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Abstract The lunar highlands are isostatically compensated at large horizontal scales, but the specific
compensation mechanism has been difficult to identify. With topographic data from the Lunar Orbiter
Laser Altimeter and gravity data from the Gravity Recovery and Interior Laboratory, we investigate support
of highland topography. Poor correlation between crustal density and elevation shows that Pratt
compensation is not important in the highlands. Using spectrally weighted admittance, we compared
observed values of geoid-to-topography ratio (GTR) with those predicted by isostatic models. Observed GTRs
are 25.8+7.5–5.7 m/km for the nearside highlands and 39.3+5.7–6.2 m/km for the farside highlands. These values
are not consistent with flexural compensation of long-wavelength topography or Airy isostasy defined under
an assumption of equal mass in crustal columns. Instead, the observed GTR values are consistent with
models of Airy compensation in which isostasy is defined under a requirement of equal pressures at
equipotential surfaces at depth. The gravity and topography data thus reveal that long-wavelength
topography on the Moon is most likely compensated by variations in crustal thickness, implying that
highland topography formed early in lunar history before the development of a thick elastic lithosphere.

1. Introduction

Planetary topography, particularly at large horizontal scales, is commonly supported by an isostatic process
involving compensating excesses and deficiencies in mass at depth. The highlands of the Moon are generally
isostatically compensated (O’Keefe, 1978), and regions of higher elevation have generally greater crustal
thickness than regions of lower elevation (Wieczorek et al., 2013). This conclusion, initially drawn from early
lunar gravity anomaly maps (Muller & Sjogren, 1968), has persisted with subsequent improvements in data
(Zuber et al., 1994; Neumann et al., 1996; Wieczorek et al., 2006, 2013; Andrews-Hanna, 2013). Isostasy can
take different forms, including the two classic compensation mechanisms, Airy and Pratt isostasy, as well
as flexural isostasy that operates regionally rather than locally. Airy isostasy could result from the floatation
of blocks of crustal material of similar composition but different thickness that crystallized in a cooling lunar
magma ocean or the lateral redistribution of material from large impacts, whereas Pratt isostasy arising from
regional variations in crustal density might be a consequence of variations in the timing of accumulation of
early crust in a cooling magma ocean, lateral differences in extent of melting, or repeated redifferentiation of
some regions by large impacts (Wetherill, 1975). Identification of the nature of isostatic compensation thus
holds promise for elucidating the Moon’s early crustal evolution.

A negative correlation between elevation and crustal density inferred from Apollo laser altimetry and
geochemical remote sensing data of lunar near-equatorial highland regions suggested that a Pratt isostatic
mechanism might be an important component of lunar isostasy (Solomon, 1978). Later data from the
Clementine mission (Zuber et al., 1994), however, did not confirm a significant negative correlation between
density and elevation in the lunar highlands more generally (Wieczorek & Phillips, 1997) and instead showed
that the distribution of the Moon’s geoid-to-topography ratio (GTR) is consistent with a single-layer Airy
model of the crust or a two-layer Airy model in which upper crustal thickness varies and the lower crust
has more nearly uniform thickness. Both studies were restricted to the nearside, owing to the limited cover-
age of the Apollo data and large uncertainties in themeasured geoid of the farside. The GTR calculations were
redone (Wieczorek et al., 2006) using gravity data from Lunar Prospector (Konopliv et al., 2001), but those
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data also had large uncertainties on the farside. That analysis gave an average GTR for the nearside highlands
of 26.7 ± 6.9 m/km. Estimates of lunar crustal thickness have been revised downward since those studies, on
the basis of reanalyses of Apollo seismic data (Khan & Mosegaard, 2002; Lognonné et al., 2003) and revised
crustal densities (Wieczorek et al., 2013).

Measurements acquired by two recent spacecraft missions allow us to investigate with high-quality
observations the isostatic state of the Moon’s farside for the first time. The Lunar Orbiter Laser Altimeter
(LOLA) (Smith et al., 2016) on the Lunar Reconnaissance Orbiter spacecraft has provided the most well
sampled and precise topographic map of any planetary body, and the dual-spacecraft Gravity Recovery
and Interior Laboratory (GRAIL) mission (Zuber, Smith, Lehman, et al., 2013) has provided, through
spacecraft-to-spacecraft tracking, the highest-resolution global gravity field of any planetary body (Zuber,
Smith, Watkins, et al., 2013). The gravity models we used from the GRAIL primary and extended missions
(Konopliv et al., 2013, 2014; Lemoine et al., 2013, 2014) were expanded to harmonic degree and order 660,
yielding a half-wavelength surface resolution of ~8 km. Such a resolution is a large improvement over the
gravity fields available to previous GTR analyses (Wieczorek & Phillips, 1997; Wieczorek et al., 2006),
which was expanded to degrees 70 and 150, respectively, corresponding to a half-wavelength surface
resolution (Lemoine et al., 1997; Konopliv et al., 2001) of ~73 km and ~36 km. GRAIL maps of the lunar gravity
field are 4–5 orders of magnitude more accurate than Clementine maps. Of particular importance is the
difference in accuracy for the Clementine and Lunar Prospector geoid maps between the nearside and
farside: those models had formal errors ranging from ~2 m in the nearside geoid to ~24 m in the farside
geoid (Lemoine et al., 1997; Konopliv et al., 2001) and true uncertainties approximately twice those values
(Konopliv et al., 2001). GRAIL gravity fields, in contrast, do not suffer from such a nearside-farside difference
in accuracy.

Topographic information has also undergone substantial improvement. Our elevation data come from a
LOLA-based topographic map (Smith et al., 2016). LOLA has yielded a topographic model expanded to
degree and order 2,500 with ~10 cm precision and ~1 m accuracy. The topographic map following
Clementine, in contrast, was derived from the Clementine lidar instrument, which collected topographic
measurements (Zuber et al., 1994; Smith et al., 1997) expanded to degree and order 72 with ~10 m precision
and ~100 m accuracy. Elevation measurements acquired by the Apollo 15 and 16 laser altimeters (Kaula et al.,
1974), which sampled only a limited set of near-equatorial orbital tracks, had ~100 m precision and
~400 m accuracy.

For this paper, we combined the GRAIL gravity and LOLA topography data in two different ways. First, we
searched for a signature of negative correlation between elevation and crustal density indicative of
Pratt isostasy on more local scales than was possible with data sets available for previous studies.
Second, we used the method of spectrally weighted degree-dependent admittances to construct isostatic
models that fit the observed GTR values of the lunar highlands. We discuss the results from these proce-
dures as they relate to the structure of the lunar crust and mantle as well as the geophysical evolution
of the Moon.

