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Abstract The Interior Exploration using Seismic Investigations, Geodesy and Heat Transport mission,
to be launched in 2018, will perform a comprehensive geophysical investigation of Mars in situ. The Seismic
Experiment for Interior Structure package aims to detect global and regional seismic events and in turn
offer constraints on core size, crustal thickness, and core, mantle, and crustal composition. In this study,
we estimate the present-day amount and distribution of seismicity using 3-D numerical thermal evolution
models of Mars, taking into account contributions from convective stresses as well as from stresses
associated with cooling and planetary contraction. Defining the seismogenic lithosphere by an isotherm
and assuming two end-member cases of 573 K and the 1073 K, we determine the seismogenic lithosphere
thickness. Assuming a seismic efficiency between 0.025 and 1, this thickness is used to estimate the total
annual seismic moment budget, and our models show values between 5.7 × 1016 and 3.9 × 1019 Nm.

1. Introduction

The level of seismicity on Mars is usually believed to lie between that of the Earth and the Moon. Based on the
seismic events recorded between 1976 and 2013 and documented in the Harvard Centroid Moment Tensor
catalog, the annual seismic moment release for the Earth is ∼3 × 1023 Nm. The values for the Moon are sig-
nificantly lower and range between 1014 and 1015 Nm only for the shallow moonquakes (Oberst, 1987) and
below 1014 Nm for deep moonquakes (Kawamura et al., 2017). For Mars, only indirect estimates exist, which
are based on the analysis of surface faults and models of lithospheric cooling (e.g., Golombek et al., 1992;
Knapmeyer et al., 2006; Phillips, 1991). The upcoming Discovery class mission InSight (Interior Exploration
using Seismic Investigations, Geodesy and Heat Transport) to be launched in 2018 will employ a seismometer
(Seismic Experiment for Interior Structure) (Lognonné et al., 2015), a heat flow probe (Heat Flow and Physical
Properties Package) (Spohn et al., 2014), and precision tracking system (Dehant et al., 2011) to accurately mea-
sure the present-day seismic activity and the rate at which heat is lost from the planet (Banerdt et al., 2012,
2017). Such measurements will provide an important baseline to constrain the present-day interior structure
and heat budget of the planet and, in turn, the thermal and chemical evolution of its interior.

Previous seismic measurements on Mars were performed in the mid-1970s by the Viking seismic experiment
(Anderson et al., 1976). The Viking 1 seismometer failed to uncage, and no data were recorded. However,
the Viking 2 lander performed seismic measurements with a short-period three-component seismometer in
Utopia Planitia and collected data between September 1976 and April 1978. The installation of the seismome-
ter on top of the lander instrument deck led to a high noise level produced by wind-induced movements of
the lander. During the 146 sols of operation of the Viking 2 seismometer, only one event during sol 80 was
recorded, which might be interpreted as a local marsquake. However, the absence of wind data during the
sol 80 signal makes it difficult to unambiguously catalog it as being of seismic origin. Nevertheless, a recent
study suggests that a wind gust can be excluded as a source because of the low wind speeds recorded 20 min
before and 45 min after this event (Lorenz et al., 2017).

