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ABSTRACT 

It is often said that computer simulations generate new knowledge about the 

empirical world in the same way experiments do. My aim is to make sense 

of such a claim. I first show that the similarities between computer 

simulations and experiments do not allow them to generate new knowledge 

but invite the simulationist to interact with simulations in an experimental 

manner. I contend that, nevertheless, computer simulations and experiments 

yield new knowledge under the same epistemic circumstances, 

independently of any features they may share. 

 

 

1. Introduction 

 

Computer simulations have been ubiquitous in science since the rapid growth of 

computers. They are used to gain knowledge about the target phenomena they are 

supposed to instantiate. From the 1990s onwards, they then received much attention 

from philosophers and sociologists of science. A central epistemological question at the 

time was where to locate computer simulations between theoretical work and 

experimentation on the ‘methodological map’ (Galison 1996, 120). Thus one reads: 
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[C]omputer simulation provides (though not exclusively) a qualitatively 

new and different methodology for the physical sciences, and ... this 

methodology lies somewhere intermediate between traditional theoretical 

physical science and its empirical methods of experimentation and 

observation. (Rohrlich 1991, 507) 

 

[C]omputational methods of numerical experimentation constitute a 

distinctively new kind of scientific method, intermediate in kind between 

empirical experimentation and analytic theory. (Humphreys 1994, 103) 

 

The ambiguous position of simulation with regard to ‘theory’ and 

‘experiment’ is widely acknowledged in the scientific literature .... 

Simulation can be aligned with whichever methodological category suits the 

local circumstances. (Dowling 1999, 263) 

 

Mathematical models and their cousins, computer simulations, occupy an 

uneasy space between theory and experiment, between abstract and 

concrete, and often between the pressures of pure science and the needs of 

pragmatic action. (Sismondo 1999, 247) 

 

More recently, some philosophers have drawn an analogy between simulations and 

experiments (e.g. Norton and Suppe 2001; Guala 2002, 2005; Morgan 2002, 2003, 

2005; Keller 2003; Winsberg 2003). If such an analogy is justified, then it follows that, 

based on their similarities, some epistemic properties of experiments can be extended to 

simulations. This analogy would nicely account for the fact that computer simulations 

can replace experiments when experiments are too costly, uncertain in their outcomes, 

too time-consuming, politically unacceptable or ethically undesirable (Humphreys 

2004, 107). In these cases, simulations are often called ‘numerical experiments’ (or 

‘experimental simulations’, ‘simulated experiments’, ‘in silico experiments’). 

 A significant part of the discussions focuses on the knowledge-making role of 

simulations and experiments. Here it is argued that, based on their similarities, 

simulations generate knowledge in the same way that experiments do. Thus one finds: 
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Simulations can produce new knowledge just as experiments do. (Guala 

2002, 1) 

 

Some computer simulations undoubtedly share some epistemic functions 

with field experiments: they are run to provide new data about systems that 

are difficult or impossible to investigate with ordinary instruments. 

(Barberousse, Franceschelli, and Imbert 2009, 557) 

 

[S]imulations involve complex inferences as they move from theory to data, 

and they certainly generate new knowledge. (Winsberg 2009, 578–579) 

 

Here two claims are generally implicitly intertwined: first, like experiments, simulations 

generate knowledge that is empirical in nature; second, like experiments, simulations 

generate new knowledge. 

 The first claim faces what is sometimes called the ‘materiality problem’. 

Experiments involve, within the matter of the experimental system, the physical 

processes that produce the target phenomenon being studied; while simulations involve, 

within the machine, other physical processes that produce the calculations but do not 

generate the phenomenon itself (Guala 2002). For some authors (e.g. Morgan 2002, 

2003; Giere 2009), this makes simulations epistemologically inferior to experiments. 

Substantial objections, based on distinct arguments, have been nevertheless made (e.g. 

Norton and Suppe 2001; Barberousse, Franceschelli, and Imbert 2009; Parker 2009; 

Lusk 2016). 

 The second claim has received a less systematic philosophical treatment so far 

(except in Beisbart and Norton 2012; Barberousse and Vorms 2013; Morrison 2015, 

chap. 7; Lusk 2016). What shall be called here the ‘novelty claim’ states that computer 

simulations generate new knowledge in the same way experiments do. This faces the 

‘non-entailment view’ (Lusk 2016, 151) according to which simulations cannot go 

beyond the code; they just make explicit the consequences of what is contained in the 

computer program. 

 In this article, I focus on the novelty claim independently of the question 

whether, like experiments, computer simulations provide knowledge that is empirical in 



4 

nature. My objective is to make sense of the novelty claim and thereby to get a grasp on 

the widely shared intuition behind it. 

