degradation of organic material, direct HCO−

3 up-
take by some sea ice diatoms and possible production of ex-
opolymeric substances may further contribute to isotopically
heavy sea ice-derived organic material.

4.4 Sinking particulate organic carbon

Sinking particulateδ13CPOC time-series data (Fig. 7) show
similar features to the surface water time-series (Fig. 3), sug-
gesting that althoughP. inermiswas not dominant in sedi-
ment traps, the associatedδ13CPOC signatures produced in
surface waters are transferred to depth. Down-depth trends
in seasonal averageδ13CPOC through the water column to
sediment core-top material (Fig. 11) show that Ryder Bay
sinking particulate matter is more depleted inδ13CPOC in
2005/06 than 2004/05, consistent with much lower season-
average surface waterδ13CPOC in 2005/06 (–24.5 ‰ vs. –
20.0 ‰). This is in response to the large and prolonged late-
season negativeδ13CPOC shift, which is observed in both the
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Fig. 11. Depth profiles of seasonal averageδ13CPOC in Ryder Bay
(RaTS; circles) and Marguerite Bay (MB; triangles) for 2004/05
(filled symbols) and 2005/06 (open symbols). The uppermost point
in each Ryder Bay profile is the seasonal concentration-weighted
average suspended particleδ13CPOCvalue from surface water sam-
ples, with error bars representing 1*σ . All other points in the
upper panel represent seasonal flux-weighted averageδ13CPOC in
sediment traps, with errors of 1.0 ‰ associated with formaldehyde
preservation (Mincks et al., 2008) as this vastly exceeds analytical
error. The lower panel showsδ13CPOC of core-top sediments. Er-
ror bars for Ryder Bay core-topδ13CPOC represents 1*σ . For Mar-
guerite Bay core-top, error bars represent analytical error of 0.75 ‰.

200 m and 512 m sediment traps, albeit approximately one
month later (Fig. 7). Although Marguerite Bay sediment trap
δ13CPOC is also lower in 2005/06 than 2004/05, the signal
is much more pronounced in Ryder Bay, suggesting that low
δ13CPOC related toP. inermisdominance is a localised phe-
nomenon.

Sinkingδ13CPOC is always higher in Marguerite Bay than
Ryder Bay at any given time. However, within each season
at both sites,δ13CPOC in the deepest trap is within 0.4 ‰ of
its surface water (Ryder Bay) or shallow trap (Marguerite
Bay) counterpart. The only exception is Marguerite Bay
in 2005/06, where shallow and deep trap values fall within
2 ‰. This clear relationship betweenδ13CPOC in surface wa-
ters and sediment traps provides evidence that surface ocean
δ13CPOC signatures are faithfully exported to depth in the

water column, even despite the loss of key diatom species
during sinking.

Sediment core-topδ13CPOC in Ryder Bay is slightly higher
than in the deepest sediment trap (Fig. 11), likely because of
minor sedimentary remineralisation or due to the fact that
surface sediments integrateδ13CPOC signatures over longer
time scales. However, enrichment of core-topδ13CPOC rel-
ative to deep trapδ13CPOC is close to error and so we sug-
gest thatδ13CPOC of sinking particles is reliably transferred
to marine sediments.

4.5 Potential implications for δ13CPOC in Southern
Ocean sediments as a paleoceanographic proxy

Results presented in this study hold important implications
for the use of sedimentaryδ13CPOC as a proxy for past envi-
ronmental conditions in the coastal Southern Ocean. Marine
sedimentary records show glacial Southern Oceanδ13CPOC
to be approximately 4 ‰ depleted relative to interglacial
epochs (Singer and Shemesh, 1995; Rosenthal et al., 2000;
Crosta and Shemesh, 2002; Schneider-Mor et al., 2005).
Traditionally, low glacialδ13CPOC was explained by higher
[CO2(aq)] due to strengthening of the thermohaline circula-
tion and wide-spread enhanced upwelling (Rau et al., 1992;
Singer and Shemesh, 1995). However, later studies con-
tradict this upwelling theory by using other proxy records
such asδ15Norg & Ba/Al to infer a stratified glacial South-
ern Ocean and reduced productivity (François et al., 1997).
The anti-correlation of low glacialδ13CPOC and high glacial
δ15Norg can be reconciled by increased stratification restrict-
ing nitrate supply and increasingδ15Norg and sea ice cover
preventing ocean-atmosphere gas exchange so that [CO2(aq)]
remains high andδ13CPOC low (Crosta and Shemesh, 2002).