The nondetection of unambiguous marsquakes led to the conclusion that Mars’ seismicity is smaller than that
of the Earth (Anderson et al., 1977). Indeed, the analysis of surface faults suggests moment releases between
1017 and 1019 Nm/year (Golombek, 2002; Golombek et al., 1992), while studies taking into account global
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cooling of the planet suggest values between 3.42 × 1016 and 4.78 × 1018 Nm/year (Knapmeyer et al., 2006;
Phillips, 1991). Along with assumptions about the largest marsquake and the moment-frequency relation, the
total moment release can be ascribed to the frequency of individual marsquakes of different moment release.
However, the spatial distribution of present-day seismicity on Mars is only indirectly constrained and previ-
ous work has focused on mapping the distribution of visible surface tectonic faults, as these features may
hint at the internal stress field distribution (e.g., Banerdt et al., 1992; Carr, 1974; Golombek & Phillips, 2009;
Wise et al., 1979). Previous mapping campaigns have focused on not only local features (Anderson et al., 2004;
Hauber & Kronberg, 2001, 2005; Tanaka, 1990; Tanaka & Davis, 1988) but also prominent fault systems asso-
ciated with Tharsis (e.g., Anderson et al., 2004; Banerdt et al., 1992; Tanaka et al., 1991). Using Viking Orbiter
imagery, Anderson et al. (2001) mapped the surface faults on the entire western hemisphere, while Anderson
et al. (2008) compiled a paleotectonic map of the eastern hemisphere to identify centers of tectonic activity.
A study by Knapmeyer et al. (2006) derived a global fault catalog using Mars Orbiting Laser Altimeter shaded
topographic relief maps. Using this global catalog, Knapmeyer et al. (2006) suggested a distribution of epi-
centers by associating individual event sizes with individual fault length, such that small events may occur on
almost any fault, while large events occur only on faults large enough to produce them. However, it remains
uncertain which of the faults are currently active on Mars.

Of particular interest for InSight are the estimates of seismicity on Cerberus Fossae (Taylor et al., 2013), one of
the youngest tectonic features on Mars that is only ∼1,500 km to the east-northeast from the InSight landing
site. Estimates of moment release indicate recent marsquakes large enough to be recorded by the InSight
instruments (Taylor et al., 2013).

In this study, we use models of the thermal evolution of Mars in a 3-D spherical geometry to assess the amount
and distribution of present-day seismicity. While previous studies have used stresses associated with cool-
ing and planetary contraction to estimate the amount of seismicity of Mars, convective stresses have not
been considered so far but can represent an important contribution to the annual seismic moment budget.
In addition, 3-D thermal evolution models can be used to self-consistently derive the spatial distribution of
present-day seismicity on Mars. As the InSight lander will perform its measurements at a single designated
location in the Elysium Planitia region (Golombek et al., 2017), numerical simulations of planetary interiors
can be used to interpret the data in a global context.

2. Model
2.1. Thermal Evolution Model
We employ the thermal evolution models in 3-D spherical geometry presented in Plesa et al. (2016). By extend-
ing the parameter space, we perform additional simulations to collect a number of cases for which we can
carry out statistical analysis. In addition to solving the conservation equations of mass, linear momentum, and
thermal energy, our models account for core cooling and the decay of heat-producing elements (HPE). We
consider adiabatic heating and cooling by using the extended Boussinesq approximation (King et al., 2010).
Our models use a crust whose thickness does not change with time but varies laterally as inferred from grav-
ity and topography data (Neumann et al., 2004; Plesa et al., 2016). We use the compositional model of Wänke
and Dreibus (1994) and partition the HPE between the mantle and crust such that the present-day surface
abundances match the average value inferred from gamma ray measurements (Hahn et al., 2011; Taylor et al.,
2006). Because the crustal thickness shows larger variations than the surface abundance of HPE, we neglect
spatial variations in crustal HPE and use an average concentration of 49 pW/kg at present day (Hahn et al.,
2011). In addition, we consider the blanketing effect of the crust by using a lower thermal conductivity in the
crust compared to the mantle. This leads to higher temperatures in mantle regions covered by a thick crust
compared to regions covered by a thin crust. A detailed model description is shown in section S1 of the sup-
porting information (SI) and in Plesa et al. (2016). Input parameters for each individual simulation are listed in
Table S3 of the SI.

Plesa et al. (2016) have shown that the structure and thickness of the crust play an important role in the dis-
tribution and magnitude of the surface heat flow and the elastic lithosphere thickness. For the present study,
we have selected three end-member crustal thickness models, which are consistent with current gravity and
topography data. We note that a recently published crustal thickness model by Goossens et al. (2017), which
includes a spatially variable crustal density with an average value of only 2,582 ± 209 kg/m3, leads to a differ-
ent crustal thickness pattern. This kind of model will be addressed in future studies. The “density dichotomy
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crust” (DC) model, which uses a crustal density of 2,900 kg/m3 for the southern highlands and 3,100 kg/m3 for
the northern lowlands, shows a relatively uniform crustal thickness distribution apart from the Tharsis region
(Plesa et al., 2016). The “high density crust” (HC) model, which uses a uniform crustal density of 3,200 kg/m3,
exhibits the most pronounced variations in crustal thickness (Plesa et al., 2016). The model by Neumann et al.
(2004) (NC model), which assumes a lower uniform crustal density of 2,900 kg/m3, is intermediate between
the previous two (Figure S1 of the SI).