2. Elevation-Density Correlations
2.1. Methods

To assess the global importance of Pratt isostasy on the Moon, we searched for a negative correlation
between elevation and density using LOLA-derived elevation, Lunar-Prospector-derived grain density, and
GRAIL-derived bulk density. We used crustal grain density derived from empirical correlations between
density and composition (Huang & Wieczorek, 2012) combined with elemental abundances of titanium
and iron measured by the Lunar Prospector gamma-ray spectrometer (Prettyman et al., 2006). We used
bulk density derived from GRAIL gravity (Wieczorek et al., 2013) and topography data from LOLA (Smith
et al., 2016).

We assumed that the composition at or near the lunar surface is representative of that of the underlying crus-
tal column. The lunar highlands have amaximum elevation of ~10 km. A pure Pratt mechanismwould imply a
crustal density of 2,040 kg/m3 at such an elevation and 2,270 kg/m3 at an elevation of 5 km, given a crustal
thickness of 40 km and a crustal density of 2,550 kg/m3 at zero elevation (Wieczorek et al., 2013). These values
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can be rejected: if the grain density of the highlands crust were 2,900 kg/m3, a bulk density of 2,040 kg/m3

would require ~30% porosity. Such high porosities do not hold throughout the crust (Wieczorek et al.,
2013; Besserer et al., 2014; Soderblom et al., 2015). We can thus rule out a pure Pratt mechanism that involves
no relief on one or more interfaces at depth.

We also explored the possibility of Pratt isostasy on regional scales. We applied a moving window of a
given radius to maps of elevation, grain density, and bulk density. For each window, we sampled points
in a grid pattern at an equidistant nodal spacing of 8 km and determined the correlation coefficient R
between density and elevation in that window. At each window location, we plotted the sampled values
of grain or bulk density versus elevation, and we calculated the squared correlation coefficient R2 and
the slope of the line determined from a least squares fit. A negative slope indicates that Pratt isostasy
may be an important contributor to isostasy, and a high R2 value indicates a good fit by a linear relation.
We avoided interpretation of windowed areas with a substantial fraction (~10% or more) of maria. Mare
basalt deposits were emplaced in topographic lows (Head, 1975), have a higher density than the underlying
anorthositic crust (Kiefer et al., 2012), and are much thinner than the crust (Head, 1982); therefore, they are
not representative of the composition of the underlying crustal column. Mare regions were defined from
digitized U.S. Geological Survey maps (Fortezzo & Hare, 2013). We also avoided interpretation of windowed
areas with more than 10% of the area within the large farside South Pole-Aitken (SPA) basin (Head et al.,
2010). Points not in either the maria or SPA were considered highlands in this study. We tested for the
significance of the resulting set of R2 values by performing a t test, for which the null hypothesis is that
the slope of the best fit line between density and elevation at each location is equal to zero. The test
statistic is the slope of the best fit line divided by the standard error of the slope. We chose a significance
level of 0.05 and rejected the null hypothesis only if the P value associated with the test statistic was less
than this significance level.

2.2. Results

A map of resulting R2 values is shown in Figure 1 for grain density and elevation measured within 500 km
radius windows. For most regions, we do not find a negative correlation between density and elevation at
the 95% confidence level. Such a negative correlation is seen and significant primarily in windows that
contain both highlands and mare regions, or both highlands and portions of the SPA basin, although a
few other localized regions of significance at the 95% level exist. For areas with both highlands and maria,
the correlation results from the volcanic emplacement of high-density mare material in topographic lows
after formation of the highlands crust rather than Pratt isostasy. We also do not favor short-wavelength
Pratt isostasy in the SPA basin, because there is no significant negative correlation in windows that are
entirely confined to SPA regions. These general results also hold for cases with 300 and 700 km radius sam-
pling windows, and for cases that considered bulk density instead of grain density. Thus, we find no evidence
for a Pratt mechanism for isostatic compensation of topographic relief on regional scales (i.e., several hun-
dred kilometers and greater) in the lunar highlands.

These results do not preclude a global Pratt mechanism operating on the harmonic degree-1 scale. To test
this possibility, we searched for a negative correlation between grain density and elevation for all points in
the lunar highlands, not just those in a local window. We found a significant (on the basis of the t test
described above) negative slope of the best fit line at �3.27 kg/m3 per km. This value, however, is a factor
of ~20 less than the expected value of ~68 kg/m3 per km for a pure Pratt mechanism (calculated with the
equation for Pratt isostasy on a sphere; Wieczorek & Phillips, 1997). Thus, any Pratt component must also
be at most minor on the global scale.

3. Geoid-to-Topography Ratios
3.1. Methods

To test if Airy isostasy is an important mechanism of topographic support, we interpreted GTRs on a sphere
using spherical harmonic functions (Wieczorek & Phillips, 1997). We calculated GTR values from the LOLA-
derived elevation map and the GRAIL-derived geoid map. For both maps, we excluded spherical harmonic
degrees 1 and 2, although our results are robust with respect to this filtering. We determined GTRs by
employing a multitaper spectral approach with Slepian windows (Wieczorek & Simons, 2007) (Figure 2).
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These observed GTRs were compared with the GTRs predicted by various isostatic models. We considered
single-layer Airy models, two-layer Airy models, and a Pratt model. Predicted GTRs were given by a
weighted sum of admittances for each spherical harmonic degree (Wieczorek & Phillips, 1997).

The gravitational potential, U, exterior to a spherical body can be expressed as

U rð Þ ¼ GM
r

X∞
l¼0

Xl

m¼-l

R0
r

� �
ClmYim θ; φð Þ; (1)

where r is position, G is the gravitational constant,M is the mass of the body, R0 is the reference radius of the
spherical harmonic coefficients Clm of degree l and order m, Ylm is the normalized spherical harmonic
function, θ is the colatitude, and φ is the longitude. A given Airy isostatic model on a sphere is equivalent

Figure 1. Test of a Pratt model for lunar isostasy. R2 values (bottom) for best fit lines of grain density as a function of
elevation (middle) within a moving window of 500 km radius. Shown are only R2 values for lines with negative slope
values that are statistically significant according to our hypothesis testing. Areas of high R2 value usually occur only when
the window includes mare regions or portions of the SPA basin in addition to highland topography. The inset (top) shows
one example of the sampled grain density and elevation points (black dots) within a 500 km radius window located at the
center of the farside (dashed circle); in this case, we cannot reject the null hypothesis that the slope of the best fit line (red
line) is equal to zero. The maps are Mollweide projections centered on the farside.
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to a sum of spectrally weighted degree-dependent values of the gravity-topography admittance (Wieczorek
& Phillips, 1997). The geoid n is defined as the equipotential surface associated with the potential U at a
reference radius of 1,738 km. Geoid admittance Zl is the linear transfer function relating geoid and
topography coefficients, given by

nlm ¼ Zltlm; (2)

where nlm and tlm are the spherical harmonic coefficients of the geoid and topography, respectively, at
degree l and order m.