We have shown that seasonal changes in diatom assem-
blages can drive short-lived yet large isotopic transitions in
coastal Antarctic surface waters and have a profound impact
on seasonal averageδ13CPOC exported to depth and underly-
ing sediments. Most importantly, seasonal averageδ13CPOC
for a season of well-mixed conditions is 4 ‰ higher than
a much more stratified season preceded by a heavy sea ice
winter, such as may have been typical of glacial times. The
4 ‰ difference matches the full amplitude of the glacial-
interglacial offset inδ13CPOC from Southern Ocean sediment
cores.

We hypothesise therefore that diatom species shifts may be
an important driver of lower glacialδ13CPOC in the Southern
Ocean, in agreement with Jacot Des Combes et al. (2008).
Whilst it is P. inermisthat appears to be driving large iso-
topic shifts in this study, we do not specifically invoke
this species as a driver ofδ13CPOC over glacial-interglacial
cycles. Other diatom species employing similar unusual
biochemistry may be important contributors to low glacial
δ13CPOC. Although sedimentary diatom assemblages do not
show such drastic changes as witnessed in this study (Ger-
sonde and Zielinski, 2000; Bianchi and Gersonde, 2004) and
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there is no evidence for significant changes inProboscia
species in the open ocean on glacial-interglacial timescales
(Crosta et al., 2004), this does not preclude a species control
on low glacialδ13CPOC. Instead, the species responsible for
low glacialδ13CPOCmay not be well preserved in sediments,
whilst its isotopic signature is preserved, as is demonstrated
here forP. inermis.

With these caveats in mind, we demonstrate that changes
in surface water diatom assemblages can drive shifts in sea-
sonal averageδ13CPOCof equal amplitude to the 4 ‰ glacial-
interglacialδ13CPOC offset observed in marine sedimentary
records. We show that these surface water isotopic shifts
are transferred to marine sediments and we propose therefore
that at least part of the lower glacialδ13CPOC signal may be
due to changes in diatom assemblages. If the more glacial-
type conditions of heavier winter sea ice and upper water
stratification in 2005/06 were responsible for driving a shift
to diatom species characterised by lower isotopic signatures,
in this caseP. inermis, then it follows that species compo-
sitional shifts may be a significant influence onδ13CPOC on
glacial-interglacial timescales. Further studies are required
to elucidate the processes underlying this relationship.

5 Conclusions

This study presents a unique insight into the factors affect-
ing δ13CPOC in the coastal Antarctic sea ice environment. In
agreement with previous studies, we find higherδ13CPOC in
sea ice brine relative to surface waters, consistent with au-
totrophic carbon fixation in a semi-closed environment. Pos-
sible secondary effects on sea iceδ13CPOC may result from
biological utilisation of HCO−3 in addition to CO2 as a car-
bon substrate, production of exopolymeric substances and/or
post-production degradation of organic matter within the ice
matrix. Sea ice-derived organics exert a short-lived impact on
surface waterδ13CPOC in Ryder Bay due to brine drainage
processes whilst sea ice is present. Isotopically heavy sea
ice material tends to sink quickly, so may be preserved more
effectively in the sedimentary record and may consequently
bias the overallδ13CPOC signal in marine sediments.

We demonstrate that [CO2(aq)] and δ13CCO2 are not the
primary factors controlling variations inδ13CPOC in sur-
face waters in the Antarctic sea ice environment. Instead,
we argue that∼10 ‰ negative excursions in surface water
δ13CPOCare driven by seasonal shifts in diatom assemblages,
in this case specifically to dominance ofP. inermis. While
the exact mechanisms remain unknown, we postulate thatP.
inermis may modify δ13CPOC through its internal cell bio-
chemistry and lack of a CCM, whilst other species present
at different times in the growing seasons do employ CCMs.
Consequently, seasonal species-related changes inεp further
complicate the relationship betweenδ13CPOC and [CO2(aq)].