2.2. Seismicity Model
We use our thermal evolution models to compute the present-day annual cumulative seismic moment budget
Mcum following Knapmeyer et al. (2006):

Mcum = 𝜂�̇�V𝜇Δt (1)

where 𝜂 is the seismic efficiency, a scale factor that determines how much of the actual deformation is released
in the form of seismic energy (discussed below). �̇� is the strain rate computed from the thermal evolution
model, and V is the seismogenic volume, which we calculated based on the depth of the 573 K or 1073 K
mantle isotherms. The 573 K isotherm is often associated with the bottom of the seismogenic layer since
this is the temperature above which quartz, the most ductile component of a granitic crust, shows a plastic
behavior (Scholz, 1998). Although the presence of quartzo-feldspathic material has been identified in the
lower units of Valles Marineris and in localized regions in the southern highlands (Bandfield et al., 2004), and
granodiorite-like rocks have been analyzed in Gale crater (Sautter et al., 2016), the majority of the Martian
crust is considered to be basaltic to andesitic in composition (e.g., Zuber, 2001). For this type of materials,
the 1073 K isotherm marks the maximum depth of oceanic intraplate quakes on the Earth (Bergman, 1986;
Wiens & Stein, 1983) and we will assume this to be the upper limit for the seismogenic layer thickness on
Mars. We varied the shear modulus 𝜇 between 30 and 70 GPa. The time interval Δt is set here to 1 year to
obtain the annual seismic moment budget in the sense of the moment conservation principle. We compute
the cumulative seismic moment on a 3∘ × 3∘ grid to filter out small-scale structures that may be specific for
an individual simulation, given that we are interested in features associated with large geologic regions such
as the Tharsis and Elysium volcanic provinces, and large impact basins (e.g., Hellas).

The seismic efficiency factor 𝜂 describes how much strain is released in seismic events compared to aseismic
deformation (i.e., folding and aseismic creep). For the Earth, Ward (1998a) and Ward (1998b) derived the seis-
mic efficiency from the ratio of seismic to geodetic moment rates and found large regional variations between
0.025 and 0.86, depending on location. While values above 0.7 are representative for Southern and Northern
California regions located close to the boundary between North American and Pacific plates, smaller values
of only a few percent are representative for slow-straining regions, for example, central USA and northwest
Europe. The small values, however, are attributed to lack of long-term observational data (Ward, 1998a). In
this study, we varied the seismic efficiency between 0.025 and 1.

In equation (1) the strain rate is computed either taking into account the convective stresses or stresses pro-
duced by planetary contraction. If the former are used, �̇� is calculated as the second invariant of the strain
rate tensor:

�̇� =

(∑
ij

�̇�ij�̇�ij

)1∕2

(2)

where �̇�ij = 1
2

(
𝜕vi

𝜕xj
+ 𝜕vj

𝜕xi

)
and 𝜕vi

𝜕xj
is the spatial gradient of the velocity vector. We calculate equation (2)

throughout the seismogenic layer. In a stagnant lid planet convective stresses become smaller the shallower
the depth is. However, if the seismogenic layer is defined by the 1073 K isotherm, it will reach depths where
strain rate values become nonnegligible (for a typical strain rate profile, see Figure S4 of the SI).