 An attempt at making sense of the novelty claim is the analogy between 

simulations and experiments: one might be tempted to argue that the features they have 

in common allow them to generate new knowledge. I therefore examine the similarities 

between simulations and experiments, which are often highlighted in the philosophical 

literature, and I investigate whether they bestow knowledge-making capability upon 

them (sections 3). I endeavour to explicate the intuition behind the novelty claim 

(section 4). I then analyse the concept of novelty and, from this, frame an argument that 

simulations and experiments generally provide new knowledge under the same 

epistemic circumstances as experiments (section 5). 

 

 

2. Some Definitions 

 

First of all, I need to define the basic terms I use in the article. Scientific models 

received a great deal of attention in the 1990s, when some philosophers abandoned any 

foundationalist project such as initiated by the logical positivists and started to focus on 

scientific practices. An examination of practices indeed leads to value models more than 

theories. For instance, predicting and explaining do not strictly amount to deducing 

from a theory the logical consequences following the hypothetical-deductive scheme; 

these two epistemic activities require in practice to build a model. A model is therefore 

an application of the theoretical principle at hand to the specific situation being studied 

that the theory cannot describe alone. It contains not only theoretical principles but also 

extrinsic components such as abstractions, idealizations, fictional components and ad 

hoc assumptions. ‘Scientific model’ is a polysemous term. There have been different 

accounts of models, i.e., the linguistic view (e.g. Max Black, Mary B. Hesse), the 

semantic view (e.g. Patrick Suppes, Bas van Fraassen, Ronald N. Giere) and a more 

recent practices-based account on which this article builds (e.g. Nancy Cartwright, 

Mary S. Morgan, Margaret Morrison, Michael Redhead). 

 Simulation models, also called computational models, contain theoretical 

principles, simplifying assumptions but also mathematical approximations due to the 

numerical scheme that is required for running calculations on a computer. The program, 
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written in a computer language, contains the algorithm which describes how to process 

calculations from the simulation model. ‘Computer simulation’ designates these 

calculations but sometimes refers in the literature to the simulated phenomenon on the 

computer screen. 

 There are different types of simulation models depending on the underlying 

numerical methods, e.g. discretisation-based numerical methods, cellular automata, and 

agent-based models. Since most of the simulation models used in empirical science (e.g. 

physics, chemistry, biology) represent empirical systems with the means of partial 

differential equations, I focus in this article on discretisation-based simulations. 

 Now that I have made clear what I mean by models and simulations, I will now 

explore the features that simulations and experiments share. 

 

 

3. Similarities between Simulations and Experiments 

 

If the analogy between simulations and experiments is justified, it should follow that, 

based on their similarities, simulations generate new knowledge in the same way 

experiments do. In this section, I will take this analogy seriously. I first review five 

similarities between simulations and experiments that are often highlighted by 

philosophers. And I then question whether these similarities allow simulations and 

experiments to generate new knowledge (along the lines of Jebeile 2016, 61–67). Note 

that the list of similarities may not be exhaustive and that I do not mean that, when 

providing new knowledge, simulations and experiments are supposed to exhibit all 

these features at the same time. 

 

3.1. Exploration 

 

First, it is often said that simulation and experiment both allow for exploration. 

Scientific exploration—in simulations or experiments—is about changing some input 

conditions and control parameters, and examining how the system under study reacts to 

this change. This change often aims at answering a specific question the scientist raises. 

Experiment consists in exploring the phenomena by providing observations and 

measures, while simulation consists in mathematically exploring the theoretical 
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implications of the simulation model. In this sense, Dowling (1999), Morgan (2002), 

and Keller (2003) call simulations ‘experiments on the theory’ (or on the model); 

simulations are also sometimes called ‘virtual laboratories’. 

 For example, in the simulation of a flow past a solid cylinder, the simulationist 

may be interested in knowing under which physical conditions vortices are induced by 

the interaction between the fluid and the cylinder. In order to do this, she can change the 

value of the fluid inflow velocity until vortices appear. More generally, in the case of a 

simulation, the simulationist enters into the program the initial conditions and the 

parameter values that are relevant to the question, and then collects the simulation 

outputs. If these outputs fail to provide a satisfying and complete answer to the 

question, the simulationist can run another simulation with other conditions and 

parameter values. Each time she gets new outputs that may in turn provide new 

knowledge about the system’s behaviour. 

 This interaction of the ‘question/answer’ sort is the same between the 

experimenter and the experimental system. The experimenter changes some parameters 

and observes the reaction of the system to this change. For example, in the experiment 

of a flow past a solid cylinder, the experimenter can change the value of the input 

parameters, such as the input mean fluid velocity, in the water tunnel. The interaction of 

the ‘question/answer’ sort is possible because the computer program, like an 

experimental device, creates a controlled environment. That is why Margaret Morrison 

claims that the simulation system—which includes the computer, the program and the 

simulation model—‘functions like a piece of laboratory equipment, used to measure and 

manipulate physical phenomena’ (Morrison 2009, 45). In particular, ‘Considered as an 

apparatus it allows us to create the kind of controlled environment where one can vary 

initial conditions, values of parameters etc.’ (Morrison 2009, 44–45). 