A previous study (Wieczorek & Phillips, 1997) calculated GTRs on the Moon by fitting a line to geoid and
elevation points sampled within a circular window and defining the slope to be the GTR, a procedure
followed by others for Venus (Kucinskas et al., 1996) and Mercury (Padovan et al., 2015). Other studies
of Venus used cosine tapers to localize topographic fields (Smrekar & Phillips, 1991; James et al., 2013).
Here we instead determine GTRs by employing a multitaper approach (Wieczorek & Simons, 2007) with

Figure 2. Example of localization of our data. This particular Slepian window (top) was constructed to concentrate
optimally its power within a spherical cap of radius 750 km while possessing a spherical harmonic bandwidth of 15. The
window was applied to the geoid (middle) and topography (bottom). The maps of localized geoid and topography were
then converted back to spherical harmonic coefficients, which were used to calculate the GTR from equation (4). The maps
are Mollweide projections centered on the farside.
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Slepian windows (Slepian & Pollak, 1961). Slepian windows on a sphere are data tapers that optimize the
trade-off between localization and spectral leakage and thus yield a more representative value for a given
locality for geophysical problems than other windowing functions. We derived Slepian windows using
software (Simons et al., 2006; Harig et al., 2015) for spherical caps of radius 500 km, 750 km, and
1000 km and a tapering bandwidth value of L = 15. Use of multiple-sized caps ensures that our results
are not sensitive to an arbitrary choice of a single size and allows for a basic analysis of how results change
with cap size. All caps were chosen such that their radii are much greater than the half-wavelength
resolution of the GRAIL gravity field. For each case, we kept those Slepian windows with corresponding
spatial concentration factors >0.99 (i.e., the data tapers for which 99% of the squared area is contained
within the spherical cap). For the three cap radii of 500 km, 750 km, and 1000 km, there are one, three,
and eight windows, respectively, with spatial concentration factors that meet this constraint. Such
windows are the ones we used to localize the geoid and topography (Figure 2). Increasing the tapering
bandwidth value L yields more localizing windows with a spatial concentration factor > 0.99. For example,
L = 30 gives 6, 23, and 44 such windows for spherical caps of radius 500 km, 750 km, and
1000 km, respectively.

Degree-1 elevation terms were excluded from the nominal GTR results because there is no gravity signature
in center-of-mass coordinates. Degree-2 elevation and geoid terms were excluded because they are likely
dominated by tidal and rotational components, including a “fossil bulge,” i.e., a component of the lunar shape
caused by the tides and rotational flattening early in lunar history (Lambeck & Pullan, 1980; Garrick-Bethell
et al., 2010, 2014; Keane & Matsuyama, 2014). Though degree-1 and degree-2 terms were excluded from
our nominal results, we discuss the effects of including them below.

We used a moving window approach to estimate the GTR locally. We created localized maps of geoid and
topography by moving a Slepian window across the surface of the Moon. We then constructed the spherical
harmonic coefficients for localized geoid and topography. The GTR is given by

GTR ¼
P

lSTN lð Þ� �� N00T00P
lSTT lð Þ� �� T002

; (3)

where STN is the cross-power spectrum of functions T and N at degree l, T is the localized topography, and N is
the localized geoid. If one wishes to assume no offset in the linear fit (i.e., the value of the geoid is zero at zero
elevation), the equation simplifies to (Wieczorek, 2015)

GTR ¼

X
l

STN lð ÞX
l

STT lð Þ : (4)

Derivations for equations (3) and (4) are provided in Appendix A. The equations are based on the assump-
tion that topography is referenced to a sphere (Wieczorek & Phillips, 1997). We find that including offsets,
as in equation (3), does not change the mode of the distribution of resulting GTRs by more than 3 m/km
compared with excluding them, as in equation (4). The localized fields were expanded to spherical harmo-
nic degree and order 660. By repeatedly calculating the GTR in this way, sampling the local geoid and
topography in an equidistant grid pattern at a nodal spacing of 30 km, we constructed a global map of
GTRs for each Slepian taper, and we then averaged the results across all our chosen tapers at each point
to obtain a multitaper estimate of the GTRs for the entire Moon (Figure 3). This averaging process ensures
that our results are not sensitive to arbitrarily choosing one specific taper for cases where there are multi-
ple Slepian windows with a spatial concentration factor > 0.99. The multitaper method yields several GTR
maps for Slepian windows constructed with spherical caps of 750 and 1,000 km radius; we interpreted the
standard error of the GTR among those maps at any location as the uncertainty in the GTR.

The predicted GTR for an Airy isostatic model is a weighted sum of admittances, Zl, for each spherical
harmonic degree (Wieczorek & Phillips, 1997):

GTR ¼
X
l

WlZl: (5)
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The weighting function Wl is the expected fractional power of the localized topography at degree l:

Wl ¼ STT lð Þh iPlmax

i¼lmin

STT ið Þh i
; (6)

where the brackets denote the expected value. Since we are calculating the observed GTRs of the Moon
using Slepian windows, this weighting function takes into account the properties of those localization
windows and can be expressed in terms of the unlocalized topographic coefficients and Slepian window
coefficients (see Appendix A). This technique represents a window-bias correction and ensures that the
models have the same windowing bias as the observations, an essential property for our comparison. For

Figure 3. (a) Observed GTR values on the Moon calculated using a multitaper approach with localizing Slepian windows of
radius 500 km. Areas where a circle of radius 500 km included more than 10% surface area of maria or the SPA basin
interior are not shown and were excluded from subsequent analysis. The map is a Mollweide projection centered on the
nearside. (b) Histograms of observed GTRs on the nearside and farside highlands using localizing Slepian windows of
radius 500 km. (c) Histograms of observed GTRs for the farside highlands calculated using localizing Slepian windows of
radius 500, 750, and 1,000 km.
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a single-layer Airy model compensated at the crust-mantle interface, the admittance Zl at degree l is given by
(Wieczorek & Phillips, 1997)

Zl ¼ 4πρcR
3

M 2l þ 1ð Þ 1� R� Tc
R

� �l
" #

; (7)

where R is the lunar radius, M is the lunar mass, Tc is the reference crustal thickness (i.e., the thickness at zero
elevation), and ρc is the density of the crust.