Finally, sediment trap data indicate that although much
of the surface suspended material, including certain diatom
species, undergoes recycling in the upper ocean and is not
exported to depth, theδ13CPOC signal is transferred to depth
in the water column by sinking particles. Further, we show
how isotopic signatures in these sinking particles are trans-
ferred to marine sediments unaltered. This study therefore
identifies the importance of seasonal changes in surface wa-
ter diatom speciation and isotopically heavy sea ice-derived
material forδ13CPOCsignatures in Antarctic coastal environ-
ments and underlying sediments, and thus highlights the need
for analysis of species-specific or diatom-boundδ13CPOC in
order to reliably interpret sedimentaryδ13C records.

www.biogeosciences.net/9/1137/2012/ Biogeosciences, 9, 1137–1157, 2012



1154 S. F. Henley et al.: Stable carbon isotopes in coastal Antarctic environments

Table A1. Type, input terms and results of statistical analyses performed using R computing software. All regressions are least-squares
linear regressions andr2 values are given as the adjustedr2.

Type of analysis Independent variable Dependent
variable

Samples r2 p-value

Correlation [CO2(aq)] δ13CPOC Seawater 0.247 0.120
Correlation [CO2(aq)] δ13CPOC Sea ice 0.200 0.511
Regression SA:V δ13CPOC Seawater 0.472 0.017
Regression %P. inermis δ13CPOC Seawater

2005/6 only
0.968 0.000243

Regression %P. inermis δ13CPOC Seawater
> 2%P. inermis

0.918 0.000423

Regression %Probosciaspp. δ13CPOC Seawater
> 2%Probosciaspp.

0.922 0.00037

Regression SA:V δ13CPOC Sea ice 0.713 0.101
Regression SA:V δ13CPOC Sea ice and ice-influenced 0.761 0.0146
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proved method for isotopic and quantitative analysis of dissolved
inorganic carbon in natural water samples, Rapid Commun. Mass
Spectrom., 20, 2243–2251, 2006.

Barnola, J. M., Raynaud, D., Korotkevich, Y. S., and Lorius, C.:
Vostok ice core provides 160,000-year record of atmospheric
CO2, Nature, 329, 408–414, 1987.

Barth, J. A., Cowles, T. J., and Pierce, S. D.: Mesoscale physi-
cal and bio-optical structure of the Antarctic Polar Front near

170◦ W during austral spring, J. Geophys. Res., 106, 13879–
13902, 2001.

Bentaleb, I. and Fontugne, M.: The role of the southern Indian
Ocean in the glacial to interglacial atmospheric CO2 change: or-
ganic carbon isotope evidences. Global Planet. Change, 16–17,
25–36, 1998.

Bentaleb, I., Fontugne, M., Descolas-Gros, C., Girardin, C., Mari-
otti, A., Pierre, C., Brunet, C., and Poisson, A.: Carbon isotopic
fractionation by plankton in the Southern Indian Ocean: relation-
ship betweenδ13C of particulate organic carbon and dissolved
carbon dioxide, J. Mar. Syst., 17, 39–58, 1998.

Berner, W., Oeschger, H., and Stauffer, B.: Information on the CO2
cycle from ice core studies, Radiocarbon, 22, 227–235, 1980.

Bianchi, C. and Gersonde, R.: Climate evolution at the last
deglaciation: The role of the Southern Ocean, Earth Planet. Sci.
Lett., 228, 407–424, 2004.

Burkhardt, S., Riebesell, U., and Zondervan, I.: Effects of growth
rate, CO2 concentration, and cell size on the stable carbon
isotope fractionation in marine phytoplankton, Geochim. Cos-
mochim. Acta, 63, 3729–3741, 1999.

Carson, D. S.: Biogeochemical controls on productivity and particle
flux in the coastal Antarctic sea ice environment, Ph.D. thesis,
University of Edinburgh, UK, 205 pp., 2008.

Cassar, N., Laws, E. A., and Bidigare, R. R.: Bicarbonate uptake
by Southern Ocean phytoplankton, Global Biogeochem. Cycles,
18, GB2003, doi:2010.1029/2003GB002116, 2004.