 

3.2. Intervention 

 

Exploration implies that a scientist intervenes to some extent on the computer program 

or the experimental setup. Thus simulation and experiment share a second feature in 

that scientists intervene on them. This similarity is emphasized by Morgan (2002) and 

Parker (2009). 
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 Like the philosophers of experiment Hacking (1983), Tiles (1993), Radder 

(1996), and Woodward (2003), Morgan and Parker insist on the fact that experiment 

always implies intervention. In particular, Parker specifies, ‘An experiment can be 

characterized as an investigative activity that involves intervening on a system in order 

to see how properties of interest of the system change, if at all, in light of that 

intervention’. She adds, ‘An intervention is, roughly, an action intended to put a system 

into a particular state, and that does put the system into a particular state, though 

perhaps not the one intended’ (Parker 2009, 487). 

 In concrete terms, an intervention on an experimental system is an action that 

consists, for example, in pressing buttons on the machine, opening valves, heating the 

system or removing one of its components. In the case of simulations, an intervention 

on the computer program is an action that consists, for example, in using the mouse to 

click on screen or in using the keyboard to enter input data. 

 Interventions therefore entail interactions between the simulationist and the 

computer program or the experimental system. Therefore it might be better to refer to 

‘computer simulation studies’ rather than to simulations. As Parker highlights, 

‘computer simulations consist of sequences of computer states—not activities 

undertaken by inquiring agents’ (Parker 2009, 488), while experiments involve agents 

in intervening on the experimental system. Therefore, as she suggests, it is more 

convenient to compare experiment with computer simulation study, which is 

 

the broader activity that includes setting the state of the digital computer 

from which a simulation will evolve, triggering [its] evolution by starting 

the computer program that generates the simulation, and then collecting 

information regarding how various properties of the computing system, such 

as the values stored in various locations in its memory or the colors 

displayed on its monitor, evolve in light of the earlier intervention (i.e. the 

intervention that involves setting the initial state of the computing system 

and triggering its subsequent evolution). (Parker 2009, 488) 

 

That said, in this article, I still use the term simulation while including such activities. 

 

3.3. Visualization 
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Two other similarities between simulation and experiment that are identified in the 

literature can be illustrated by an example of an astrophysics simulation. This 

simulation helped astrophysicists to explain the discovery of VirgoHI21 made some 

years ago. VirgoHI21 was first identified as a ‘dark’ galaxy because it contains only gas 

and has no star. Such a discovery contradicts cosmological theory since VirgoHI21 is as 

massive as the Milky Way while theoretically there is no galaxy without a star as 

massive as VirgoHI21. Thus, in order to explain this prima facie contradiction, the 

formation of VirgoHI21 has been reproduced by simulation (Duc, Bournaud, and 

Brinks 2007). For that purpose, astrophysicists designed a possible scenario of the 

formation based on empirical observations. In their observations, they noticed that 

VirgoHI21 is not secluded but located near a spiral galaxy called NGC 4254 (or Messier 

99). More precisely, VirgoHI21 forms a long gas filament behind NGC 4254. For the 

astrophysicists, this provided evidence that VirgoHI21 could be debris from past 

interaction between two galaxies. Indeed long gas filaments—called ‘tidal tails’—are 

often observed after two galaxies collide; they are constituted of the debris, i.e., pieces, 

of disk components extracted by tidal forces. Astrophysicists therefore tried to find the 

right conditions of the collision before VirgoHI21’s formation. Figure 1 shows the final 

result of this simulation. 

 

> 

Figure 1. Left: VirgoHI21 and NGC 4254 observed by telescope. Right: the simulation 

picture. Credits CEA/Sap. 
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 The simulation accurately recreates the gas distribution and concentration in 

VirgoHI21. Thus it shows that, under certain conditions, when a galaxy at high speed 

(around 1000 km/s) comes close to another galaxy, gaseous matter is ejected at large 

distances and re-condensed in the intergalactic area, taking the form of isolated rotating 

clouds. The simulation pictures suggest that VirgoHI21 formed 750 millions of years 

ago after a collision between two spiral galaxies. VirgoHI21 is therefore not a galaxy 

but only collision debris (Duc, Bournaud, and Brinks 2007). Because of its high speed, 

the second galaxy—which is most likely Messier 98—has already gone very far away. 

 Figure 2 shows different sequences of the simulation film. These sequences have 

not been captured at identical intervals. Nevertheless, they represent the main evolution 

steps in the simulation film (which lasts a few seconds). It can be seen, from sequence 1 

to 6, a high-speed galaxy coming close to NGC 4254. Then, from sequence 7 to 16, we 

observe the formation of a tidal tail; note that the second galaxy is out of the picture 

from sequence 11 but keeps moving far away. This tail, which is now called VirgoHI21, 

becomes autonomous, and was wrongly taken for a ‘dark’ galaxy. 