The above methodology is based on the premise that isostasy is achieved when crustal columns contain
equal mass. We hereafter refer to this approach as the “equal masses” approach. However, recent workers
have asserted that the equal masses approach does not accurately represent a state of equilibrium on a
sphere (Beuthe et al., 2016; Hemingway & Matsuyama, 2017), even when the geometry of the sphere is
considered when computing masses in crustal columns (Wieczorek & Phillips, 1997). Hemingway and
Matsuyama (2017) argue that a more appropriate definition of isostasy is obtained when pressure differences
are minimized along equipotential surfaces at depth (e.g., Turcotte et al., 1981). We hereafter refer to this
approach as the “equal pressures” approach. Under the equal pressures approach, the admittance Zl at
degree l is given by

Zl ¼ 4πρcR
3

M 2l þ 1ð Þ 1�
R�Tc
R

� �lþ4

1þ 4πρcR
3

3M
R�Tc
R

� �3 � 1
� �

2
4

3
5; (8)

where all variables are the same as in equation (7).

One can also consider Airy models with two layers in the crust. A multilayered model changes the predicted
admittances because it changes the mass distribution throughout the crust but remains consistent with
the observed bulk density of the crust, effectively changing the depth of compensation. The admittance
equations are those given by Wieczorek and Phillips (1997), as corrected by Pauer and Breuer (2008). For a
two-layer Airy model in which an upper crust that varies in thickness overlies a lower crust of uniform thick-
ness, the admittance at degree l is

Zl ¼ 4πρcR
3

M 2l þ 1ð Þ 1� R� Tuc
R

� �l

1þ ρm � ρlc
ρlc � ρuc

R� Tc
R� Tuc

� �2
" #�1

� R� Tc
R

� �l

1þ ρlc � ρuc
ρm � ρlc

R� Tuc
R� Tc

� �2
" #�1" #

;

(9)

where Tc is the total crustal thickness at zero elevation, Tuc is the upper crustal thickness at zero elevation, and
ρuc, ρlc, and ρm are the densities of the upper crust, lower crust, and mantle, respectively. Finally, for a two-
layer Airy model with a lower crust of variable thickness underlying a uniformly thick upper crust, the admit-
tance at degree l is

Zl ¼ 4πρcR
3

M 2l þ 1ð Þ 1þ ρlc � ρuc
ρuc

R� Tuc
R

� �lþ2
" #

� R� Tc

R

� �l

1þ ρlc � ρuc
ρuc

R� Tuc
R

� �2
" #" #

: (10)

These two models can be regarded as end-members. Equation (9) represents a two-layer crust for which the
intercrustal boundary follows the crust-mantle interface; equation (10) represents a two-layer crust for
which the intercrustal boundary follows the topography. Note that although equations (9) and (10) are for
crustal layers, the variables may correspond to any layers of uniform density (i.e., including a layer in the
uppermost mantle).

Equations (9) and (10) follow from the equal masses approach to isostasy. Two-layer models under the equal
pressures approach (Hemingway & Matsuyama, 2017) have not previously been derived, so we derive such
formulas here. For an Airy model with two layers in the crust, one in which the upper layer varies in thickness
and overlies a uniformly thick lower layer, the admittance at degree l is

Zl ¼ 4πρucR
3

M 2l þ 1ð Þ 1� ρlc � ρuc
ρm � ρuc

R� Tuc
R

� �lþ2

� ρm � ρlc
ρm � ρuc

R� Tc
R

� �lþ2
" #

; (11)
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where the variables are the same as in equations (9) and (10). For a two-layer Airy model in which a lower
crust that varies in thickness underlies an upper crust of uniform thickness, the admittance at degree l under
the equal pressures approach is

Zl ¼ 4πρucR
3

M 2l þ 1ð Þ 1þ ρlc � ρuc
ρuc

R� Tuc
R

� �lþ2

� ρlc
ρuc

R� Tc

R

� �lþ2
" #

; (12)

where the variables are again the same as in equations (9) and (10). Equations (11) and (12) are derived in
Appendix B. These two equations are derived under the assumption that the gravitational acceleration at
the top and bottom of the crust is equal, an assumption that is approximately valid for the Moon but may
not be for other planets (see section 4).

There is no analogous simple spherical admittance model for Pratt isostasy, so we used the approximation
from equation (18) of Wieczorek and Phillips (1997), derived from expressions of Pratt-induced geoid anoma-
lies on a sphere from Haxby and Turcotte (1978):

GTR ¼ πρcR
2Tc

M
: (13)

In equation (13), the density ρc is the reference crustal density (i.e., density at zero elevation), and Tc is the
reference crustal thickness.

To guide the choice of parameters for our isostatic models, we considered the results of other studies. GRAIL
observations (Wieczorek et al., 2013) combined with Apollo seismic data (e.g., Dainty et al., 1976; Nakamura
et al., 1976; Goins et al., 1981; Nakamura, 1983; Khan &Mosegaard, 2002; Lognonné et al., 2003) show that the
reference crustal thickness on the Moon is 34–43 km, and the average crustal density in the highlands is
2,550 kg/m3. Measurement of the bulk density of lunar samples with the bead method and helium pycnome-
try (Kiefer et al., 2012) indicates that lunar mare basalts typically have bulk densities between 3,010 and
3,270 kg/m3. Theoretical models of lunar magma ocean solidification and subsequent mantle overturn com-
bined with calculation of mineral densities as a function of depth (Elkins-Tanton et al., 2011) predict an upper
mantle density that monotonically increases with depth between ~3,000 and ~3,200 kg/m3, with a discrete
jump in density at ~700 km depth. Finally, whereas geophysical models often include a uniform density crust,
a GRAIL-based study (Besserer et al., 2014) showed that most localized effective density spectra in the lunar
highlands decrease with increasing spherical harmonic degree above degree and order ~100, a result consis-
tent with a decrease of porosity (increase in bulk density) with depth in the upper ~10 km of the crust.

3.2. Results

GTR values for the Moon are shown in Figure 3a for the case with localizing Slepian windows constructed
from spherical caps of radius 750 km. For a cap radius of 750 km, there are three Slepian windows with
concentration factors >0.99. We define uncertainties as the standard error of GTR values over these three
tapers. For most (>80%) locations on the Moon, these uncertainties are <3 m/km. We additionally test the
mean GTRs for each individual taper. The three tapers yield a range in mean GTR for the nearside or farside
highlands of<2 m/km. Therefore, variability among the tapers (i.e., different Slepian windows) does not have
a large effect on our results.

Our focus is on the lunar highlands. On the nearside, many of the GTR values are negative at or near the lunar
maria, reflecting the effect of high-density mare basalts preferentially located in areas of low nearside
topography. We masked out regions where more than 10% of the area of our localizing window consists
of lunar maria (Fortezzo & Hare, 2013) or SPA basin interior (Head et al., 2010). As with the test for Pratt
isostasy, we considered the remaining regions as highlands. We found that the median nearside GTR value
is 25.8+7.5–5.7 m/km (where the bounds are the 25th and 75th percentile values), consistent with the
26.7 ± 6.9 m/km average value found by Wieczorek et al. (2006). In contrast, the median GTR value for the far-
side highlands is substantially higher at 39.3+5.7–6.2 m/km (Figure 3b). A Kolmogorov-Smirnov test shows that the
nearside and farside GTR distributions are statistically different at the 0.01% significance level. We report the
median GTR rather than the mean GTR to account for possible asymmetry in GTR distribution (Figure 3b).

