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Abstract  In empirical modeling, mathematics has an important utility in trans-
forming descriptive representations of target system(s) into calculation devices, 
thus creating useful scientific models. The transformation may be considered as 
the action of tools. In this paper, I assume that model idealizations could be such 
tools. I then examine whether these idealizations have characteristic properties of 
tools, i.e., whether they are being adapted to the objects to which they are applied, 
and whether they are to some extent generic. 

Introduction 

In empirical modeling, mathematics has an important utility in transforming de-
scriptive representations of target system(s) into calculation devices, thus creating 
useful scientific models. Descriptive representations in this context are pieces of 
knowledge about the properties and the behavior of target system(s) which are not 
yet expressed in mathematical terms. They are one form of models that, when 
mathematized, become inferentially useful. Mathematics thus allows models to 
fulfill their inferential role which can be to predict, explain or design experiments. 
In other words, if they are not mathematized, models would be partially descrip-
tive representations of little impact and use. 

Because mathematics here transforms descriptive representations into calcula-
tion devices, the transformation may be considered as the action of a tool or, more 
exactly, of several tools. In this paper, I assume that the idealizations involved in 
the transformation going from descriptive representations to a useful model could 
be such tools. I then examine whether these idealizations have the usual expected 
properties of tools, i.e., whether they are being adapted to the objects to which 
they are applied, and whether they are to some extent generic. 

Ordinary tools—such as pliers, screwdrivers and wrenches—transform the ob-
jects on which they are used for a given purpose. They do so by virtue of having 
physical properties which are adapted to the objects1. That said, tools cannot be id-

                                                             
1 Mutual adaptedness seems to be a specific property of some ordinary tools. Here, not only the 
tool is adapted to the object on which it is used, but also the object is adapted to the tool. This is 
a case of screwdrivers and screws, Allen keys and bolts, or hammers and nails. Some ordinary 
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iosyncratic (or they would lose their utility) and must rather apply to a certain 
range of objects. For example, an Allen key is a tool of hexagonal cross-section 
that is used to drive a range of bolts and screws as soon as they have a hexagonal 
socket in the screw head. What about idealizations in empirical modeling? 

One might hope that, by contrast, mathematics applies identically to descriptive 
representations whatever they may be. In this way, it would be a very efficient tool 
in the modeling field because it would be universal. I will put forward the claim 
that this cannot be true and assess to which extent the transformation of models in-
to mathematical terms is actually adapted to the specific empirical nature of the 
target system(s). 

In this paper, I will first describe how models are built, focusing on their trans-
formation into mathematical terms. This transformation has two phases: the first is 
about expressing the initially representational content of the model in mathemati-
cal equations. The second is about making these equations tractable. As we will 
see, idealizations are involved in both phases of transformation. 

I will then argue that, for the model to be useful, its transformation into math-
ematical terms has to be adapted to the target system(s). Thus, the idealizations 
involved in the process must be constrained by the specificity of the target(s). Not 
only are these idealizations designed for models to be inferential, but they must al-
so be chosen in such a way that models preserve at least a minimum amount of 
relevant accurate information about the systems under study. For my argument to 
be general enough, I will consider transformations that result in both analytically 
solvable and numerically solvable models. 

That said, I will further argue that adaptedness here does not mean restriction to 
the sole systems under study. I will show that the idealizations involved in a trans-
formation may well be suited for modeling other empirical systems as well. In that 
sense they function as mathematical tools that have a certain scope of application, 
as one would expect from tools in the ordinary sense of the word. 

Model building 

In this section, I will describe the process of building models and will place spe-
cial emphasis on the transformation into mathematical terms. My aim is to show 
that idealizations play a central role in this transformation. 

I shall specify that my way of describing model building differs dramatically 
from the mapping accounts although they are important contributions in the dis-
cussions about the role of mathematics in empirical modeling (e.g., Batterman 
2008, Bueno and Colyvan 2011, Pincock 2007). As the proponents of these ac-
counts identify something called the mathematical structure of models, they treat 
as one the formal feature and the representational content of models. It may be a 

                                                                                                                                            
tools do not share this property, however (e.g., rakes, scissors and shovels). Because this proper-
ty is specific, it will not be considered in this paper. 
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relevant philosophical approach to study in some way the mathematical role in 
scientific models. Here, however, I want to emphasize and to characterize the ac-
tion of mathematics as a tool on a descriptive representation to make it a calcula-
tion device. Thus, a diachronic presentation of model building is preferred instead. 

In this presentation, I offer a conceptual account of the stages in empirical 
modeling. It is inspired by Cartwright’ account of theory entry proceeding (1983, 
Essay 7) but also differs from her account in that hers is more descriptive (mine is 
more idealized). According to Cartwright, scientists start with an unprepared de-
scription which contains everything they know about the system under study, in-
cluding information they think relevant in whatever available form; information 
can be theoretical components, observations or measurements. From this a pre-
pared description is established in preparation for mathematically formalizing the 
physical phenomenon under study. It contains theoretical principles applied to 
idealized cases, as well as boundary conditions and ad hoc terms used to match the 
empirical data. 

The account of empirical modeling, as proposed here (see figure 1), is a revised 
and idealized version of Cartwright’s conception in that it re-scales the transfor-
mation into mathematical terms within empirical modeling. In this account, I de-
liberately magnify the mathematical process so that it becomes clear how mathe-
matics actually transforms initially descriptive representations into models. 
 
 
 init ial  description of the target system(s) 
 theoretical components, observations or measurements 
 
 making abstractions 
 omissions of irrelevant aspects of the target system(s) 
 
 writing down the equations 
 with mathematical idealizations 
 
 making the equations tractable 
 with formal idealizations 
 
Fig. 1.  Conceptual account of empirical modeling 

In my account, I suggest that, at the very beginning, model building consists of 
an initial description of the target system(s) involved in the phenomenon under 
study. The situation is likely to be the same as what Cartwright describes as the 
phase of the unprepared description, except that, here, the description is supposed 
to still not have a mathematical form. 