 
Figure 2. Simulation of VirgoHI21 formation. 

 The case of VirgoHI21 illustrates a third feature that simulation and experiment 

share. Both sometimes make it possible to visualize a representation of the system under 

study. In the example, we can see the time evolution of the reproduced collision. While 

the simulation of VirgoHI21 formation is derived from physical laws, it also becomes 

concrete, on screen, for the simulationists. 

 

3.4. Time Evolution 

 

The case of VirgoHI21 also illustrates a fourth feature that simulation and experiment 

may share. They both sometimes show the time evolution of the system being studied. 

Simulations are even better than experiments in doing this since, unlike experiments, 
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they allow the scientists to see the time evolution of the system under study at whatever 

the time scale that characterizes it. For instance, a natural phenomenon can be too slow 

to be observed, e.g. the collision of two galaxies. In this case, the simulation can help 

one to visualize the phenomenon by speeding up its natural temporality. Of course, this 

can also be done by recording an experiment, and watching the film by speeding up it, 

but some phenomena such as the collision of two galaxies last too long to be entirely 

filmed. 

 

3.5. Black Box Effect 

 

There is a question whether simulation and experiment both function as black boxes, 

and therefore whether this is another similarity between them. Guala (2002) suggests 

that only experiments may act as black boxes, whereas Dowling and Suchman, an 

anthropologist and sociologist, argue that they both sometimes do. I will present the two 

positions. 

 An experiment functions as a black box when the experimenter does not know 

some (or all) of the physical processes at work in the observed phenomenon. By 

contrast, in the case of simulations, the simulationist can in principle know the content 

of the computer program. Nothing in the program is prima facie hidden from her. Is it, 

as Guala (2002) thinks, a reason why simulations are not black boxes? 

 According to Guala, in order to conduct an experiment, it is not required to 

possess a complete knowledge of the physical processes at work in the target system. 

On his view, ignorance is the very reason why the experiment is done. He writes, 

‘Experiments are particularly useful when one has an imperfect understanding of some 

basic causal mechanism of the system under study. They can be used in these contexts 

because the laboratory “stuff” is assumed to be the same as the non-laboratory “stuff”’ 

(Guala 2002, 11). 

 Thus, for Guala, an experimental system must share the same physical processes 

(or ‘the same causal mechanisms’) with the target system. To this end the experimental 

system must be made of the same matter as the target system; it must have the same 

relevant material features of the target system. Only in this way can the conclusions 

from the experiment can be extended to the target system. As Guala asserts, ‘Of course, 

quite a lot of knowledge is required in order to do so, but no fundamental theory of how 
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the target system works is needed. Parts of the laboratory system can be put between 

brackets and used as “black boxes”’ (Guala 2002, 12). 

 In other words, we do not need to know in advance the laws that describe the 

behaviour of the experimental system and the target system. For Guala, this is a 

fundamental difference between simulations and experiments as ‘the knowledge needed 

to run a good simulation is not quite the same as the one needed to run a good 

experiment’ (Guala 2002, 12). 

 According to Dowling and Suchman, simulations also often function as black 

boxes. The main reason here is that simulated phenomena are still the results of long 

and complex calculations that cannot be mentally surveyed by a human mind. In the 

case of simulations, this is due to the complexity of the computer program and the speed 

of the computational process on the machine. Dowling writes, ‘The results of a 

simulation are unpredictable. They are typically based on calculations that are 

analytically intractable, and the computer’s numerical computation of the solutions is 

far too rapid to be followed by an individual scientist. The complexity and 

unpredictability of a computer program invite the scientist to present it as a black box, 

interacting with it in an experimental manner, trying things out to see what will happen’ 

(Dowling 1999, 266). Thus, even though the simulationist knows the content of the 

computer program, she will hardly be able to anticipate the results or grasp how they 

have been obtained from it. 

 I believe that Dowling’s and Suchman’s stance does not straightforwardly 

contradict Guala’s. They found another origin of treating simulations as black boxes. 

This is therefore for distinct reasons that a scientist may adopt the same epistemic 

attitude of ignorance facing a simulation or an experimental system as if they were 

black boxes. On one side, for Guala, the reasons are that scientists are ignorant 

concerning some (or all) of the physical processes at work in an experiment. On the 

other, for Dowling and Suchman, the reasons are that the scientists cannot mentally 

grasp the calculations. 

 

3.6. Similarities in Knowledge Generation 

 

Now that I have reviewed similarities between simulations and experiments that are 

often highlighted in the literature—i.e. that they allow for exploration, intervention, and 
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visualization, that they sometimes unfold over time, and that they function as black 

boxes—I will discuss whether these features allow simulations to generate new 

knowledge. 