When considering stresses produced by mantle cooling and planetary contraction, �̇� is related to the planetary
radius change due to core and mantle heating or cooling:

�̇� = ΔR
Rl∕2

1
Δt

(3)

where R1∕2 is the radius corresponding to half the present-day seismogenic layer volume and Δt is the time
interval over which the radius change (ΔR) is computed. The radius change is calculated column wise using
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the temperature profile beneath each surface grid point. We employ the same approach as Grott et al. (2011)
and Tosi et al. (2013) but use the radius Rl∕2 instead of the planetary radius:

ΔR = 𝛼c(Tc(tn) − Tc(tn−1))
R3

c

3R2
l∕2

+ 1
R2

l∕2
∫

Rl∕2

Rc

𝛼m(Tm(r, tn) − Tm(r, tn−1))r2dr (4)

where 𝛼c and 𝛼m are the thermal expansion coefficients of the core and mantle, Tc and Tm(r) are the
core-mantle boundary (CMB) temperature and the mantle temperature, and Rc is the radius of the core. We
choose Rl∕2 instead of the planetary radius Rp or the radius at the base of the seismogenic layer, Rl , because
we compute an average radius change in the seismogenic layer. The radius change obtained when using Rp

overestimates the actual ΔR that takes place in the seismogenic layer, while the radius change calculated
using Rl underestimates it. In contrast to the previous studies of Phillips (1991) and Knapmeyer et al. (2006)
who only computed the radius change within the seismogenic layer, we take into account the contraction of
the core and the entire mantle up to the radius Rl∕2. Our models use a time output resolution of 10 Myr, and
since we are interested in the present-day seismic moment, we compute the radius change based on the tem-
peratures at 4.49 Gyr and at present day. Hence, Tc(tn) and Tm(r, tn) refer to the present day CMB and mantle
temperature, respectively, while Tc(tn−1) and Tm(r, tn−1) are the CMB and mantle temperature after 4.49 Gyr of
evolution, respectively. Accordingly, Δt in equation (3) is set to 10 Myr.

3. Results

We compute the seismic moment budget for each thermal evolution simulation using the parameters listed
in Table S1 of the SI, and for each crustal thickness model we calculate the median of at least eight simulations
in every 3∘ × 3∘ grid region.

Our models show an annual seismic moment budget between 5.7×1016 Nm and 3.9×1019 Nm. The minimum
value is obtained by assuming the 573 K isotherm to define the seismogenic layer volume, a seismic efficiency
of 0.025, and a shear modulus of 30 GPa and using the median of simulations employing the NC model, which
shows the lowest seismic moment budget. The maximum value is computed by assuming the 1073 K isotherm
to define the seismogenic layer volume, a seismic efficiency of 1, and a shear modulus of 70 GPa and using
the median of simulations employing the HC model, which shows the highest seismic moment budget. In our
models, the annual seismic moment budget can reach values higher than 1.95 × 1019 Nm only if the seismic
efficiency is larger than 0.5 and rather close to 1, while values below 1017 Nm necessarily require 𝜂 < 0.05
(Table S2 of the SI).

Figure 1 shows histograms of the seismogenic depth for all models studied here using either the 573 K
(Figure 1a) or 1073 K (Figure 1b) isotherm to compute the seismogenic volume. The simulations employing
the NC and DC model show a similar distribution with a pronounced peak at around 50 km for the 573 K
isotherm and around 170 km for the 1073 K isotherm. The HC model exhibits the highest peak-to-peak crustal
thickness variations. This is also reflected in the highest peak-to-peak seismogenic depth variations. In fact,
the crustal thickness and the crustal enrichment in HPE influence the temperature distribution in the shal-
low mantle and consequently regions of thick crust overlie a hotter mantle compared to regions covered by
a thinner crust. This effect is most significant for the HC model with a mean crustal thickness of 87 km com-
pared to the other two crustal thickness models, for which the average crustal thickness lies around 45 km.
Because the seismogenic depth has been computed based on an isotherm value of 573 and 1073 K, the his-
tograms show the depths at which these values have been attained. While for the NC and the DC model the
seismogenic depth lies between 30 and 100 km for the 573 K isotherm, and between 50 km and 250 km for
the 1073 K isotherm, the HC model exhibits a much wider range due to the larger variations in crustal thick-
ness and the overall thicker crust. For this end-member crustal thickness model, the seismogenic depth varies
between 30 and 170 km for the 573 K isotherm, and between 60 and 450 km for the 1073 K isotherm. In par-
ticular, the 1073 K isotherm suggests that, for the HC model, marsquakes could originate at greater depths
than assumed in previous studies.