Clarke, A., Meredith, M. P., Wallace, M. I., Brandon, M. A., and
Thomas, D. N.: Seasonal and interannual variability in tempera-
ture, chlorophyll and macronutrients in northern Marguerite Bay,
Antarctica, Deep Sea Res. Pt. II, 55, 1988–2006, 2008.

Crosta, X. and Shemesh, A.: Reconciling down core an-
ticorrelation of diatom carbon and nitrogen isotopic ra-
tios from the Southern Ocean, Paleoceanography, 17, 1010,
doi:10.1029/2000PA000565, 2002.

Crosta, X., Sturm, A., Armand, L., and Pichon, J.-J.: Late Quater-
nary sea ice history in the Indian sector of the Southern Ocean
as recorded by diatom assemblages, Mar. Micropaleontol., 50,
209–223,doi:10.1016/S0377-8398(03)00072-0, 2004.

Crosta, X., Crespin, J., Billy, I., and Ther, O.: Major factors con-

Biogeosciences, 9, 1137–1157, 2012 www.biogeosciences.net/9/1137/2012/

http://dx.doi.org/10.1029/2000PA000565
http://dx.doi.org/10.1016/S0377-8398(03)00072-0


S. F. Henley et al.: Stable carbon isotopes in coastal Antarctic environments 1155

trolling Holoceneδ13Corg changes in a seasonal sea-ice environ-
ment, Ad́elie Land, East Antarctica, Global Biogeochem. Cycles,
19, GB4029,doi:10.1029/2004GB002426, 2005.

Daly, K. L.: Overwintering development, growth, and feeding of
larval Euphausia superbain the Antarctic marginal ice zone,
Limnol. Oceanogr., 35, 1564–1576, 1990.

Deines, P., Langmuir, D., and Harmon, R. S.: Stable carbon isotope
ratios and the existence of a gas phase in the evolution of carbon-
ate ground waters, Geochim. Cosmochim. Acta, 38, 1147–1164,
1974.

Descolas-Gros, C. and Fontugne, M. R.: Carbon fixation in ma-
rine phytoplankton: carboxylase activities and stable carbon-
isotope ratios; physiological and palaeoclimatological aspects,
Mar. Biol., 87, 1–6, 1985.

Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium
constants for the dissociation of carbonic acid in seawater media,
Deep Sea Res. Pt. I, 34, 1733–1743, 1987.

Eicken, H.: The role of sea ice in structuring Antarctic ecosystems,
Polar Biology, 12, 3–13, 1992.

Eppley, R. W., Renger, E. H., Venrick, E. L., and Mullin, M. M.:
A study of plankton dynamics and nutrient cycling in the central
gyre of the North Pacific Ocean, Limnol. Oceanogr., 18, 534–
551, 1973.

Falkowski, P. G.: Species variability in the fractionation of13C and
12C by marine phytoplankton, J. Plankton Res., 13, 21–28, 1991.

Fontugne, M. R., Descolas-Gros, C., and de Billy, G.: The dy-
namics of CO2 fixation in the Southern Ocean as indicated by
carboxylase activities and organic carbon isotopic ratios, Mar.
Chem., 35, 371–380, 1991.

François, R., Altabet, M. A., Goericke, R., McCorkle, D. C.,
Brunet, C., and Poisson, A.: Changes in theδ13C of surface wa-
ter particulate organic matter across the subtropical convergence
in the S.W. Indian Ocean, Global Biogeochem. Cycles, 7, 627–
644, 1993.

François, R., Altabet, M. A., Yu, E.-F., Sigman, D. M., Bacon,
M. P., Frank, M., Bohrmann, G., Bareille, G., and Labeyrie, L.
D.: Contribution of Southern Ocean surface-water stratification
to low atmospheric CO2 concentrations during the last glacial
period, Nature, 389, 929–935, 1997.

Freeman, K. H. and Hayes, J. M.: Fractionation of carbon isotopes
by phytoplankton and estimates of ancient CO2 levels, Global
Biogeochem. Cycles, 6, 185–198, 1992.

Fritsen, C. H., Memmott, J., and Stewart, F. J.: Inter-annual sea-ice
dynamics and micro-algal biomass in winter pack ice of Mar-
guerite Bay, Antarctica, Deep Sea Res. Part II, 55, 2059–2067,
2008.