 First, simulations produce knowledge about the target system if the simulation 

model is an accurate representation of the target system. It is because simulation models 

contain the appropriate equations that they can provide knowledge. And yet none of the 

five similarities plays a role in the representational function of the simulation model. 

One can explore the consequences of a simulation model and intervene on a computer 

program even if the model does not represent anything empirical. This is the case for 

simulations that do not instantiate empirical systems, like the simulation of Game of 

Life. The Game of Life created by mathematician John H. Conway in 1970 is not 

supposed to represent an empirical system. It is a two-dimensional grid of square cells. 

Each cell is either in the state ’live’ or in the state ’dead’. A cell’s state at time t + 1 

depends on its state at time t and the states of its eight neighbours following three 

simple rules described in Berlekamp, Conway, and Guy (2004, 927): 

 

i) A cell that’s dead at time t becomes live at t + 1 only if exactly three of its eight 

neighbours were live at t; 

ii) A cell that’s live at t and has four or more of its eight neighbours live at t will be 

dead by time t + 1; 

iii) A live cell that has only one live neighbour, or none at all, at time t, will also be 

dead at t + 1. 

 

The same is true with the three other similarities: that simulations provide lifelike 

images, present a temporal dimension or function as black boxes does not ensure that 

the model correctly represents the target system and therefore these features do not 

make simulations produce knowledge. For instance, video games make it possible to 

visualize objects over time and are also black boxes in that the player does not have 

access to the program behind the games. Nevertheless video games do not provide any 

knowledge about the animated objects. 

 Furthermore the five features do not bestow any knowledge-making capability 

upon experiments. In experiments, knowledge is obtained from empirical data if these 

data are generated by an experimental system that contains the same relevant properties 
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as the target system, given the particular question the scientist wants to answer about the 

target system. If the experimental system does not possess the relevant material 

characteristics of the target system, which can explain the phenomenon under study, one 

cannot draw the right conclusions from the experiment. In order to illustrate this point, 

let us assume that biologists have to test a new drug on rats in the hope of curing 

humans from some disease. If the rats’ reaction to the treatment depends upon a 

physiological pathway that is absent in humans, we would wrongly extend the 

experiment’s results to our species. (This example is given by Parker 2009, though for a 

different purpose.) 

 As shown, it is not in virtue of the similarities commonly highlighted in the 

philosophical literature that simulations and experiments can be said to provide new 

knowledge. Thus there is no analogy that can account for the novelty claim. That said, it 

certainly does not follow that computer simulation cannot produce new knowledge. 

What is the widely shared intuition behind the novelty claim then? In the next section, I 

will suggest that simulations are often associated with experiments by scientists because 

the features that simulations share with experiments invite the simulationist to interact 

with simulations in an experimental manner. 

 

 

4. Experimental-like Interactions with Simulations 

 

While the five similarities between simulations and experiments do not give simulations 

any knowledge-making capability, they still impact the way scientists interact with 

simulations and experiments. They make interactions with simulations experimental-

like. Simulationists thus learn how to draw inferences from computer simulations in a 

way that may be similar as the way experimenters learn how to draw inferences from 

experiments. Consequently simulationists may develop skills similar to those of 

experimenters. This is what I want to show in this section. 

 As I have said, simulations, like experiments, allow for both exploration and 

intervention. Thus the simulationist (or the experimenter) learns how to control and to 

modify the behaviour of the simulated (or experimental) system in adequately 

modifying the input parameters of the computer program (or the experimental setup). 

Both the simulationist and the experimenter also get used to recognizing regular 
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behaviours of the system and to anticipating the response of the system to a 

modification of a parameter. For example, if the target system is a plane flying against 

wind force, the simulationist may learn how to anticipate the plane speed variations 

against different force values, by visualizing on screen the modelled plane, and the 

experimenter by observing a concrete model of the plane in a wind tunnel. As a result, 

the simulationist may develop skills similar to those of an experimenter. 

 As Dowling claims, based on interviews with simulationists, ‘A sense of direct 

manipulation encourages simulators to develop a “feel” for their mathematical models 

with their hands and their eyes, by tinkering with them, noticing how they behave, and 

developing a practical intuition for how they work’ (Dowling 1999, 269). So it comes as 

no surprise that the scientists might interact with the simulative system in the same way 

they would have interacted with the actual target system itself. Dowling even claims 

that ‘the simulation is presented as an experimental target’, and, because of this, ‘the 

researcher can interact with it as if it were a “real” target, drawing on the physical skills 

of recognition and reaction’ (Dowling 1999, 269). 