In Figure 2 we illustrate the seismic moment contributions calculated from stresses associated with plane-
tary cooling (Figure 2a) and convective stresses (Figure 2b) as well as the sum of the two (Figure 2c) using the
1073 K isotherm and the HC model of Plesa et al. (2016) as an example (other crustal thickness models are
shown in the SI). If we consider stresses associated with cooling and planetary contraction, due to the less
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Figure 1. Seismogenic lithosphere thickness: Each line corresponds to a thermal evolution model. (a) The results
obtained using the 573 K isotherm. (b) The 1073 K isotherm. Results using the DC model are shown by red lines,
simulations using the NC model are shown by black lines, while the DC model is shown by blue lines. The DC and NC
models indicate a similar range of seismogenic lithosphere thicknesses, while the HC model shows a much wider range
(blue lines). NC = Neumann crustal thickness model; DC = density dichotomy crust; HC = high density crust.

efficient insulation of the crust, the highest values for seismic moment budget are attained in regions of thin
crust (i.e., impact basins) and the northern hemisphere. In contrast, regions covered by a thick crust show
an inefficient cooling and thus the lowest values of seismic moment budget. If, instead, the seismic moment
budget is computed by taking into account convective stresses, the highest seismic moment values are
associated with regions where a thick crust is blanketing the underlying mantle. In such regions, higher tem-
perature in the mantle leads to more pronounced deformation and thus higher convective stresses. Hence,
the two seismic moment contributions are spatially anticorrelated and their sum (Figure 2c) shows a relatively
homogeneous distribution with relative highs in seismic moment from convective stresses.
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Figure 2. Spatial distribution of the annual seismic moment budget based on (a) the stresses produced by mantle cooling, (b) convective stresses, and
(c) the sum of the two contributions. Here we use the HC model of Plesa et al. (2016) and define the seismogenic volume using the depth of the 1073 K isotherm.
The seismic efficiency is set here to 1 and the shear modulus to 70 GPa.

Figure 3. Geographic distribution of possibly seismically active areas based on the fault catalog of Knapmeyer et al. (2006). (a) all faults considered, (b) only faults
cutting areas with ages younger than the Noachian epoch (age < 3700 Myr), and (c) only faults on surfaces dated to early Amazonian epoch (age < 600 Myr).
White regions on the maps represent areas with zero seismic moment. Spatial distribution of the annual seismic moment budget based on 3-D thermal evolution
models that consider both stresses associated with planetary contraction and convective stresses. The total annual seismic moment budget has been calculated
using the (d–f ) 1073 K isotherm and (g–i) 573 K isotherm. Results based on the DC model are shown in Figures 3d and 3g, on the NC model in Figures 3e and 3h,
and on the HC model in Figures 3f and 3i.
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We compare our geographic seismic moment distribution with the seismicity distribution on the individual
faults mapped by Knapmeyer et al. (2006), discretized on a 3∘ × 3∘ grid. Figures 3a–3c show the geographic
distribution assuming that certain faults contained in the fault catalog of Knapmeyer et al. (2006) are seis-
mically active. For all three cases, the presence or absence of faults creates an on-off pattern with aseismic
areas. The younger the age of the surfaces considered to be seismically active, the smaller the areas where a
nonzero seismic moment is attained. The distribution ranges from a nearly homogeneous map, if all faults are
considered seismically active (Figure 3a), to limited regions in Tharsis, Elysium, and the northern latitudes if
only faults cutting Amazonian surfaces are used (Figure 3c). Figures 3a–3c show that the distribution of sur-
face faults cannot constrain the spatial distribution of seismicity on Mars since it is not known which faults are
still active today.