Ganeshram, R. S., Calvert, S. E., Pedersen, T. F., and Cowie, G.
L.: Factors controlling the burial of organic carbon in laminated
and bioturbated sediments off NW Mexico: Implications for hy-
drocarbon preservation, Geochim. Cosmochim. Acta, 63, 1723–
1734, 1999.

Garibotti, I. A., Vernet, M., and Ferrario, M. E.: Annually recurrent
phytoplanktonic assemblages during summer in the seasonal ice
zone west of the Antarctic Peninsula (Southern Ocean), Deep
Sea Res. Part I, 52, 1823–1841, 2005.

Gersonde, R. and Zielinski, U.: Reconstruction of Late Quaternary
Antarctic sea-ice distribution – The use of diatoms as a proxy
for sea ice, Palaeogeogr., Palaeoclimatol., Palaeoecol., 162, 263–
286, 2000.

Gibson, J. A. E., Trull, T., Nichols, P. D., Summons, R. E., and
McMinn, A.: Sedimentation of13C-rich organic matter from
Antarctic sea-ice algae: A potential indicator of past sea-ice ex-
tent, Geology, 27, 331–334, 1999.

Gleitz, M. and Thomas, D. N.: Variation in phytoplankton standing
stock, chemical composition and physiology during sea-ice for-
mation in the southeastern Weddell Sea, Antarctica, J. Exp. Mar.
Biol. Ecol., 173, 211–230, 1993.

Gleitz, M., Rutgers v.d. Loeff, M., Thomas, D. N., Dieckmann, G.
S., and Millero, F. J.: Comparison of summer and winter inor-
ganic carbon, oxygen and nutrient concentrations in Antarctic
sea ice brine, Mar. Chem., 51, 81–91, 1995.

Goericke, R., Montoya, J. P., and Fry, B.: Physiology of isotopic
fractionation in algae and cyanobacteria, in: Stable Isotopes in
Ecology and Environmental Science, edited by: Lajtha, K. and
Michener, R. H., Blackwell Scientific Publications, Oxford, UK,
187–221, 1994.

Gosselin, M., Legendre, L., Therriault, J.-C., and Demers, S.:
Light and nutrient limitation of sea-ice microalgae (Hudson Bay,
Canadian Arctic), J. Phycol., 26, 220–232,doi:10.1111/j.0022-
3646.1990.00220.x, 1990.

Guy, R. D., Vanlerberghe, G. C., and Turpin, D. H.: Significance
of phosphoenolpyruvate carboxylase during ammonium assimi-
lation: Carbon isotope discrimination in photosynthesis and res-
piration by the N-limited green algaSelenastrum minutum, Plant
Physiol., 89, 1150–1157, 1989.

Hannson, I.: A new set of activity constants for carbonic acid and
boric acid in seawater, Deep Sea Res., 20, 461–478, 1973.

Hayes, J. M.: Factors controlling13C contents of sedimentary or-
ganic compounds: principles and evidence, Mar. Geol., 113,
111–125, 1993.

Hedges, J. I., Clark, W. A., Quay, P. D., Richey, J. E., Devol, A. H.,
and Santos, U. D.: Compositions and fluxes of particulate matter
in the Amazon River, Limnol. Oceanogr., 31, 717–738, 1986.

Jacot Des Combes, H., Esper, O., De La Rocha, C.L., Abelmann,
A., Gersonde, R., Yam, R., and Shemesh, A.: Diatomδ13C,δ15N
and C/N since the Last Glacial Maximum in the Southern Ocean:
Potential impact of species composition, Paleoceanography, 23,
PA4209,doi:10.1029/2008PA001589, 2008.

Jasper, J. P. and Hayes, J. M.: A carbon-isotopic record of CO2
levels during the Late Quaternary, Nature, 347, 462–464, 1990.

Jasper, J. P., Hayes, J. M., Mix, A. C., and Prahl, F. G.: Photosyn-
thetic fractionation of13C and concentrations of dissolved CO2
in the central equatorial Pacific during the last 255,000 years,
Paleoceanography, 9, 781–798, 1994.

Kattner, G., Thomas, D. N., Haas, C., Kennedy, H., and Dieckmann,
G. S.: Surface ice and gap layers in Antarctic sea ice: highly
productive habitats, Mar. Ecol. Prog. Ser., 277, 1–12, 2004.