 Visualization is another experimental-like aspect in that the simulationists are 

inclined to manipulate the simulative system the same way they would manipulate the 

actual target system. Visualization makes simulated phenomena concrete for the 

simulationists and therefore allows a sense of direct manipulation. As Turkle, a 

sociologist and psychologist, and Papert, a mathematician and computer scientist, write, 

‘The computer stands betwixt and between the world of formal systems and physical 

things; it has the ability to make the abstract concrete. In the simplest case, an object 

moving on a computer screen, might be defined by the most formal of rules and so be 

like a construct in pure mathematics; but at the same time it is visible, almost tangible, 

and allows a sense of direct manipulation’ (Turkle and Papert 1991, 162). Of course, it 

would be excessive to claim that the simulationists forget that simulations are not ‘real’ 

phenomena. The fact that the simulated phenomena are generally displayed on screen 

makes the confusion impossible, particularly when they are displayed under more vivid 

and artificial colours and under more simple geometrical forms than the actual 

phenomena in nature. 

 Furthermore, because the simulation becomes concrete for the simulationist, it 

appeals to her hard-wired perceptual capacities and skills, the same ones that an 

experimenter uses in the process of discovery. This seems particularly true when the 
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simulation pictures provide lifelike images that look like the corresponding 

photographs. For example, in Figure 1, the simulation picture looks like the actual 

photograph of VirgoHI21 in that they share many visual attributes, e.g. the same 

colours, and the same patterns at the same locations. Winsberg also endorses this idea; 

he writes that ‘psychologically, at the very least, working with a simulation is much 

more like doing an experiment if the simulation produces lifelike images reminiscent of 

laboratory photographs’ (Winsberg 2003, 110). 

 The fact that simulation unfolds over time is another aspect that may also make 

the simulationist experience the simulation the same way she would experience an 

experiment. She may see the time evolution of the simulated phenomenon the same way 

she would have observed the evolution of the target system. The temporal dimension of 

simulation appeals to her cognitive capacities of treating and gaining knowledge on 

time from visualized phenomena that are similar to the ones that an experimenter uses. 

 Lastly, that a simulation functions as a black box also contributes to make 

interactions with simulations experimental-like. Because sometimes unpredictable 

results seem to come out of the computer program, the simulationist may see it as a 

black box and, for Dowling, this allows the scientist to ignore the internal structure of 

the simulations program and to interact with this program the way she would have 

interacted with the experimental system. ‘The unpredictability of a simulation run 

makes the activity of simulation similar to the activity of performing a physical 

experiment. The scientist prepares the system, sets initial conditions, then takes a 

relatively passive role, waiting to find out how the system will respond’ (Dowling 1999, 

265). Suchman also writes, ‘Insofar as the machine is somewhat predictable, in sum, 

and yet is also both internally opaque and liable to unanticipated behaviour, we are 

more likely to view ourselves as engaged in interaction with it than as just performing 

operations upon it, or using it as a tool to perform operations upon the world’ (Suchman 

1987, 16). Through her interactions with the computer program, the scientist focuses her 

attention on the simulated phenomenon itself, and thus learns ‘how things work’. In 

other words, the ‘black box’ effect invites the simulationist to experience the simulation 

the way she would experience an experiment. Like an experimenter in front of an 

experimental device, the simulationist waits for what will result from the simulation. 

She changes the simulation parameters and observes on screen how the simulative 

system reacts to her modifications. That said, as Dowling points out, the black box 
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effect is only temporary. When the simulationist deals with the reliability of the 

simulation, she does not see it as an experiment anymore but rather as a product of the 

simulation model. Based on interviews with scientists, Dowling notices that they 

consider a simulation as the product of the model when they discuss the design, the 

accuracy or the solubility of the equations; while they consider it as an experiment when 

they discuss what they visualize on screen. 

 In a nutshell, the features that simulations share with experiments have nothing 

to do with new knowledge generation itself, but affect the way scientists draw 

inferences from them. This can explain why scientists often use the expression 

‘numerical experiment’ to designate a computer simulation (or ‘experimental 

simulation’, ‘simulated experiment’, ‘in silico experiment’). Therefore we should 

acknowledge that, from the point of view of scientists at least, simulations are more 

than mere calculations, and that they share some noticeable features with experiments, 

which make them experimental-like in that way. 

 

 

5. Novelty in Simulations and Experiments 

 

The similarities between simulations and experiments do not allow to ground any 

analogy that can account for the novelty claim, although they may explain the intuition 

behind. In this last section, I do not discuss any further possible features that would 

bestow any knowledge-making capability upon simulations and experiments. I will 

assume that simulation models and experimental systems are appropriate 

representations of the target systems for reasons I will not elaborate. I now want to 

suggest that computer simulations and experiments yield most of the time new 

knowledge under the same epistemic circumstances, independently of the features they 

may share. For that, I need to define a criterion for novelty. I summarize the arguments 

in this section in Table 1.  