Then, scientists have to make a choice among all the information within the ini-
tial description, and select the relevant aspects about the phenomenon under study 
to be included in the model that is to be built. In other words, they have to make 

transformation in-
to mathematical 
terms 
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some abstractions2. Without this selection, modeling would not be possible. For 
Godfrey-Smith (2009), abstracting is required whatever the nature of the descrip-
tion may be (scientific or literary, for example) because there is no useful descrip-
tion which would exhaustively contain all the aspects of a system. For instance, 
there is no point in specifying the Moon phase for describing the motion of a 
body, or, of including the presence of oxygen or the average temperature for de-
scribing the trajectory of planets3. 

The description, once cleared of the less relevant details, contains all the rele-
vant representational aspects but does not yet have the desired inferential power 
(of predicting, explaining or designing experiments)4. For the model to be a calcu-
lation device, this description must be transformed into a useable set of mathemat-
ical equations. This corresponds to what I have earlier called the transformation of 
models into mathematical terms. 

The transformation (which could be also called mathematization) consists in 
two phases: the first is about expressing the initially representational content of the 
model in a first set of mathematical equations, and the second is about making this 
set of equations tractable. Both phases are necessary for the model to become a 
calculation device. The first phase aims at creating a preliminary version of the 
calculation device, and the second aims at making this device useable for inferen-
tial tasks. That said, building a mathematical model often starts from another 
mathematical model. This situation can be expressed as feedback loops in my 
schema of modeling phases. 

The transformation involves, in its two phases, idealizations, which are simpli-
fying assumptions expressed mathematically in the equations5 (see e.g., Cart-
wright 1983; McMullin 1985; Hacking 1983; Laymon 1980, 1985, 1989a, 1989b, 
1995 for discussions on idealizations): 

In the first phase, the expression of equations consists in translating the initially 
representational content into a mathematical language, i.e., in terms of mathemati-
cal symbols (e.g., numbers, variables, constants, vectors, matrix), operations (e.g., 
addition, integration, derivation) and functions (e.g., cos, sin, log). This translation 
                                                             
2 Abstractions differ from idealizations in that they are omissions of some aspects in the target 
system which are not relevant for the problem being studied (e.g., to neglect gravitational force 
in subatomic phenomena), whereas idealizations are distortions (Jones 2005; Godfrey-Smith 
2009). Idealizations can be omissions but, in this case, these omissions distort the representation 
in that they are omissions of relevant aspects. 
3 Abstracting can sometimes later be part of mathematization. For instance, difficulties in formu-
lating equations might occur and lead to a different abstraction. This is, however, an additional 
aspect that I do not treat in this paper. 
4 What is relevant might actually depend on the final success in constructing a useful model, and 
therefore be identified as such at later stages of modeling. In such cases, there might be some 
back and forth in the process of model building. 
5 I shall stress that this way of defining idealization differs from the view on which model as a 
whole is an idealization. It is considered here that idealizations are only parts of a model. Unlike 
models, idealizations have no inferential power on their own. For instance, the Ising model will 
not be considered as an idealization but as being composed of idealizations. A mass point is an 
idealization, but is not a model in that, alone, it has no inferential power. 
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is required because mathematical language enables to perform afterwards the ex-
pected inferential tasks. Mathematical language is generic in that the symbols, the 
operations and the functions may well be used to describe any empirical system. It 
therefore constitutes the formal part of the model that is clearly not specific to the 
system(s) under study. 

That said, the linguistic translation of the initially representational content re-
quires to make mathematical idealizations which fit this content to the constrain-
ing adopted mathematical language. Mathematical idealizations can be about tak-
ing some of the spatio-temporal properties out of the target system(s), thus 
abstracting away the “imperfections” of matter from the target system(s), for the 
final description of these systems to match ideal geometrical forms. For example, 
a wooden wheel or a balloon may be represented as a perfect circle. 

The equations obtained in the first phase may be intractable—either analytical-
ly or numerically. In this case, one must proceed, in the second phase, to formal 
idealizations6. This is done either by considering the physical problem under 
study, or by considering the mathematical form of the equations. 

In the former case, one tries to simplify the physical problem by omitting or by 
distorting some aspects of the system(s) in order to get results from calculation: 
“Complicated features of the real object(s) are deliberately simplified in order to 
make theoretical laws easier to infer, in order to get the process of explanation un-
der way” (McMullin 1985, p. 258). Examples of formal idealizations are results 
from considering a body as being a mass point, an infinite surface or a frictionless 
surface, from replacing non-linear interactions by linear interactions, or from as-
suming an oscillation as being small. In some cases, considering the physical 
problem and trying to simplify its description are, however, not enough. 

Because the equations remain intractable or complicated to solve, additional 
formal idealizations—which are sometimes called “approximations” in this con-
text (Ramsey 1990, 1992; Laymon 1989a, 1989b)—are conceived based on the 
mathematical form of the equations. Here, formal idealizations do not always cor-
respond with familiar idealized physical situations. Let us consider the example of 
a body of unit mass falling in a weakly resisting medium7. It is described by dv/dt 
= g − kv, with g the acceleration due to gravity and k a friction coefficient. Let us 
assume that the speed is zero when the body starts to fall (t = 0). Then v(t) = 
(g/k)(1 − exp(−kt)) = gt − gkt2/2 + gk2t3/6 − … . When the friction resistance is in-
significant (i.e., k is small), the terms with k can be removed and the speed is ap-
proximately described by the first term in the power series v(t) = gt. This formal 
idealization corresponds to a conceptually well-identified distortion—i.e., the ab-
sence of air—that is associated with a familiar idealized physical situation—i.e., a 
free fall in vacuum. That said, a formal idealization may consist in removing the 
terms after the second or the third order (or any superior order) of the power se-
ries. Here, the idealization would hardly correspond with a familiar idealized 
physical situation. In our language and division of the world into concepts, we 
                                                             
6 I borrow the distinction mathematical vs. formal idealizations from McMullin (1985). 
7 I take this example from Norton (2012) for a different purpose though. 
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lack an expression to identify an aerial space which exerts on a body a resistance 
such that its speed equals exactly gt − gkt2/2 + gk2t3/6, for example. 