In comparison, the seismic moment distribution predicted by the 3-D thermal evolution models used in
this study shows a more homogeneous pattern with all regions being seismically active (Figures 3d–3i).
In particular, for the 1073 K isotherm the seismic moment shows a homogeneous distribution for the DC and
NC models (Figures 3d and 3e). For the HC models, slightly larger seismic moment values are obtained in
regions covered by a thick crust (Figure 3f ). While convective stresses are similar in magnitude but spatially
anticorrelated with the stresses associated with planetary cooling for the 1073 K isotherm, they are negligi-
ble for the 573 K isotherm, because in a stagnant lid planet convective stresses become smaller for shallower
regions. Here the seismic moment distribution is dominated by the pattern obtained from mantle cooling,
that is, regions of thin crust experience a more pronounced cooling compared to regions blanketed by a thick
crust (Figures 3g–3i).

4. Discussion

We compare the moment release obtained in this study with previous estimates of Mars’ seismicity and with
the data obtained for the Moon and the Earth (Figure 4). Previous studies estimated the seismic moment
release either from differential cooling of the lithosphere using parametrized thermal evolution models and
employing various isotherms (i.e., 573, 873, and 1073 K) to calculate the seismogenic volume (Knapmeyer
et al., 2006; Phillips, 1991) or from total slip on surface faults (Golombek, 2002; Golombek et al., 1992). The
annual seismic moment release for the Moon has been estimated from shallow moonquakes (Oberst, 1987)
and from the recently published deep moonquake data for more than 100 events from three deep moonquake
clusters (A01, A06, and A07) (Kawamura et al., 2017). For the Earth, we used the Harvard Centroid Moment
Tensor catalog between 1976 and 2013. To compute the moment-frequency distribution for the values
obtained in this study, we choose a slope of 0.625, similar to the study of Knapmeyer et al. (2006). This value
lies in the interval of [0.6, 0.65], which was obtained from the analysis of quakes on Earth when excluding deep
events close to olivine-bridgmanite transition (i.e., 660 km depth on Earth) and events close to mid-ocean
ridges (Kagan, 2002). We note that the value of 0.625 seems to fit the size-frequency distribution derived for
shallow moonquakes, while the deep moonquake distribution appears to be steeper. However, a larger num-
ber of events would be necessary to accurately determine the slope in both cases. In particular, the curvature
shown by the shallow moonquake distribution suggests that more small events occurred than were identified
in the data recorded by the Apollo network. In addition, rare large events occurring at longer time intervals
than the duration of the Apollo seismic experiments may be absent from the catalog. Thus, the catalog might
underestimate the lunar seismic moment release.

The moment-frequency relation is sensitive to the largest marsquake assumed and the number of events with
a moment larger than or equal to a given seismic moment M0 increases if the maximum seismic moment is
decreased (Figure 4). We adopt a value of 1020 Nm that was derived from the analysis of intraplate earthquakes
and well-documented normal faults, whose sizes are similar to large normal faults on the border of Valles
Marineris (Golombek, 1994). The moment-frequency distribution range calculated from our thermal evolution
models is in good agreement with previous estimates and confirms that the seismicity of Mars lies between
that of the Moon and the Earth (Figure 4).

In all our simulations we defined the seismogenic lithosphere by using either the 573 K or the 1073 K isotherm.
When using the 1073 K isotherm, the stresses produced by mantle convection are similar in magnitude but
anticorrelated to the stresses associated with cooling and planetary contraction. This leads to a homoge-
neous distribution of the annual seismic moment budget. In contrast, for the 573 K isotherm, the contribution
from convective stresses is negligible and the distribution of the annual seismic moment budget follows
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Figure 4. Comparison of moment-frequency relation between previous studies, this work, and the annual seismic
moment release of the Earth (Harvard-CMT) and the Moon from both shallow moonquakes and three deep moonquake
clusters (A01, A06, and A07). To calculate the moment-frequency-relation, we use the total seismic moment budget,
which takes into account the contribution of both stresses from planetary contraction and convective stresses. The value
N(M ≥ M0) on the y axis shows the annual number of events with a moment larger than or equal to M0. The values
obtained in this study have been calculated using a slope of 0.625 and a maximum marsquake moment of 1020 Nm.

the pattern of the seismic moment based only on planetary cooling, with a larger seismic moment in regions
covered by a thin crust. Although the models for which the annual seismic moment budget has been calcu-
lated using the 573 K isotherm might seem to contradict the association of faults in and around Tharsis, these
faults are most likely due to stresses caused by lithospheric flexure due to loading, which was not considered
in this study. However, whether these faults are active today is not known. If indeed these faults are still active,
stresses produced by lithospheric flexure would represent an additional contribution to the amount of seis-
mic moment available in the Tharsis region. This contribution will need to be estimated by other studies using
flexural models.