Kennedy, H., Thomas, D. N., Kattner, G., Haas, C., and Dieckmann,
G. S.: Particulate organic matter in Antarctic summer sea ice:
concentration and stable isotopic composition, Mar. Ecol. Prog.
Ser., 238, 1–13, 2002.

Kerby, N. W. and Raven, J. A.: Transport and fixation of inorganic
carbon by marine algae, Advances in Botanical Research, 11,
71–123, 1985.

Laws, E. A., Popp, B. N., Bidigare, R. R., Kennicutt, M. C., and
Macko, S. A.: Dependence of phytoplankton carbon isotopic
composition on growth rate and [CO2]aq : Theoretical consid-
erations and experimental results, Geochim. Cosmochim. Acta,

www.biogeosciences.net/9/1137/2012/ Biogeosciences, 9, 1137–1157, 2012

http://dx.doi.org/10.1029/2004GB002426
http://dx.doi.org/10.1111/j.0022-3646.1990.00220.x
http://dx.doi.org/10.1111/j.0022-3646.1990.00220.x
http://dx.doi.org/10.1029/2008PA001589


1156 S. F. Henley et al.: Stable carbon isotopes in coastal Antarctic environments

59, 1131–1138, 1995.
Laws, R. A.: Preparing strewn slides for quantitative microscopical

analysis: A test using calibrated microspheres, Micropaleontol-
ogy, 29 , 60–65, 1983.

Le Roux-Swarthout, D., Terwilliger, V., Christianson, M., Martin,
C., and Mardhavan, S.: Carbon isotope discrimination correlates
with a range of ratios of phosphoenolpyruvate to total carboxy-
lase activities found in two C3 species, J. Plant Physiol., 157,
489–493, 2000.

Lewis, E. and Wallace, D. W. R.: CO2SYS, version 01.05, Pro-
gram developed for CO2 system calculations. ORNL/CDIAC-
105. Carbon dioxide information analysis center, Oak Ridge Na-
tional Laboratory, U.S. Department of Energy, Oak Ridge, Ten-
nessee, 1998.

Lizotte, M. P. and Sullivan, C. W.: Biochemical composition and
photosynthate distribution in sea ice microalgae of McMurdo
Sound, Antarctica: evidence for nutrient stress during the spring
bloom, Antarct. Sci., 4, 23–30, 1992.

Lourey, M. J., Trull, T. W., and Tilbrook, B.: Sensitivity ofδ13C of
Southern Ocean suspended and sinking organic matter to temper-
ature, nutrient utilization, and atmospheric CO2, Deep Sea Res.
Pt. I, 51, 281–305, 2004.

Mancuso Nichols, C. A., Guezennec, J., and Bowman, J. P.: Bacte-
rial exopolysaccharides from extreme marine environments with
special consideration of the Southern Ocean, sea ice, and deep-
sea hydrothermal vents: A review, Mar. Biotechnol., 7, 253–271,
2005.

Masson-Delmotte, V., Stenni, B., Pol, K., Braconnot, P., Cattani,
O., Falourd, S., Kageyama, M., Jouzel, J., Landais, A., Min-
ster, B., Barnola, J.M., Chappellaz, J., Krinner, G., Johnsen,
S., R̈othlisberger, R., Hansen, J., Mikolajewicz, U., and Otto-
Bliesner, B.: EPICA Dome C record of glacial and interglacial
intensities, Quat. Sci. Rev., 29, 113–128, 2010.

Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkow-
icz, R. M.: Measurement of the apparent dissociation constants
of carbonic acid in seawater at atmospheric pressure, Limnol.
Oceanogr., 18, 897–907, 1973.

Meiners, K., Brinkmeyer, R., Granskog, M. A., and Lindfors, A.:
Abundance, size distribution and bacterial colonization of ex-
opolymer particles in Antarctic sea ice (Bellingshausen Sea),
Aquat. Microb. Ecol., 35, 283–296, 2004.

Meredith, M. P., Renfrew, I. A., Clarke, A., King, J. C., and Bran-
don, M. A.: Impact of the 1997/98 ENSO on upper ocean charac-
teristics in Marguerite Bay, western Antarctic Peninsula, J. Geo-
phys. Res., 109, C09013,doi:10.1029/2003JC001784, 2004.