In a nutshell, mathematical idealizations make it possible to express the model 
in terms of mathematical equations. Formal idealizations are required to make the-
se equations tractable and thereby useable. Without mathematical and formal ide-
alizations, the model would not be a calculation device but merely a partial de-
scription of the world. 

I have shown how important idealizations are in the transformation of models 
into mathematical terms. It follows that the transformation is adapted to the empir-
ical nature of the systems under study if the choice of the involved idealizations 
depends on the specificity of the systems. In the next section, I will contend that 
these idealizations should actually be constrained by the nature of the systems so 
that the transformation should be adapted to it. 

Adaptedness of idealizations 

I will now argue that idealizations are tool-related in that they make the model 
useable. I will further argue that they are adapted to the kind of phenomena to 
which they are applied if the model is expected to be not merely useable, but use-
ful. 

Idealizations are tool-related. Following Carrier and Lenhard, this means that 
“they result from the properties of the tool and make sure that the tool can be used 
in the first place” (cf. the general introduction). Let me briefly clarify in what 
sense idealizations are tool-related. In the transformation of models into mathe-
matical terms, idealizations are used to shape initially representational components 
into a mathematical form, so that models become tractable and therefore usable. In 
constraining the representation by a mathematical language, idealizations give 
models a new property, i.e., inferential power. In other words, idealizations make 
it possible to create a device from which calculations can be done. 

I suggest that their capacity to give models inferential power results from the 
fact that they essentialize the features of the target(s) that they denote. They essen-
tialize in the sense that they reduce the features to something formally and repre-
sentationally essential. It is formally essential in that it is a mathematical object 
making tractable the equation that contains it. It is representationally essential in 
that it represents a feature of the target that is relevant for building the representa-
tion one needs. 

One might think that, since idealizations are tool-related, they must meet mere 
mathematical constraints but no representational constraint. In the first phase, 
mathematical constraints are due to the mathematical language that the model 
must fit. In the second phase, mathematical constraints are due to the available 
mathematical means of solving equations (i.e., whether we know how to solve 
them). This would be true if the model is expected to be useable. A model is usea-
ble in that it is mathematically tractable and can be used to make calculations and 
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to provide results. That said, in empirical science, a model is expected to be more 
than useable; it should be useful. A useful model has to be useable and has to pro-
vide reliable results for answering the questions the scientist is asking. My aim is 
to show that, for a model to be useful, the choice of the idealizations involved in 
the transformation must depend on the nature of the target systems. 

Idealizations transform the initially representational content from the unpre-
pared description into a calculation device by distorting this representational con-
tent. Thus, models become calculation devices to the detriment of their representa-
tional function. That is why a lot of philosophical attention has been paid on 
whether, once idealized, models can teach us something about the world (e.g., 
McMullin 1985; Laymon 1989a, 1989b; Bokulich 2008, 2009; Strevens 2007; 
Weisberg 2007). Thus, idealizations are internally stressful concepts. Employing 
idealizations involves a trade-off between making a model useable and making a 
model useful. Therefore, the scientist has to find a compromise when choosing the 
idealizations to be included in the model. 

For a model to be useful, I suggest that idealizations must be selected in a way 
that makes the model sufficiently accurate for the purpose at hand. I thus follow 
van Fraassen when he writes that “A representation is made with a purpose or goal 
in mind, governed by criteria of adequacy pertaining to that goal, which guide its 
means, medium, and selectivity” (2008, p. 7). He further claims that a “representa-
tion useful for particular purposes will involve selective distortion, and representa-
tion is closely involved with useful misrepresentation. Even when likeness is cru-
cial to the purpose, we must look for likeness only in respects that serve the 
representation’s purpose—and only to the extent that they do so” (2008, p. 87). 
Hence, idealizations that are the distortions in a model are allowed to the extent 
that they are selected adequately for the purpose at hand. 

I will show that the choice of idealizations relates to issues of representation, 
and choosing an adequate idealization hinges on considerations about the specific 
empirical nature of the target system(s). As I will elaborate with the example of 
Prandtl’s model, the choice of adequate idealizations is constrained by the speci-
ficity of the targets. Idealizations must not make the model deviate too much rep-
resentationally from the actual description. Thus, I will claim that not only are 
idealizations in the transformation tool-related but they are also object-related. 
Object-related idealizations “create a simpler version of the relevant objects and 
their relationships so that mathematical models of them become more tractable” 
(cf. the general introduction) and, I shall add, so that mathematical models become 
of real utility in empirical science. 

Let me illustrate this with the story of Prandtl’s model. The study of a flow past 
an obstacle has long been an important industrial issue, dating back to the rise of 
steamboat navigation during the Victorian times. It was imperative that British en-
gineers know how to assess the resistance of water on a boat in order to design op-
timal hull shapes. However, such a study is mathematically difficult. D’Alembert 
(1782), as well as other physicists and engineers studying fluid mechanics such as 
Poncelet, Saint-Venant, Boussinesq, Ranquine or Froude, suggested, tested, and 
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tried to improve models of fluid resistance. But all of them faced the same thorny 
problem: one of the required idealizations leads to unacceptable aberrations. 