Our nominal case involved expansion of gravity and topography fields to degree and order 660, excluding
degrees 1 and 2, but we performed tests with other expansions for robustness. Using localized fields

Journal of Geophysical Research: Planets 10.1002/2017JE005362

SORI ET AL. ISOSTATIC COMPENSATION OF THE LUNAR HIGHLANDS 654



expanded only to degree and order 300 changed the resultant GTRs by an average of only ~0.1 m/km and
a maximum of 1 m/km, whereas using fields expanded only to degree 100 changed the resultant GTRs by
an average of ~5 m/km and a maximum of 15 m/km. The average differences in GTR are relatively
small because the geoid emphasizes longer wavelengths. Though we filtered out degree 2 in these
results as described above, we tested our calculations for cases in which degree 2 was included in the
geoid and topography fields. We found that this inclusion caused the resultant distribution of GTRs to
be broader than the case with degree 2 removed but did not change the mode of the distribution by
more than 3 m/km. We also tested our calculations for cases in which both degree 1 and degree 2
were included, and we found that the mode of the distribution changed by less than 1 m/km compared
with the case with only degree 1 filtered out. We also tested the sensitivity of our results to the choice of
tapering bandwidth L. We found that analysis using localization with L = 30 changed the mean lunar
GTR by only ~0.1 m/km compared with L = 15. Finally, we calculated GTRs spatially instead of
spectrally. We found that performing linear regression between geoid and topography data sampled in
a window of radius 500, 750, or 1,000 km changed the mean of the resulting GTRs by <3 m/km compared
with cases using the same sized Slepian windows, but the distribution of GTRs was less broad than with
the spectral approach. Note that even in this case of using a localizing window that is constant, the
spectral properties of the window are taken into account when compared with modeled GTRs
(see Appendix A).

Although GTR distribution is somewhat sensitive to the radius of the Slepian windows, our results hold for a
range of window sizes (Figure 3c). We also tested for possible effects of some geologic structures. Large
impact basins have a super-isostatic central region and a surrounding subisostatic annulus (Neumann
et al., 1996, 2015; Andrews-Hanna, 2013; Melosh et al., 2013). Also, areas that appear to be highland terrain
on the surface may contain cryptomaria, mare basalts covered by younger impact ejecta (Whitten & Head,
2015; Sori et al., 2016). When we excluded basins >200 km in diameter and proposed cryptomare regions
from the analysis, the median GTR changed by <1 m/km. That this change was small is probably because
cryptomare deposits are insufficiently massive to have large effects on isostatic state, and because the posi-
tive mass anomaly at the center of a basin is the result of isostatic adjustment of the entire basin during
cooling and contraction of a large impact melt pool (Melosh et al., 2013) and is effectively counteracted
in our analysis by the surrounding annular-shaped negative anomaly.

Predicted GTR values for single-layer Pratt and Airy models of the crust are shown in Figure 4. For the Airy
models, we show results for models calculated using both the equal masses approach of equation (7) and
the equal pressures approach of equation (8). For the inferred density and thickness of the lunar crust
(Wieczorek et al., 2013), only those Airy models calculated with the equal pressures approach yield GTR
values for the nearside and farside highlands equal to those observed. Similarly, examples of GTR values
for two-layer crustal models of Airy isostasy, again taking into account localization of the data, are shown in
Figure 5. These models, too, predict GTR values that are too low for appropriate model parameters with the
equal masses approach to isostasy. This result holds particularly for the farside highlands, where the GTR
values under the equal masses approach are inconsistent with either Airy or Pratt mechanisms for isostatic
compensation entirely within the crust, unless we invoke improbably high values for average crustal thick-
ness (>60 km), improbably high values of average crustal density (>2,900 kg/m3), and/or a large density
inversion with depth, for which there is no observational evidence. In contrast, under the equal pressures
approach, observed GTR values are consistent with those predicted for a single-layer Airy model or with a
two-layer Airy model.

In the equal pressures case, the GTRs correspond to an average crustal thickness of 47 km if topography is
entirely compensated by Airy isostasy. This value is greater than the 34–43 km average crustal thickness
values of Wieczorek et al. (2013), but we excluded the mare and SPA regions, where the crust is relatively
thin. The average crustal thickness values of Wieczorek et al. (2013) in regions we studied are 39, 40, 48, and
49 km for the four different models they considered (these four models have, respectively, overall average
crustal thickness values of 34, 35, 43, and 43 km and average crustal porosities of 12, 7, 12, and 7%).
Converting the local crustal thickness to zero-elevation crustal thickness shows that it may be necessary
to invoke some difference in the zero-elevation crustal thickness between the nearside and farside, provid-
ing caution against assuming that Airy isostasy is the only contributor to crustal thickness variations at the
degree-1 scale.
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Figure 4. GTR values predicted for isostatic compensation of topography by variations in the density (top) or thickness of a single crustal layer according to the
equal masses approach (middle) or equal pressures approach (bottom). For the top plot, the crustal density is the density at zero elevation; for the middle and
bottom plots, the crustal thickness is the thickness at zero elevation. The median observed GTRs of the nearside highlands (25.8 m/km) are represented by solid
white lines; the 25th (20.1 m/km) and 75th (33.1 m/km) percentile values are represented by dashed white lines. The median observed GTRs of the farside
highlands (39.2 m/km) are represented by solid black lines; the 25th (33.1 m/km) and 75th (45.0 m/km) percentile values are represented by dashed black lines. For
expected ranges in values of the Moon’s average crustal thickness and density, the GTR values of these isostatic models match the observed GTRs of the
highlands under Airy isostasy only with the equal pressures approach.
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4. Discussion