 First I shall make it clear that I will focus on scientific domains where theories 

are available. Barberousse and Vorms make an important distinction between two cases: 

(i) the ‘terra incognita’ context ‘when the information about the domain of phenomena 

is scarce, and when systematic exploration is the only way to obtain it’ (Barberousse 

and Vorms 2013, 40), and (ii) the availability of a theoretical framework which is ‘the 
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set of all available knowledge about the domain of phenomena at hand, be it of 

theoretical or empirical origin’ (Barberousse and Vorms 2013, 41). In the terra 

incognita context, only experiments can provide new knowledge; by default, novelty is 

here surprising since scientists have no expectations about what they are going to learn. 

Here simulations cannot provide new knowledge simply because there is a lack of 

theories. The reason is therefore not because simulations are unable to yield new 

knowledge. That is why I shall focus on the second case: when a theoretical framework 

is available, computer simulations may provide new knowledge, even though, 

Barberousse and Vorms claim, they are less likely to yield ‘surprising’ novelty (an 

exception they provide is the computer-aided study of deterministic chaos). 

 I now consider the ‘non-entailment view’ as an objection against the novelty 

claim. I will argue that the criterion for novelty underlying the non-entailment view is 

irrelevant since it does not even account for what scientists consider in practice as being 

new in experiments. I will then offer a criterion for novelty. 

 According to the non-entailment view (Lusk 2016, 151), simulations do not 

produce any new knowledge because they are calculations, and simulation outputs are 

logical consequences of the theoretical assumptions contained in the simulation model. 

Non-entailment is notably supported by Beisbart and Norton when they say Monte 

Carlo simulations ‘can only return knowledge of the world external to them in so far as 

that knowledge is introduced in the presumptions used to set up the simulation’ 

(Beisbart and Norton 2012, 404). It is here suggested that (i) in an experiment, ‘nature 

can “push back” with results that are both conceptually and ontologically distinct from 

the experimental setup’ (Morrison 2015, 249); and (ii) a computer simulation ‘only 

gives us the consequences of what has been programmed into the computer’ (Morrison 

2015, 249). In other words, only experiments, because they involve physical 

interactions, would be likely to yield new empirical data. Simulation outputs are 

virtually contained in the model assumptions, and simulations only make the 

consequences of these assumptions explicit. Of course revealing what is only implicitly 

contained in the simulation model is a valuable achievement and may produce 

surprising results, but it brings no new knowledge. 

 In the non-entailment view, the following criterion for novelty is thus suggested: 

a piece of knowledge is new if it is not already (explicitly or implicitly) contained in the 

available theory. 
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 According to the non-entailment criterion, when experiments yield results that a 

well-confirmed theory already predicts, they do not offer new knowledge. Theories 

generally precede empirical investigation. It is often the case that, before running an 

experiment, the experimenter performs theoretical calculations and therefore has an 

expectation about the experimental results she is going to measure or the observations 

she is going to make. For example, the discovery of the Higgs boson is precisely what 

the standard model predicts, and therefore is redundant and not new following the non-

entailment criterion—although it brings a much valuable piece of information, namely 

that the standard model is correct. 

 In accordance with this criterion, experiments produce new knowledge only if 

their results contradict the theoretical assumptions that allow for their production. The 

contradiction may lead to the revision of the theoretical assumptions. For example, the 

observations of planets’ positions and axial precession contradicted Ptolemaic 

astronomy and confirmed Newton’s theory; the observation that the weight of some 

metals increases when they are intensively warmed contradicted the phlogiston theory 

and argued in favour of Lavoisier’s theory. However theoretical conflicts are not 

business as usual in science, which makes the non-entailment criterion irrelevant. My 

argument is framed in terms of frequency: conflicts between theory and experiment, 

which according to Kuhn lead to revolutions, do not happen frequently in the history of 

science in comparison with the intensive use of simulations and experiments and the 

number of successes of theories in predicting phenomena. Scientists use simulations and 

experiments all the time to gain knowledge about the empirical word. And, in terms of 

frequency, scientists are more likely to get confirmation than refutation. 

 To put it in another way, it is not usual for an experiment to confound a scientist, 

although only an experiment can do that while a simulation cannot. There is confusion 

(Morgan 2003) when a result is provided which was not expected, and that the available 

theory does not explain at all. The discovery of X-rays illustrates perfectly this case. 

This discovery was a genuine coincidence that certainly confounded the physicist 

Röntgen ‘on the day that [he] interrupted a normal investigation of cathode rays because 

he had noticed that a barium platoon-cyanide screen at some distance from his shielded 

apparatus glowed when the discharge was in process’ (Kuhn [1962] 1996, 57). This 

kind of empirical discovery, which contradicts the available theory and therefore leads 

to confusion, is less frequent than the successes of a theory in predicting phenomena. 
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 The non-entailment criterion relies on what one can draw in principle from 

available theories, and falls short in even accounting for novelty in experiments. In 

practice, knowledge is considered as new by scientists when it enlarges the set of 

existing knowledge. Therefore I suggest the following criterion for novelty—I shall call 

it the ‘first time’ criterion: a simulation or an experiment provides new knowledge when 

this knowledge is obtained for the first time and is added in a relevant way to existing 

knowledge. Here novelty is clearly context dependent. 