Two important formal idealizations were introduced in the models. The first 
was an incompressible flow condition, which leads to the assumption that the in-
fluences of pressure and temperature on mass density are negligible. This idealiza-
tion was unproblematic. The second idealization neglected all effects of viscosity 
(i.e., internal friction in the fluid). This idealization seems prima facie justified for 
applications involving fluids like air and water, which have a low viscosity. It re-
sults in equations with explicit solutions, which are known as the Euler equations. 
Thus, the idealization helps to provide a useable model. Nevertheless, the Euler 
equations lead to absurd results, at least if interpreted physically. One such absurd-
ity, discussed by d’Alembert, is the cancellation of the drag of a moving body. In 
other words, there would be no force exerted by the fluid on the body, which con-
tradicts our most familiar observations: air slows down a balloon that was initially 
thrown horizontally, for example. The Euler equations raise other difficulties since 
they cannot provide explanations of phenomena such as pressure loss in a pipe or 
separating flow past an obstacle. These phenomena are the result, directly or indi-
rectly, of fluid viscosity. The no-viscosity assumption is therefore too strong, even 
when modeling low viscosity fluids. It is not a harmless idealization in the sense 
of Elgin and Sober (2002); it jeopardizes the representational adequacy of a model 
that contains it. 

If the idealizations in the transformation were only constrained by mathematics, 
such an issue would not appear. This example illustrates that, for a model to be 
useful, idealizations need to be sensitive to the nature of the target system(s). 
Thus, other idealizations are required which take into account viscosity in low vis-
cosity flows. What are they? 

With the objective of solving d’Alembert’s paradox in mind, Navier and Stokes 
both contributed in establishing the fundamental equations of Newtonian fluid 
mechanics in a continuous medium in which they both introduced terms of fluid 
viscosity. In 1845 the final version of the Navier-Stokes equations was estab-
lished. These equations derive from balances of mass, momentum, total energy 
and entropy applied on a fixed or mobile volume of fluid. Unfortunately, they 
form a complex system of equations with non-linear partial derivatives whose ana-
lytical resolution is still today a real challenge for mathematicians. Their resolu-
tion is one of the seven Millennium Problems raised by the Clay Mathematics In-
stitute. 

In order to get a useful model that is both inferential and representationally 
good enough, idealizations must be found which are more subtle than the no-
viscosity assumption. Prandtl’s model illustrates this achievement. Before 
Prandtl’s model, successfully applying the Navier-Stokes equations was practical-
ly impossible. During the 19th century, engineers and fluid mechanists were forced 
to establish phenomenological laws in order to solve their problems (Darrigol 
2005). More than 150 years after the first work of d’Alembert (1782) discussed 
the forces exerted by a fluid on a solid body, Prandtl made a significant contribu-
tion in the use of these equations. His model is explicitly presented as a means of 
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applying the Navier-Stokes equations to the concrete problems of a flow past a 
solid (Heidelberger 2004). Ludwig Prandtl himself introduced the model in 1904 
in these terms at the third international congress of mathematicians at Heidelberg 
(Darrigol 2005, p. 283). 

In his model, Prandtl assumed the influence of forces induced by low viscosity 
as confined in the wake behind the obstacle as well as inside a layer, i.e., the 
boundary layer. Low viscosity fluid around an obstacle is conceived of as the in-
teraction between two components. The first component is the boundary layer 
which is around the obstacle and whose viscosity is not zero and whose velocity 
profile evolves linearly. The velocity profile starts from zero at the interface flu-
id/obstacle—this is called the no slip condition—and reaches a maximal value 
equal to the viscosity in the second component. The second component is the 
wake. Within the wake, the viscosity is zero and the mean velocity remains con-
stant. For this component alone, the Euler equations apply. With such an idealiza-
tion, it has been possible to describe the trajectories of bodies in a flow—e.g., 
plane flight in the atmospheric air—or the fluid flow past an obstacle—e.g., flow 
of a river against a boat—, and thus to study hydrodynamic behaviors such as the 
onset of vortices. 

The idealization conceived by Prandtl is more subtle than the simple omission 
of the terms of viscosity in the Euler equations. Idealizing for building Prandtl’s 
model is not about automatically omitting or modifying certain terms in the Na-
vier-Stokes equations that do not meet mathematical expectations. Because, even 
if the boundary layer is thin in ordinary fluids such as water and air, it has signifi-
cant effect on flow in virtue of the high gradient of velocity that it implies. In this 
case, the right idealization is constrained by the specificity of the system being 
studied. Here the specificity is that the viscosity, albeit low, plays a crucial role to 
describe drag, pressure loss or flow separation. Understanding the relevance of 
this physical aspect is more important than merely considering its low numerical 
value, for instance. In other words, for a model to be useful and not just useable, it 
seems that idealizations cannot be made without considering the physical problem. 

Another aspect of the story reinforces the idea that idealizing properly requires 
the consideration of the specificity of the physical problem. The concept of 
boundary layer was obtained by Prandtl through observations, i.e., visualizations 
of experiments that he conducted in a water tunnel. Morrison claims that since the 
boundary layer concept is the product of direct observations, it is what she calls a 
phenomenological abstraction. She writes indeed that “The model is phenomeno-
logical not because there is no theory from which to draw but because it is moti-
vated solely by the phenomenology of the physics; in fact, once the model is de-
veloped theory does play an important role in its application” (Morrison 1999, p. 
54). It seems that Prandtl even developed a certain intuition through the visualiza-
tion of the phenomena before even setting the equations of his model. On that sub-
ject, Prandtl says: “Herr Heisenberg has […] alleged that I had the ability to see 
without calculation what solutions the equations have. In reality I do not have this 
ability, but I strive to form the most penetrating intuition [Anschauung] I can of 
the things that make the basis of the problem, and I try to understand the process-
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es. The equations come later, when I think I have understood the matter” (quota-
tion taken from Darrigol, 2005, p. 287). 