The most direct interpretation of our results is that lunar topography is compensated under an Airy mechan-
ism, and that the equal pressures approach to isostasy (Hemingway & Matsuyama, 2017) is the appropriate
definition to represent a state of equilibrium. GTR values under the equal masses approach for compensation
entirely with variations in thickness of the crust are too high, especially for the farside highlands. The farside
GTR data may be fit under the equal masses approach if the upper mantle is involved in compensation. Under
this interpretation, by adapting equation (9) for a layered model of a variably thick crust overlying a uniformly
thick upper mantle, we found that an upper mantle >125 km thick and with a density of 3,000–3,220 kg/m3
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Figure 5. GTR values predicted for isostatic compensation of topography according to the equal masses approach (left column) or equal pressures approach
(right column) by variations in the thickness of either an upper crustal layer (top row) or a lower crustal layer (bottom row), given a uniform thickness of the
second crustal layer. The median observed GTRs of the nearside highlands (25.8 m/km) are represented by solid white lines; the 25th (20.1 m/km) and 75th
(33.1 m/km) percentile values are represented by dashed white lines. The median observed GTRs of the farside highlands (39.2 m/km) are represented by solid black
lines; the 25th (33.1 m/km) and 75th (45.0 m/km) percentile values are represented by dashed black lines. In all cases, the density of the lower crust is 300 kg/m3

greater than that of the upper crust, the density of the underlying mantle is 3,400 kg/m3, and the upper and lower crusts have equal average thickness values.
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given a lower mantle density of 3,400 kg/m3 can fit the observed
farside GTRs. Such a relatively low mantle upper density could result
from porosity (Wieczorek et al., 2013) or from different composition
if the upper mantle is primarily Mg-rich orthopyroxene (enstatite)
rather than Mg-rich olivine (forsterite) (Elkins-Tanton et al., 2011;
Melosh et al., 2017).

The simpler explanation, and therefore the one that we favor here, is an
interpretation of the GTR values under the equal pressures approach.
With this approach, the observed GTR values of both the nearside
and farside highlands can be reproduced with Airy models. It is worth
noting that Hemingway and Matsuyama (2017) argued that the differ-
ence between the two approaches was relatively minor for the Moon,
yielding results that differ by only ~27%. However, that statement
was made in consideration only of the nearside GTRs of the Moon.
For the lunar farside, where observed GTRs and crustal thickness are
greater, the difference between the two approaches is more pro-
nounced, as may be seen in Figure 6. This effect is consistent with
our observations and models. The difference between the two
approaches yields a relatively small difference in GTR on the nearside
and a greater difference on the farside (i.e., the difference in the posi-
tions of the white lines in the middle and bottom panels of Figure 4
is smaller than those of the black lines). The dichotomy in observed
GTR values between the nearside and farside (Figure 3b) thus may be
a consequence of the hemispherical dichotomy in crustal thickness.

An alternative hypothesis to Airy compensation is flexural isostasy
involving substantial lithospheric strength in areas of large topographic
loads, an effect that would increase admittance values compared with
a strict Airy model. The farside highlands, however, are thought to have
formed very early in lunar history (Wasson & Warren, 1980; Jolliff et al.,
2000), as a result of convective asymmetries in the magma ocean
(Loper & Werner, 2002) or spatial variations in tidal heating (Garrick-
Bethell et al., 2010, 2014). Additionally, flexural support predicts high
admittances at low spherical harmonic degrees. The equation for the
admittance at degree l for a top-loaded flexural model (James et al.,
2015) is given by

Zl ¼ 4πρcR
3

M 2l þ 1ð Þ 1� R� Tc
R

� �lþ2 1� Γ1

1� Γ2 þ ρc
ρm�ρc

el

" #
; (14)

where the variables are the same as in equations (7)–(12). A derivation
of this equation, as well as the self-gravitational terms Γ1 and Γ2 and
the parameter el, is given in Appendix C. This equation is derived under

the assumption, also made in the derivation of equations (11) and (12), that the gravitational acceleration at
the top and bottom of the crust is equal (see section 4).

We plot the expected admittances from this model in Figure 7a and the resulting expected GTRs in Figure 7b,
and we compare both to the case of a single-layer Airy isostatic model under the equal pressures approach.
For the observed crustal thickness on the Moon (Wieczorek et al., 2013), our observed GTR values are best fit
with the Airy compensation model, as even a moderate elastic thickness causes predicted GTR values to be
too high. For example, for an elastic thickness of 5 km, the best fit nearside GTR of 25.8 m/km corresponds to a
crustal thickness of 7 km, whereas the upper bound nearside GTR of 33.3 m/km corresponds to a crustal thick-
ness of 22 km. The effect of increasing elastic thickness is to increase admittances and therefore GTR. For an
elastic thickness of 12 km or greater, even the upper bound on our observed farside GTR (45.0 m/km) is never
reached for any crustal thickness. We therefore conclude that Airy isostasy is more likely to be the primary
compensation mechanism.
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Figure 6. Quantification of the differences between the equal masses
formulation (Wieczorek & Phillips, 1997) and the equal pressures formulation
(Hemingway & Matsuyama, 2017) of single-layer Airy isostasy with a crustal
density of 2,550 kg/m3. (a) Degree-dependent admittances for both approaches.
(b) Predicted GTR values for both approaches. The magnitude of the differences
is highest for low spherical harmonic degrees and large crustal thicknesses
(e.g., the farside). The horizontal dashed line corresponds to the median
observed GTR for the farside highlands.
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Dynamic compensation of topography, that is, support by mantle
convection, can also result in similarly high GTR values compared with
the equal masses Airy model, and such a process has been proposed
for Earth (Ceuleneer et al., 1988) and Venus (Smrekar & Phillips, 1991).
However, whereas convection may (Laneuville et al., 2013) or may not
(Pritchard & Stevenson, 2000) have been important following magma
ocean solidification and mantle overturn, the lunar mantle is unlikely
to be convecting vigorously at present (Laneuville et al., 2013; Evans
et al., 2014). Additionally, we do not observe an increase in mean
GTR with increasing size of localizing window, which would be
expected for dynamic compensation (James et al., 2013). Therefore,
we conclude that gravity and topography data are most consistent
with Airy isostasy, either in a single-layered crust or a two-
layered crust.

Our results suggest that the formation of long-wavelength topogra-
phy on the Moon preceded the development of a thick elastic
lithosphere. This implication constrains the formation of the farside
highlands in particular. If a substantial fraction of the thickness of
the farside highlands consists of impact ejecta from the SPA basin-
forming impact (Zuber et al., 1994) emplaced after the growth of an
elastic lithosphere, the farside GTRs would be greater than presently
observed (Figure 7b). Since Airy compensation in the crust is the more
likely compensation mechanism, any contribution from top-loading
flexure is relatively minor. Therefore, the farside highlands likely
formed early in lunar history as a result of processes such as
asymmetries in the magma ocean or spatial variability in tidal heating
(Wasson & Warren, 1980; Jolliff et al., 2000; Loper & Werner, 2002;
Garrick-Bethell et al., 2010, 2014; ). Alternatively, the farside highlands
may include a substantial contribution from SPA ejecta if the
basin-forming impact occurred sufficiently early in lunar history. This
interpretation would require that there was no lithosphere with
long-term strength immediately following basin formation, and that
the timescale for relaxation of long-wavelength topography and crustal
thickness variations by lateral crustal flow under Airy isostasy was
longer than the development time of an elastic lithosphere thereafter.