 I want now to argue that simulations and experiments generally provide new 

knowledge under the same epistemic circumstances, i.e., when the ‘first time’ criterion 

is met. Simulation outputs are considered to be new if they have been obtained under 

physical conditions that have not yet been explored. For example, the existence of a 

material harder than diamond was a computer-aided discovery (Liu and Cohen 1989). 

As it was first discovered by a simulation, this simulation provided genuinely new 

knowledge in this criterion. This discovery preceded the display of empirical evidence, 

namely the successful production of two materials harder than diamond: wurtzite boron 

nitride and lonsdaleite (Pan et al. 2009). In this case, computer simulations have led to a 

new finding, as the empirical data—i.e. the existence proof and the measurement of 

indentation strength of wurtzite boron nitride and lonsdaleite—were unknown to 

scientists. 

 A simulation result that is expected or is similar to another previous result 

cannot be considered to be new according to the ‘first time’ criterion, however. In a 

similar way, an experiment does not offer any novelty if it has been reproduced and its 

results were already known (e.g., because they are indicated in a scientific handbook) or 

if the highly confirmed theory has already been used to predict these same results. In 

this sense, we generally would not say that experimental data are new if the conditions 

under which they have been obtained are similar to conditions that have already been 

explored. 

 On the other hand, the ‘first time’ criterion for novelty is relevant since it 

corresponds to usual practices: a simulationist runs a simulation because she wants to 

gain knowledge about the target system; precisely because this knowledge is not known 

beforehand. Thus she expects to be surprised (although not confounded; Morgan 2003). 

It would be tempting, Morgan (2003, 220–221) claims, to believe that only experiments 

are likely to surprise us because, in the case of simulations, the answers to the questions 
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that we raise are ‘already designed in the model’, and are thereafter revealed by 

calculation. On the contrary, as Morgan emphasizes, an experiment or a simulation can 

surprise the scientist in the sense that they offer a result which was not expected, but 

that the available model can explain (for a recent analysis of the concept of surprise in 

this context, see Parke 2014). For instance, in the example of VirgoHI21, the 

observation of this false dark galaxy surprised the astrophysicists because it seemed at 

first glance to contradict the current theory, while it has subsequently been theoretically 

explained by simulation. Surprise, I shall emphasize, is also produced by the black box 

effect. A simulation result can be deemed surprising insofar as the scientist cannot 

predict it by herself. She would not be able to deduce this result alone without the 

machine. 

 Of course the fact that, most of the time, simulations and experiments provide 

new knowledge in a similar way (i.e., in accordance with the ‘first time’ criterion) 

should not lead us to deny the special place of experiments in science. Making 

refutation possible alone legitimates the unique role of experiments. An experiment, 

when it is well run, can contradict our best available theory, whereas a simulation 

cannot constitute a refutation of the theory. The simulation can increase our trust in a 

theory as a good prediction does, as it is the case in the example of VirgoHI21. If the 

scenario of VirgoHI21 formation had not made it possible to find a final simulation 

picture similar to the telescope photograph, the astrophysicists would certainly study 

other scenarios. If in turn these new scenarios failed, the astrophysicists would have 

questioned the model’s simplifying assumptions, or worse, the theoretical assumptions 

themselves. In the last case, the simulation would have helped to test scenarios, but the 

observation alone would have contradicted the theory. 

 “Terra incognita” context Availability of a theoretical framework 

Non-entailment view First time criterion 

unsurprising surprising unsurprising surprising surprising by default 

experiments ∅ ✓ ∅ 
(a) 

✓ 
(b) 

✓ 

computers 
simulations 

∅ ∅ ∅ ∅  
(c) 

✓ 

Table 1. (a) Agreement with theory; (b) (rare) contradictions with theory, creating 

‘confusion’; (c) exception: deterministic chaos. 
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6. Conclusion 

 

I have first reviewed some similarities between simulations and experiments commonly 

highlighted in the philosophical literature: they both allow for exploration, intervention 

and visualization, they sometimes unfold over time and they may function as black 

boxes. I then have shown that these features are not what allow simulations and 

experiments to generate new knowledge.  

 Instead, I have argued that they shape the way scientists draw inferences, which 

is experimental-like. I have suggested that this may explain the widely shared intuition 

behind the novelty claim. 

 I have then analysed the concept of novelty and, from this, have framed an 

argument that simulations and experiments generally provide new knowledge under the 

same epistemic circumstances, independently of the features they may share; this is a 

way of making sense of the novelty claim. They provide new knowledge when they are 

obtained for the first time and enlarge in a relevant manner the set of existing 

knowledge. Only experiments can provide new knowledge in the sense that they 

contradict the theory. Even though this possibility legitimates the special place of 

experiments in science, this is nevertheless not business as usual in science. 
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