The difficulty scientists may have in finding appropriate idealizations has been 
overlooked by the philosophical discussions about idealizations. It is rather often 
assumed that scientists know well in advance the empirical consequences of the 
idealizations contained in a model (exceptions are notably Laymon and Ramsey). 
A famous example is a freely falling object. It is often suggested that scientists on-
ly use the assumption of zero air resistance for predicting the velocities of heavy 
bodies because they know that the assumption becomes inadequate when studying 
low-mass objects for which air resistance cannot be neglected. (They also know 
that, in that case, they need to provide an approximate phenomenological term for 
the air resistance force.) It may be sometimes true that scientists know the scope 
of idealizations especially when they use them for a long time. Prandtl’s model, 
however, exemplifies a case where it is not true. The model also shows that there 
is no unique recipe that may help one to automatically make the following infer-
ence: “the fluid viscosity has a low value” then “the term of viscosity can be omit-
ted in the equations.” Such a point is even made in textbooks on fluid mechanics: 
“Approximation is an art, and famous names are usually associated with success-
ful approximations: Prandtl wing theory, Kármán-Tsien method for airfoils in sub-
sonic flow, Prandtl-Glauert approximation for subsonic flow, Janzen-Rayleigh ex-
pansion for subsonic flow, Stokes and Oseen approximations for visas flow, 
Prandtl boundary-layer theory, Kármán-Opohlhausen boundary-layer approxima-
tion, Newton-Busemann theory of hypersonic flow” (Van Dyke 1975, p. 2). 

In a nutshell, not only are idealizations designed for models to be inferential, 
but they also must be chosen in such a way that models preserve at least a mini-
mum amount of relevant accurate information about the systems under study. 
Hence, this indicates that the idealizations in the transformation have to be both 
tool-related and object-related. Thus, the transformation is adapted to the nature of 
the target(s). 

In the next section, I will generalize this claim in studying different transfor-
mations of the representation of a same phenomenon. I shall emphasize that dis-
tinct transformations are related to distinct possible tasks. 

Plurality of transformations 

The computational turn, which is the historical conjunction between the develop-
ment of numerical analysis and the advent of computers, offers new means of 
writing and solving model equations, i.e., new transformations. It is possible to 
use numerical methods for expressing and solving equations. In this section, I will 
consider the case where different transformations are used to build a model of a 
same target system. In this descriptive part, I will emphasize, through the study of 
a flow past a cylinder, that each transformation involves its own idealizations, thus 
being adapted in a unique way to the target system. It will follow that, since ideal-
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izations involved in a transformation are both tool-related and object-related, each 
transformation transforms the initially descriptive representation into a model that 
can be more or less adequate for the purpose at hand. 

I will further investigate the example of low viscosity and incompressible flow 
past a cylinder. It can be studied under analytic method—e.g., Prandtl’s model—
or numerical methods applied on computer—i.e., discretization-based method, 
computational method of molecular dynamics, Monte Carlo method or cellular au-
tomata. All the models that are created based on these methods have in common 
that they express in their own way the fundamental principles of fluid mechanics, 
i.e., conservations of momentum, mass and energy (except nevertheless the Monte 
Carlo method which violates conservation of momentum as we will see). In these 
models, the problem is considered as two-dimensional. A first difference, howev-
er, is that some are based on a macroscopic description of the fluid while others 
are based on a microscopic description. The fluid is therefore idealized as a con-
tinuous medium for some models and as a set of discrete entities for the others. 
Let me further present the five transformations in the following. 

Transformation 1: Prandtl’s model 

When they describe the fluid macroscopically, hydrodynamics models necessarily 
contain approximate versions of the Navier-Stokes equations. Since these equa-
tions describe the behavior of the fluid idealized as a continuum, as said before, 
they derive from balances of mass, momentum, total energy and entropy applied 
on a fixed or mobile volume of fluid. Thus, they contain the fundamental princi-
ples of fluid mechanics. Two additional idealizations are often used. First, a 
boundary condition near the cylinder is established, which is the no slip condition: 
at the interface with the obstacle, the fluid velocity is supposed to be zero. Second, 
the fluid is considered as incompressible. 

The system of equations thus obtained—composed of constraint equation, 
boundary condition and incompressible flow assumption—cannot be solved as 
such. Indeed, the system contains non-linear terms. A first analytical approach al-
lows one to solve it nevertheless. This is the Prandtl model. As seen earlier, in this 
model, the fluid is supposed to have two interacting components. The first compo-
nent is the boundary layer which is around the obstacle and whose viscosity is not 
zero and whose velocity profile evolves linearly. Within the second component, 
i.e., the wake, the viscosity is zero and the viscosity is constant. 
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Transformation 2: discretization of the Navier-Stokes 
equations 

A second transformation allows one to avoid the two idealizations made by 
Prandtl, thus making the model more accurate. It is the numerical resolution of the 
Navier-Stokes equations by a discretization-based method. In this computational 
model, the numerical scheme is based on the integration of equations by finite el-
ement method. First, finite element method consists in discretizing the physical 
domain into finite elements. Then the partial differentials of the equation variables 
are replaced by the formal idealizations obtained with the values of the variable at 
the nodes of each finite element. Lastly, the obtained equations are integrated on 
each finite element of the meshing, and for each time step when the module of 
temporal dependence is required. This approach is less idealized than Prandtl’s 
model and can therefore provide more precise results. 