A few caveats apply to our results. Equations (9)–(12) are based on the
assumption that the gravitational acceleration at the surface is equal to
the gravitational acceleration at the crust-mantle interface (and the
lower crust-upper crust interface in the two-layer scenarios). The differ-
ence in acceleration at the two surfaces is minor for the Moon; for a
crust with density 2,550 kg/m3 and average thickness 40 km, we calcu-
lated the difference between gravitational acceleration at the surface
and at the crust-mantle interface to be <1%. Finite-amplitude correc-

tions are also neglected in equations (7)–(12) but are similarly minor in magnitude. Future work could
consider a combination of top-loading and bottom-loading scenarios to reproduce observed admittances,
as has been done for Mars (e.g., Lowry & Zhong, 2003). Our results here show that compensation occurring
primarily with an Airy mechanism involving variations in crustal thickness is consistent with the high-
resolution gravity and topography data. We interpret this scenario as correct because of its consistency with
previous models of the formation of highland terrain, but it is possible that a complex combination of Airy
isostasy, flexure from top loading, and flexure from bottom loading may also be mathematically consistent
with observations. Flexural cases with either membrane stresses only or bending stresses only may also be
considered as end-members, as it has been suggested that impacts may relieve one stress component
(Freed et al., 2009).
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Figure 7. (a) Admittance values for several compensation models. Under flexure
for a top-loaded lithosphere with a crustal thickness of 40 km and various elastic
thicknesses (black lines), admittance is high at low degrees and low at high
degrees. Under Airy isostasy for various crustal thicknesses (colored lines) under
the equal pressures formulation, admittance varies less as a function of
spherical harmonic degree. (b) GTRs as a function of crustal thickness for models
of various elastic thickness and for the case of pure Airy isostasy. For the lunar
crustal thickness of Wieczorek et al. (2013), the case of Airy isostasy fits observed
GTRs better than cases with a flexural signal.
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5. Summary and Conclusions

A general lack of correlation between crustal density and topography shows that Pratt isostasy is not an
important contributor to the isostatic compensation of the lunar highlands. Analysis of the Moon’s GTRs
reveals that the lunar highlands can be fit with a model of Airy compensation if isostasy is defined as a state
in which equal pressures occur along equipotential surfaces at depth rather than a state in which
crustal columns of a given surface area contain equal masses. An observed hemispherical dichotomy
in GTR values, with farside highland GTRs (39.3+5.7–6.2 m/km) significantly greater than nearside highland
GTRs (25.8+7.5–5.7 m/km), occurs as a result of a similar hemispherical difference in crustal thickness. The Airy
isostatic model can be fit with either a single-layered crust or a two-layered crust. Flexural compensation is
likely to be only a minor component of compensation at large scales because even a relatively small elastic
thickness at the time of the formation of the topography yields GTRs higher than observed. Therefore, we
conclude that GRAIL data reveal that long-wavelength topography of the Moon is primarily compensated
by Airy isostasy. Our conclusion implies that this topography was formed early in lunar history before the
development of a thick elastic lithosphere.

Appendix A: Spectrally Derived GTRs

In this Appendix we derive equations (3) and (4), that it, the geoid-to-topography ratio (GTR) in the spectral
domain. We start by assuming that the geoid n and topography t are expressed as a sum of spherical harmo-
nic functions:

n θ;ϕð Þ ¼
XL
l¼0

Xl

m¼�l

nlmYlm θ;ϕð Þ (A1)

t θ;ϕð Þ ¼
XL

l¼0

Xl

m¼�l

tlmYlm θ;ϕð Þ; (A2)

where l and m are spherical harmonic degree and order, respectively, L is the maximum observed degree of
geoid or topography, and Ylm are spherical harmonic functions. To determine the GTR in a particular region,
we localize the data by multiplying the geoid and topography by the same localizing window h(θ, Φ), also
expressed in spherical harmonics:

h θ;ϕð Þ ¼
XLh
l¼0

Xl

m¼�l

hlmYlm θ;ϕð Þ: (A3)

Here Lh is the maximum degree to which the localizing window is expanded. The localized geoid N and
topography T are then simply given by multiplying equations (A1) and (A2) by equation (A3):

N θ;ϕð Þ ¼ h θ;ϕð Þn θ;ϕð Þ (A4)

T θ;ϕð Þ ¼ h θ;ϕð Þt θ;ϕð Þ: (A5)

An example of a localizing window, localized geoid, and localized topography is shown in Figure 2. The GTR is
the linear scaling factor, a, that best relates the localized topography to the localized geoid:

N θ;ϕð Þ ¼ aT θ;ϕð Þ þ b; (A6)

where b is the offset at zero topography. For some cases, this offset may be assumed to equal 0, but we derive
the general case here. The values for a and b can be calculated by minimizing the misfit between the two
localized fields in equation (A6) in a least squares sense by integrating over the area of the entire sphere
Ω. The term to be minimized is

∫Ω N θ;ϕð Þ � aT θ;ϕð Þ � b½ �2dΩ: (A7)

We take the derivative of (A7) with respect to a and b and equate them to zero to obtain, respectively,

∫Ω � 2 NT � aT2 � bT
� �

dΩ ¼ 0 (A8)

∫Ω � 2 N � aT � bð Þ dΩ ¼ 0: (A9)
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Parseval’s theorem relates the integral of the product of two arbitrary functions, f and g, on the sphere to their
cross-power spectra:

1
4π

∫Ω f�gð ÞdΩ ¼
X∞
l¼0

Sfg: (A10)

The cross-power spectrum of two arbitrary functions f and g is defined as

Sfg ¼
Xl

m¼�l

f lmglm: (A11)

From equation (A10), equations (A8) and (A9) become

XL

l¼0

SNT ¼ a
XL

l¼0

STT þ bT00 (A12)

N00 ¼ aT00 þ b: (A13)

Solving this set of equations for the GTR a yields

a ¼
PL
l¼0

SNT � N00T00

PL
l¼0

STT � T002
: (A14)

If we wish to assume that the geoid is equal to 0 when the topography is equal to 0, we set b = 0 in
equations (A12) and (A13), and equation (A14) instead becomes

a ¼

PL
l¼0

SNT

PL
l¼0

STT

: (A15)

This GTR may then be compared with that predicted by equation (5):

GTR ¼
X
l

WlZl: (A16)

Since we calculate observed GTRs using localization windows, this equation must take into account the spec-
tral properties of those windows. The weighting functionWl is the expected fractional power of the localized
topography at degree l:

Wl ¼ STT lð Þh iPlmax

i¼lmin

STT ið Þh i
: (A17)

The expected power of localized topography can be expressed in terms of the coefficients of unlocalized
lunar topography and the coefficients of the localization window (Wieczorek, 2015):