Meredith, M. P., Brandon, M. A., Wallace, M. I., Clarke, A., Leng,
M. J., Renfrew, I. A., van Lipzig, N. P. M., and King, J. C.:
Variability in the freshwater balance of northern Marguerite Bay,
Antarctic Peninsula: results fromδ18O, Deep Sea Res. Pt. II, 55,
309–322, 2008.

Mincks, S. L., Smith, C. R., Jeffreys, R. M., and Sumida, P. Y. G.:
Trophic structure on the West Antarctic Peninsula shelf: Detri-
tivory and benthic inertia revealed byδ13C andδ15N analysis,
Deep Sea Res. Pt. II, 55, 2502–2514, 2008.

Mook, W. G., Bommerson, J. C., and Staverman, W. H.: Carbon
isotope fractionation between dissolved bicarbonate and gaseous
carbon dioxide, Earth Planet. Sci. Lett., 22, 169–176, 1974.

O’Leary, M. H.: Carbon-isotope fractionation in plants, Phyto-
chemistry, 20, 553–567, 1981.

O’Leary, M. H., Madhavan, S., and Paneth, P.: Physical and chemi-
cal basis of carbon isotope fractionation in plants, Plant, Cell and
Environment, 15, 1099–1104, 1992.

O’Leary, T., Trull, T. W., Griffiths, F. B., Tilbrook, B., and Revill, A.
T.: Euphotic zone variations in bulk and compound-specificδ13C
of suspended organic matter in the subantarctic ocean, south
of Australia, J. Geophys. Res. C: Oceans, 106, 31669–31684,
doi:10.1029/2000JC000288, 2001.

Papadimitriou, S., Kennedy, H., Kattner, G., Dieckmann, G. S., and
Thomas, D. N.: Experimental evidence for carbonate precipi-
tation and CO2 degassing during sea ice formation, Geochim.
Cosmochim. Acta, 68, 1749–1761, 2003.

Papadimitriou, S., Thomas, D. N., Kennedy, H., Haas, C., Kuosa,
H., Krell, A., and Dieckmann, G. S.: Biogeochemical composi-
tion of natural sea ice brines from the Weddell Sea during early
austral summer, Limnol. Oceanogr., 52, 1809–1823, 2007.

Papadimitriou, S., Thomas, D. N., Kennedy, H., Kuosa, H., and
Dieckmann, G. S.: Inorganic carbon removal and isotopic en-
richment in Antarctic sea ice gap layers during early austral sum-
mer, Mar. Ecol. Prog. Ser., 386, 15–27,doi:10.3354/meps08049,
2009.

Perovich, D. K., Elder, B. C., Claffey, K. J., Stammerjohn, S.,
Smith, R., Ackley, S. F., Krouse, H. R., and Gow, A. J.: Win-
ter sea-ice properties in Marguerite Bay, Antarctica, Deep Sea
Res. Pt. II, 51, 2023–2039, 2004.

Pollehne, F., Klein, B., and Zeitzschel, B.: Low light adaptation and
export production in the deep chlorophyll maximum layer in the
northern Indian Ocean, Deep Sea Res. Pt. II, 40, 737–752, 1993.

Popp, B. N., Laws, E. A., Bidigare, R. R., Dore, J. E., Hanson, K.
L., and Wakeham, S. G.: Effect of phytoplankton cell geometry
on carbon isotopic fractionation, Geochim. Cosmochim. Acta,
62, 69–77,doi:10.1016/S0016-7037(97)00333-5, 1998.

Popp, B. N., Trull, T., Kenig, F., Wakeham, S. G., Rust, T. M.,
Tilbrook, B., Griffiths, F. B., Wright, S. W., Marchant, H. J.,
Bidigare, R. R., and Laws, E. A.: Controls on the carbon iso-
topic composition of Southern Ocean phytoplankton, Global
Biogeochem. Cycles, 13, 827–844, 1999.

Rau, G. H.: Plankton13C/12C variations in Monterey Bay, Califor-
nia: evidence of non-diffusive inorganic carbon uptake by phy-
toplankton in an upwelling environment, Deep Sea Res. Pt. I, 48,
79–94, 2001.