Transformation 3: molecular dynamics model 

The macroscopic representation of fluid—on which the Navier-Stokes equations 
are based—is not valid if the assumption of fluid as continuum does not hold. This 
situation corresponds to a Knudsen number superior to 0.018. Here a microscopic 
description of fluid is required. This is the case of trajectories of spatial vehicles 
(Meiburg 1986). Because the fluid in which these vehicles move has three differ-
ent regimes: continuum fluid regime, transitional flow regime and collisionless 
flow regime. Yet, in the two latter regimes, the fluid cannot be considered as a 
continuum. Consequently, it must be represented as a discrete set of entities. In 
this case it is required to use the Boltzmann equation in order to describe the aver-
age behavior of fluid particles. Furthermore, it is expected that conservation of 
linear momentum, conservation of kinetic energy and conservation of angular 
momentum are satisfied. From this, two methods can be used, namely, the mo-
lecular dynamics model and Monte Carlo method. 

In the molecular dynamics model it is generally assumed that there are several 
thousands of particles. The initial distribution of these particles is randomly de-
termined in the space or is explicitly set. It is the same process with their initial 
velocities. The particles then evolve with their own velocities. They can also inter-
act between each other following the ‘potential well’ model. In this model, the 
collision is represented as if a particle fell in a potential well, i.e., in a local mini-
mum of potential energy. At each new time step the instant of the next collision is 
calculated. This is done by examining all the pairs of fluid particles. Then all the 
particles are moved forward at the same time in accordance with the laws of clas-

                                                             
8 Knudsen number is a dimensionless parameter. It indicates the flow regime depending on the 
fluid continuity (while Reynolds number indicates the flow regime depending on the turbulence). 
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sical physics, and the new velocities of the particles involved in a collision are 
calculated (Meiburg 1986, p. 3108). 

Transformation 4: Monte Carlo method 

Like the molecular dynamics model, the numerical approach based on a Monte 
Carlo method proceeds on the calculation of the trajectories of particles. In this 
transformation, the fluid is represented as a lattice of cells. At the initial step, par-
ticles are randomly located on the cells or determined beforehand. Like in the mo-
lecular dynamics models, at each time step, the new positions of the particles are 
calculated in the space depending on their respective velocities. The Monte Carlo 
method differs nevertheless in the way the interactions between particles are han-
dled. The position and the instant of a collision are here not determined by the cal-
culation of the trajectories of the particles, but meet merely statistical considera-
tions. In each cell, among all the particles, two particles only are selected 
randomly, independently of their positions. A collision between two particles is 
then considered: the new positions and velocities of the two particles are calculat-
ed; they are supposed to be rigid spheres rather than potential wells as they are in 
the case of the molecular dynamics model. 

The statistical assumption that concerns the assessment of collisions makes it 
possible to greatly facilitate the calculations. This is the reason why, compared to 
the molecular dynamics model, the Monte Carlo method allows for a much higher 
speed of calculation running on computer. The side effect, however, is the viola-
tion of the conservation of angular momentum for the interactions between parti-
cles (see Meiburg 1986, p. 3109). In the model, recall that the calculation of the 
collisions is done independently of the position of the particles. One can assume 
that all the directions are equiprobable for the velocity of the two particles after 
collision. In the calculation, the direction of this velocity is therefore randomly set 
in selecting an azimuthal angle and a polar angle. Consequently, two components 
of the velocity after collision are determined by the chosen Monte Carlo method. 
They therefore do not remain possible variables. Moreover, the four other varia-
bles of the problem—namely, the coordinate of the velocity after collision and the 
three coordinates of the velocity before collision—are set when the conservations 
of linear momentum and kinetic energy are satisfied. Consequently, they are not 
available in order to meet the conservation of angular momentum. 
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Transformation 5: cellular automata-based model 

Another transformation is based on cellular automata (Rothman and Zaleski 2004; 
D’Humières and Lallemand 1986)9. The principle in cellular automata consists in 
representing the fluid as a lattice. At each node of the lattice stands a site. The 
state of each site received a value among a finite number of possible states. At 
time tn+1, it depends on the value of the states of the neighboring sites at time tn 
with which the site is connected. In the representation of the fluid, the fictive par-
ticles of the fluid possess the same mass and the same velocity. They only differ to 
each other in the direction of their velocity; the velocity can receive only six pos-
sible values (for a hexagonal lattice) (see Rothman and Zaleski 2004, chapter 1, p. 
1-2). At each time step, the particles move from one site of the lattice to another 
site of the lattice following the direction of their velocity. They can collide if two 
particles or more arrive at the same site at the same time. Some collisions can pro-
duce the scattering of the particles. In this case, the velocity vector of the particles 
is modified. The total number of the particles and the sum of the velocity vectors 
do not change. This means that the mass and the momentum are conserved. 

Idealizations for the purpose at hand 

Each of the presented methods implies a specific transformation which, as I want 
to emphasize, involves its own idealizations: 

First, the macroscopic representations—i.e., Prandtl’s model and the discre-
tized version of the Navier-Stokes equations—are in some way more idealized 
than the microscopic representations—i.e., the molecular dynamics model, Monte 
Carlo method and cellular automata-based model—in that they include the as-
sumption of fluid as continuum. 

Among the macroscopic representations, Prandtl’s model is a more simplified 
version than the discretized version of the Navier-Stokes equations insofar as the 
latter does not need to assume somewhere that the viscosity is zero. 