STTh i ¼
XL

i¼0

Shh jð Þ
Xlþj

i�l1�il

Stt ið Þ Cl0
i0j0

� �2
; (A18)

where C is the Clesbsch-Gordan coefficient. For the case where the window is a simple constant, this weight-
ing function reduces to

Wl ¼
Stt lð ÞPlmax

i¼lmin
SStt ið Þ

: (A19)

Appendix B: Two-Layer Crustal Models of Airy Compensation

In this Appendix, we derive equations (11) and (12), the degree-dependent admittances for a two-layer crus-
tal model compensated with thickness variations in the upper or lower crust under the equal pressures
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approach of Hemingway and Matsuyama (2017). The geoid n is given by summing the upward continued
contributions from each interface (Wieczorek & Phillips, 1998):

Zl ¼ 4πρucR
3

M 2l þ 1ð Þ ρuct θ; φð Þ � ρlc � ρucð Þ R� Tuc
R

� �lþ2

w θ; φð Þ � ρm � ρlcð Þ R� Tc
R

� �lþ2

v θ; φð Þ
" #

; (B1)

where t is the topography, w is the interface between the upper and lower crust, and v is the relief on the
interface between the lower crust and mantle. All other variables are the same as in previous equations.
Under the equal pressures approach, the equation for isostatic equilibrium is

ρucgt ¼ � ρlc � ρucð Þgww � ρm � ρlcð Þgvv; (B2)

where g is the gravitational acceleration at the surface, gw is the gravitational acceleration at the interface
between the upper and lower crust, and gv is the gravitational acceleration at the interface between the
lower crust and the mantle.

For the case of an upper crust that varies in thickness and a lower crust of uniform thickness, w = v. If we
assume that the gravitational acceleration is approximately equal at each interface, equation (B2) reduces to

v ¼ w ¼ � ρuc
ρm � ρuc

t (B3)

By substituting equation (B3) into equation (B1), the admittance becomes

Zl ¼ 4πpucR
3

M 2l þ 1ð Þ 1� ρlc � ρuc
ρm � ρuc

R� Tuc
R

� �lþ2

� ρm � ρlc
ρm � ρuc

R� Tc
R

� �lþ2
" #

: (B4)

For the case of a lower crust that varies in thickness and an upper crust of uniform thickness, w = t. Under
the assumption that the gravitational acceleration is approximately equal at each interface, equation (B2)
reduces to

υ ¼ � ρlc
ρm � ρlc

t (B5)

By substituting equation (B5) into equation (B1), the admittance becomes

Zl ¼ 4πρucR
3

M 2l þ 1ð Þ 1þ ρlc � ρuc
ρuc

R� Tuc
R

� �lþ2

� ρlc
ρuc

R� Tc

R

� �lþ2
" #

: (B6)

Appendix C: Flexural Admittances Models for a Top-Loaded Lithosphere

The admittance function for a self-gravitating, top-loaded lithosphere was given by James et al. (2015), who
used an equal mass definition for isostatic residual. In this Appendix, we derive a similar admittance using the
equal pressure definition adopted in this paper. The relevant isostatic residual in this case is

t � nð Þ þ ρm � ρc
ρc

gw
g

w � n
0

� �
þ elF ¼ 0: (C1)

where t is the topography, n is the geoid, w is the crust-mantle interface, n0 is the equipotential surface at the
crust-mantle interface, F is the flexural displacement of the lithosphere from an unstressed configuration, el is
a nondimensional flexural parameter, and all other variables are the same as in previous equations. In the top-
loading scenarios considered here, the flexural displacement F is equivalent to w. The nondimensional flex-
ural parameter el is given by the equation

el ¼ D

GMR2ρc

�l3 l þ 1ð Þ3 þ 4l2 l þ 1ð Þ2
�l l þ 1ð Þ þ l � v

þ ETe
GMρc

�l l þ 1ð Þ þ 2
�l l þ 1ð Þ þ 1� v

(C2)

where D is the flexural rigidity, v is Poisson’s ratio in the elastic shell, Te is the elastic thickness, and E is the
Young’s modulus. For our calculations, we assumed a Poisson’s ratio of v = 0.25 and a Young’s modulus of
E = 1011 Pa. The flexural rigidity is itself a function of Poisson’s ratio, Young’s modulus, and elastic thickness
and is given by the equation

D ¼ ETe3

12 1� v2ð Þ : (C3)
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The two terms in equation (C2) correspond to bending stresses and membrane stresses, respectively; one
could calculate the flexural admittance considering only bending stresses or membrane stresses by setting
the other term to zero.

The geoid n at the planetary surface is a function of the two displaced interfaces, t and w:

nlm ¼ 4πρcR
3

M 2l þ 1ð Þ tlm þ ρm � ρc
ρc

R� Tc
R

� �lþ2

wlm

" #
(C4)

where the variables are the same as in equations (7)–(11). The comparable equipotential surface n0 at the
crust-mantle boundary is

n0 lm ¼ 4πρcR
3

M 2l þ 1ð Þ
R� Tc

R

� �l

tlm þ ρm � ρc
ρc

R� Tc
R

wlm

" #
: (C5)

Substituting (C5) into (C1) yields an isostatic residual that includes self-gravitation:

1� Γ1ð Þtlm þ ρm � ρc
ρc

gw
g

1� Γ2ð Þwlm þ elwlm ¼ 0; (C6)

where Γ1 and Γ2 are nondimensional terms that quantify self-gravitation. These terms are given by the
equations

Γ1 ¼ 4πρcR
3

M 2l þ 1ð Þ 1þ ρm � ρc
ρc

gw
g

R� Tc
R

� �l
" #

(C7)

and

Γ2 ¼ 4πρcR
3

M 2l þ 1ð Þ
g
gw

R� Tc
R

� �lþ2

þ ρm � ρc
ρc

R� Tc

R

� �" #
: (C8)

The ratio of crust-mantle interface relief to topography, w/t, then equals

wlm

tlm
¼ � ρc

ρm � ρc

g
gw

1� Γ1ð Þ
1� Γ2ð Þ þ ρcg

ρm�ρcð Þgw el

" #
: (C9)

Substituting (C9) into the equation for the geoid N yields

nlm ¼ 4πρcR
3

M 2l þ 1ð Þ 1� g
gw

R� Tc
R

� �lþ2 1� Γ1ð Þ
1� Γ2ð Þ þ ρcg

ρm�ρcð Þgw el

" #
tlm: (C10)

The geoid admittance Z (as duplicated in equation (14)) is simply the ratio n/t. Under the assumption that the
gravitational acceleration is approximately equal at each interface, Z is

Zl ¼ 4πρcR
3

M 2l þ 1ð Þ 1� R� Tc
R

� �lþ2 1� Γ1ð Þ
1� Γ2ð Þ þ ρc

ρm�ρcð Þ el

" #
: (C11)
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