The upcoming InSight measurements will help determine the amount and distribution of Martian seismicity
by monitoring the seismic activity for one Martian year. Although the mission provides only one seismic sta-
tion, the presence of depth phases and the relative amplitude of surface waves with respect to body waves
will provide constraints on the depth distribution of seismic sources. On Earth, essentially all seismicity below
the Moho is connected to plate boundaries and subduction of cold lithosphere. Mars, on the other hand, is
a one-plate planet and so far deep seismicity was not expected to exist. This view, however, is challenged by
the HC models presented here, which suggest that the seismogenic volume could extend to depths of about
400 km, if the base of the seismogenic layer is marked by the 1073 K isotherm. We note that deep moonquakes,
occurring at 800–1,200 km below the lunar surface, represent one of the most numerous types of seismicity
on the Moon (Nakamura, 2005). Why the deep moonquakes cluster at this depth is still enigmatic and a num-
ber of mechanisms, such as dehydration embrittlement, and transformational faulting have been suggested
to explain their occurrence in what should be a ductile regime (Frohlich & Nakamura, 2009). Kawamura et al.
(2017) recently proposed that only mantle temperatures of 1240–1275 K are consistent with brittle failure
under loading by Earth tidal stresses. Nevertheless, on Mars such deep nucleation zone (800–1,200 km) is
unlikely, because the interior temperature rapidly increases to values higher than 1500 K below 600 km depth
even for the most depleted mantle. The depth of marsquake foci can be used to distinguish between differ-
ent seismicity models presented in this study, that is, events originating at depths higher than 180 km would
clearly indicate contributions from both cooling and convective stresses while even deeper events (at depths
>250 km) would suggest a cold, depleted mantle and a thick crust enriched in HPE. Moreover, the localization
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of the seismic events, which can be obtained with the Seismic Experiment for Interior Structure instrument,
could also be used to distinguish between an increased seismicity in the northern hemisphere, indicating a
shallow seismogenic volume and only a contribution from cooling stresses, and a seismicity distribution that
is more homogeneous or slightly larger in the southern hemisphere, suggesting a large seismogenic volume
and contributions from both cooling and convective stresses. In addition, the annual seismic moment bud-
get, which will be derived from InSight data, can be used to constrain the seismic efficiency on Mars. If the
annual seismic moment budget of Mars lies below 1017 Nm, our models indicate a seismic efficiency smaller
than 0.05, while a value above 1.95 × 1019 Nm would only be reached if the seismic efficiency is at least 0.5.

5. Conclusion

We have used a series of numerical models of thermal evolution of Mars in a 3-D spherical geometry to assess
the magnitude and spatial distribution of present-day Mars’ seismicity. We have computed the annual seismic
moment budget from 39 thermal evolution simulations for which we have identified three categories of
models based on the assumed crustal thickness. We have self-consistently derived the amount and spatial
distribution of seismicity from the thermal evolution by taking into account contributions from convective
stresses as well as stresses caused by mantle cooling and planetary contraction. Our results predict an annual
moment budget between 5.7 × 1016 and 3.9 × 1019 Nm similar to the values presented previously in Phillips
(1991); Golombek et al. (1992), Golombek (2002), and Knapmeyer et al. (2006).

The future seismic data to be returned by InSight will better constrain the seismicity of Mars and greatly
improve our understanding of the interior of the planet. In particular, the depth of marsquakes and the esti-
mate of the annual seismic moment budget would help distinguish between various models discussed here.
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