Among the microscopic representations, the Monte Carlo method includes a 
statistical assumption about collisions. This assumption is an idealization that the 
molecular dynamics model does not need to contain. Furthermore, while the mo-
lecular dynamics model and the cellular automata-based model are derived from 
the same fundamental physical principles of mechanics—i.e., conservations of 

                                                             
9 The development of cellular automata is more recent than the development of differential equa-
tions since it started in the 1940s with the work of Ulam and von Neumann at Los Alamos. For a 
general philosophical discussion on cellular automata, see e.g., Fox Keller 2003 and Rohrlich 
1990. There are also different hydrodynamics models based on cellular automata. For an exhaus-
tive presentation of these models, see the forthcoming paper of Barberousse, Franceschelli and 
Imbert entitled “Cellular Automata, Modeling, and Computation” and Barberousse and Imbert 
(2013).” 
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momentum, number of particles and energy—, these two models differ from each 
other in their degree of idealization. In the molecular dynamics model, the fluid 
particles are conceived as rigid spheres and their positions and velocities can take 
a high number of possible values. In the cellular automata-based model, the fluid 
particles are considered as points; the possible values of their positions and their 
velocities are forced to evolve within a discrete hexagonal lattice. Therefore, in a 
certain sense, the cellular automata-based model is an idealized version of the mo-
lecular dynamics model in which differences of mass are canceled and possible di-
rections of velocity are limited. 

The analysis of the different methods has shown that each method applies its 
own transformation with its own set of idealizations. Let me now illustrate that 
each transformation transforms the initially descriptive representation into a model 
that can be more or less adequate for the purpose at hand. 

First, the macroscopic representations are not suitable for situations where 
Knudsen number is superior to 0,01, but can be sufficiently accurate for other cas-
es. 

Second, unlike the discretized version of the Navier-Stokes equations, Prandtl’s 
model is not sufficiently accurate for contemporary highly computerized studies in 
aeronautics or aerospace, but may be used to get an analytic understanding of how 
vortices appear at a rear of an obstacle. 

Third, among microscopic representations, the Monte Carlo method enables 
one to make more rapid calculations, which can be sometimes required, but is not 
appropriate when it is about studying the onset of vortices. The statistics assump-
tion that the Monte Carlo method involves has no major consequence when it is 
about modeling flows of Rayleigh-Stokes type (Meiburg 1986), but, as it fails to 
meet conservation of angular momentum and as angular momentum plays a cen-
tral role for describing vortices, it may not be adapted for reproducing the onset of 
vortices at the rear of the obstacle. Here, molecular dynamics simulations are more 
adequate in order to reproduce the distributions of vortices (Meiburg 1986). 

Fourth, cellular automata-based model is not adapted in cases where differ-
ences of mass within the fluid matter or where all directions of velocity must be 
taken into account. It may, however, be helpful in other cases. 

Until now, I have argued that, for a model to be useful, the transformation has 
to be adapted to the nature of the target systems, and that, depending on the pur-
pose at hand, it may be more adequate or less adequate. The question then arises: 
does this make the transformation idiosyncratic? I will offer an answer to this 
question in the final section. 

Scope of application 

Another usually expected property of tools is that they are to some extent generic. 
In other words, a tool is supposed to apply to some range of objects (rather than to 
a unique object). And yet if the transformation of models is idiosyncratic, i.e., if it 
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is excessively adapted to the target system, it cannot be considered as the action of 
a tool. Note that the question is about the starting point, i.e., the systems to which 
it is applied, not the endpoint of the tool, i.e., into what it transforms. In this final 
section, I will argue that, even though a similar transformation does not strictly 
apply identically to all systems, the idealizations involved in the process may well 
be suited for a range of empirical systems. In that sense, idealizations may func-
tion as mathematical tools that have a certain scope of application.  

I have suggested that idealizations give models inferential power in that they 
essentialize the features of the target(s) that they denote. They essentialize in the 
sense that they reduce the features to something formally and representationally 
essential. Therefore, an idealization that has been used in a model can be used in 
another model as soon as the two models share similar features to which the ideal-
ization is adapted. 

This is the case with models used to study similar systems. In the previous ex-
ample, the boundary layer applies to a class of hydrodynamics systems that share a 
certain physical feature, i.e., physical singularity. Examples are flow past a circle, 
flow over airfoil and flow over flat plate. 

The boundary layer was initially used in a particular case as an idealization in 
order to make the Navier-Stokes equations analytically solvable. Today, the scope 
to which it adequately applies is much larger. It survived Prandtl’s model and is 
now commonly used to describe concrete cases in fluid mechanics. It actually now 
belongs to the standard vocabulary of fluid mechanists and is a single-handedly 
research topic (see e.g., Khujadze et al. 2010).  

The boundary layer has thus been mathematically defined as “a narrow region 
where the solution of a differential equation changes rapidly. By definition, the 
thickness of a boundary layer must approach 0 as [the perturbing parameter] ɛ —> 
0” (Bender and Orszag 1978, p. 419). Therefore, as soon as a system has such a 
narrow region, the boundary layer may be an adequate idealization depending on 
the purpose at hand. This has also led to the development of the boundary layer 
theory which is “a collection of perturbation methods for solving differential equa-
tions whose solutions exhibit boundary-layer structure” (Bender and Orszag 1978, 
p. 420). The boundary layer is conceived more generally as leading to the follow-
ing mathematical simplifications: 

There are two standard approximations that one makes in boundary layer theory. In the 
outer region (away from a boundary layer) y(x) is slowly varying, so it is valid to neglect 
any derivatives of y(x) which are multiplied by ɛ. Inside a boundary layer the derivatives 
of y(x) are large, but the boundary layer is so narrow that we may approximate the 
coefficient functions of the differential equation by constants. Thus, we can replace a 
single differential equation by a sequence of much simpler approximate equations in each 
of several inner and outer regions. In every region the solution of the approximate 
equation will contain one or more unknown constants of integration. These constants are 
then determined from the boundary or initial conditions using the technique of asymptotic 
matching […] (Bender and Orszag 1978, p. 421). 

The boundary layer is here defined in a general way which includes the defini-
tion given by Prandtl in his model. This shows that the boundary layer is certainly 
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not idiosyncratic but actually applies to a range of systems which share a common 
physical feature, i.e., discontinuity, that can be expressed mathematically in the 
previous terms. 