Rau, G. H., Takahashi, T., and Des Marais, D. J.: Latitudinal varia-
tions in planktonδ13C: implications for CO2 and productivity in
past oceans, Nature, 341, 516–518, 1989.

Rau, G. H., Froelich, P. N., Takahashi, T., and Des Marais, D. J.:
Does sedimentary organicδ13C record variations in Quaternary
ocean [CO2(aq)]? Paleoceanography, 6, 335–347, 1991.

Rau, G. H., Takahashi, T., Des Marais, D. J., Repeta, D. J., and Mar-
tin, J. H.: The relationship betweenδ13C of organic matter and
[CO2(aq)] in ocean surface water: data from a JGOFS site in the
northeast Atlantic Ocean and a model, Geochim. Cosmochim.
Acta, 56, 1413–1419, 1992.

Rau, G. H., Riebesell, U., and Wolf-Gladrow, D.: A model of pho-
tosynthetic13C fractionation by marine phytoplankton based on
diffusive molecular CO2 uptake, Mar. Ecol. Prog. Ser., 133, 275–
285, 1996.

Raven, J. A.: Inorganic carbon acquisition by marine autotrophs,
in: Advances in Botanical Research, 27, Callow, J.A., Elsevier,
Amsterdam, Netherlands, 85–209, 1997.

Biogeosciences, 9, 1137–1157, 2012 www.biogeosciences.net/9/1137/2012/

http://dx.doi.org/10.1029/2003JC001784
http://dx.doi.org/10.1029/2000JC000288
http://dx.doi.org/10.3354/meps08049
http://dx.doi.org/10.1016/S0016-7037(97)00333-5


S. F. Henley et al.: Stable carbon isotopes in coastal Antarctic environments 1157

Raven, J. A. and Johnston, A. M.: Mechanisms of inorganic carbon
acquisition in marine phytoplankton and their implications for
the use of other resources, Limnol. Oceanogr., 36, 1701–1714,
1991.

Raven, J. A., Johnston, A. M., K̈ubler, J., and Parsons, R.: The
influence of natural and experimental high O2 concentrations on
O2-evolving photolithotrophs, Biological Reviews, 69, 61–94,
1994.

Romanek, C. S., Grossman, E. L., and Morse, J. W.: Carbon iso-
topic fractionation in synthetic aragonite and calcite: Effects of
temperature and precipitation rate, Geochim. Cosmochim. Acta,
56, 419–430, 1992.

Rosenfeld, J. K.: Nitrogen diagenesis in Long Island Sound sedi-
ments, Am. J. Sci., 281, 436–462, 1981.

Rosenthal, Y., Dahan, M., and Shemesh, A.: Southern Ocean contri-
butions to glacial-interglacial changes of atmosphericpCO2: An
assessment of carbon isotope records in diatoms, Paleoceanogra-
phy, 15, 65–75, 2000.

Schneider-Mor, A., Yam, R., Bianchi, C., Kunz-Pirrung, M., Ger-
sonde, R., and Shemesh, A.: Diatom stable isotopes, sea ice pres-
ence and sea surface temperature records of the past 640 ka in the
Atlantic sector of the Southern Ocean, Geophys. Res. Lett., 32,
L10704,doi:10.1029/2005GL022543, 2005.

Schrader, H. J. and Gersonde, R.: Diatoms and silicoflagellates, in:
Micropaleontological counting methods and techniques – an ex-
ercise on an eight meters section of the lower Pliocene of Capo
Rossello, Sicily, edited by: Zachariasse W. J., Utrecht Micropale-
ontological Bulletins, 17, Utrecht University, Netherlands, 129–
176, 1978.

Sharkey, T. D. and Berry, J. A.: Carbon isotope fractionation in al-
gae as influenced by inducible CO2concentrating mechanisms,
in: Inorganic carbon uptake by aquatic photosynthetic organ-
isms, edited by: Lucas, W. J. and Berry, J. A., American Soci-
ety of Plant Physiologists, Rockville, Maryland, USA, 381–401,
1985.

Singer, A. J. and Shemesh, A.: Climatically linked carbon-isotope
variation during the past 430,000 years in Southern Ocean sedi-
ments, Paleoceanography, 10, 171–177, 1995.
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