On the same grounds, the scope of application of the boundary layer may actu-
ally extend beyond the range of hydrodynamics systems. It may also be a relevant 
idealization to describe the skin effect in electromagnetism, since this effect dis-
plays high variability. The skin effect is produced by an alternating electric current 
which has a high density within a conductor and is largest near the surface, while 
it decreases with greater depths in the conductor. The boundary layer can be asso-
ciated with the skin depth in which the electric current flows10. 

The scope of idealizations can more generally extend in case of formal analogy. 
In such a case, idealizations contained in a model A are transposed in a model B in 
that the equations in A are algebraically identical to the equations in B. This is a 
case of the analogies between waves of light, sound and water (Hesse 1966, p. 10-
12) where the same equation y = a sin (2πfx) can be employed in the three cases11, 
between the atom and the solar system, between nuclear fission and the division of 
a liquid drop, or between electrostatic attraction and the conduction of heat (see 
Bailer-Jones 2009). 

Therefore, idealizations function as tools in that they are adapted to typical em-
pirical features of the investigated phenomena, which may be redundant in nature 
(e.g., oscillation, stochastic feature, discontinuity, etc.). They can thus be trans-
posed to other cases which share a certain representational similarity. This should 
come as no surprise since, as said before, they reduce features of the phenomena 
to something formally and representationally essential. In their “toolbox,” scien-
tists may choose such or such a mathematical tool, ready to be used, depending on 
the system(s) under study. 

In arguing that idealizations have a scope of application because they essential-
ize features of the target system, I do not want to suggest that they are parts of 
some mathematical structure of the empirical world or to support a platonic con-
ception of idealizations. Rather, I want to claim that they can be used as tools be-
cause they have a story in the building of models and, as such, are recognized by 
scientists as being adequate for such or such modeling. A model is never built 
from scratch, but based on what is known to work in other models. For example, 
idealizing fluid as a continuum (rather than a discrete set of molecules) is a very 
common assumption in fluid mechanics models, as it is for other idealizations 
(e.g., incompressible flow assumption), since it has proven to be an adequate one. 
                                                             
10 The fact that idealizations have a certain scope of application may explain why some models 
are repeatedly used within and across scientific domains, e.g., the harmonic oscillator, the Ising 
model, a few Hamiltonians in quantum mechanics, the Poisson equation, or the Lokta-Volterra 
equations (see Barberousse and Imbert (2014) for an analysis of such recurring models). 
11 In the case of waves of water, the equation describes the height of the water at the point x, 
with a being the maximum height or amplitude of the ripples, and f their frequency. In the sound 
model, it describes the amplitude of a sound wave at the point x, with a being the loudness and f 
the pitch. In the light model, it describes the amplitude of a light wave, with a being the bright-
ness and f the color. 
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In other words, idealizations could be seen as tools in the scientific toolkit. De-
pending on the kind of target system, scientists could choose such or such ideali-
zation that is known to be adequate for modeling the system. 

De-idealization may sometimes be required, however, in order to make the 
model sufficiently accurate (and therefore useful). It consists in adding features of 
the target (that were originally left out) back into the models and/or correcting 
idealizations that originally appear in the models (McMullin 1985; Laymon 1995). 
When de-idealization is required, it means that an additional aspect of the system 
is relevant for the purpose at hand that was not captured (or not properly captured) 
by the idealized model. This is the purpose at hand that determines which compo-
nents are relevant to include in the model. Let me give an example. 

In order to derive the ideal gas law (PV = nRT) from a molecular model, gases 
are assumed to be perfectly elastic spherical molecules. These molecules exert no 
force and their volume is negligible in comparison with the volume occupied by 
the gas. These assumptions limit the application domain of the law which applies 
only to ranges of normal temperature and pressure. Thus, it is not possible to pre-
dict the properties of biphasic systems or monophasic systems that evolve towards 
a biphasic state (state transitions) with this law, which instead requires the use of 
van der Waals’ equation. Van der Waals’ equation, which is given by, P + (a/V2) 
(V–b) = RT (where a and b are associated with the intermolecular forces), is 
viewed as an improvement upon the ideal gas law because it takes into account at-
tractive and repulsive intermolecular forces (see the chapter by Hasse and Lenhard 
which discusses the ideal gas law and the role of adjustable parameters in great de-
tail). By adding the intermolecular forces, it yields more accurate results at high 
temperatures and low pressures than the ideal gas law, and therefore it applies to a 
wider domain than does the ideal gas law. The introduction of intermolecular 
forces into the new model is a genuine de-idealization (McMullin 1985)12. 

To conclude, scientists may choose such or such idealization, depending on the 
system(s) under study and the purpose at hand. They can also decide to de-idealize 
in case the model is not sufficiently accurate. 

Conclusion 

I have first described how models are built, with special emphasis on the trans-
formation. I have then argued that the transformation is always adapted to the tar-
get systems. The reason is that the idealizations involved in the process are both 
                                                             
12 Some idealizations sometimes denote relevant aspects of the target model that de-idealization 
would fail to capture. These idealizations are called ineliminable (or essential) (Batterman 2005a, 
2005b, 2009; Jones 2006; Sklar 2000). They cannot be removed without losing the explanation 
of the phenomenon that is studied. This is the case with the thermodynamic limit, according to 
which the number of atoms in the system is infinite, which is necessary for explaining phase 
transitions, and in particular, the phase transition of a magnet at a certain critical temperature 
(Batterman, 2005a). 
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tool-related and object-related for the model to be useful. That said, I have further 
argued that adaptedness does not mean restriction to the sole systems under study. 
I have shown that the idealizations involved in a mathematical transformation may 
well be suited for other empirical systems as well and are in that sense mathemati-
cal tools that have a certain scope of application. 
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