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Abstract Geophysical analyses are often performed in spherical geometry and require the use of spheri-
cal harmonic functions to express observables or physical quantities. When expanded to high degree, the
accuracy and speed of the spherical harmonic transforms and reconstructions are of paramount impor-
tance. SHTools is a time and user-tested open-source archive of both Fortran 95 and Python routines for
performing spherical harmonic analyses. The routines support all spherical-harmonic normalization conven-
tions used in the geosciences, including 4p-normalized, Schmidt seminormalized, orthonormalized, and
unnormalized harmonics, along with the option of employing the Condon-Shortley phase factor of ð21Þm.
Data on the sphere can be sampled on a variety of grid formats, including equally spaced cylindrical grids
and grids appropriate for integration by Gauss-Legendre quadrature. The spherical-harmonic transforms are
proven to be fast and accurate for spherical harmonic degrees up to 2800. Several tools are provided for
the geoscientist, including routines for performing localized spectral analyses and basic operations related
to global gravity and magnetic fields. In the Python environment, operations are very simple to perform as
a result of three class structures that encompass all operations on grids, spherical harmonic coefficients, and
spatiospectral localization windows. SHTools is released under the unrestrictive BSD 3-clause license.

1. Introduction

The planets in our solar system are fundamentally spherical in nature, which often demands the use of
spherical geometry when studying global geological phenomena. Thus, just as Fourier transforms are ubiq-
uitous in Cartesian geometry, it is common to express observables and physical quantities as series of spher-
ical harmonic functions on a planetary scale. Spherical harmonics are the natural basis functions for
describing how a quantity varies across the surface of a sphere. As solutions to Laplace’s equation, it is natu-
ral to express the radial and angular dependence of both gravitational and magnetic fields as a series
involving spherical harmonics functions (e.g., Blakely, 1995; Jekeli, 2015; Wieczorek, 2015). As a result of sim-
plified relations involving derivatives, it is convenient to express displacements in spherical harmonics
when studying seismic wave propagation (e.g., Dahlen & Tromp, 1998), postglacial rebound (e.g., Peltier,
1974), and elastic flexure (e.g., Beuthe, 2008; Turcotte et al., 1981). Since any physical quantity that varies
along a spherical interface can be expressed in spherical harmonics, the spectral properties of the function
can be investigated by making use of its associated spherical harmonic coefficients.

Expanding a function into a series of spherical harmonic functions and reconstructing the function from the
spherical harmonic coefficients are two of the most basic operations employed when working with data on
the sphere. Whereas highly accurate transforms are an obvious requirement for any implementation of
these operations, computational speed is also an important consideration given that many data sets are
now routinely expanded to spherical harmonic degrees beyond 1000. Over the past two decades, a number
of highly accurate and optimized software packages have been written to meet these needs. These include
the C-based codes SHTns (Schaeffer, 2013), Libsharp (Reinecke & Seljebotn, 2013), and SpharmonicKit
(http://www.cs.dartmouth.edu/geelong/sphere/), the Fortran-based code harmonic_synth (Holmes & Pavlis,
2006), and the MATLAB-based code GrafLab (Bucha & Jan�ak, 2013). In addition to these generic codes, more
specialized software packages exist such as the HEALpix package (G�orski et al., 2005) that can be used with
high-resolution pixelated data, the Fortran-based SPHEREPACK (Adams & Swarztrauber, 1999) that can be
used with differential equations involving spherical harmonic functions, and a suite of MATLAB-based
code that can be used for localized spectral analyses (Harig et al., 2015). Though these software packages
have many similarities, they each differ in their ease of use, their graphical visualization capabilities, the
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completness of the documentation, the manner that they are maintained, the programming languages
they support, the conventions used for the gridded data and spherical harmonic functions, and the number
of additional tools they provide for specialized applications.

SHTools is an archive of Fortran 95 and Python software that can be used to perform spherical harmonic
transforms and reconstructions, rotations of data expressed in spherical harmonics, and multitaper spectral
analyses on the sphere. SHTools is extremely versatile and easy to use. The software is open source, ver-
sioned by git, and released with an unrestrictive BSD 3-clause license. Though many of the routines are
generic and could be used in any of the physical sciences, this package is tailored to the specific needs of
the geosciences community. As examples, it can accommodate any standard normalization of the spherical
harmonic functions, including 4p-normalized, Schmidt seminormalized, orthonormalized, and unnormalized
harmonics. One can choose to use or exclude the Condon-Shortley phase factor of ð21Þm with the associ-
ated Legendre functions, and both real and complex spherical harmonics are supported.

Besides providing basic routines for working with data expressed in spherical harmonics, several specialized
tools are provided by SHTools for common geophysical problems. As examples, routines are provided for per-
forming multitaper spectral analyses localized to arbitrarily shaped domains. Routines are provided for comput-
ing the three vector components of the gravitational and magnetic field on a flattened ellipsoid from their
respective potential coefficients. For gravitational fields, one can also calculate the geoid, the gravity ‘‘gradient’’
tensor, and the gravitational potential associated with finite-amplitude surface relief to arbitrary precision. Exten-
sive documentation is provided for all routines, either as unix man pages or within the Python environment.

The spherical harmonic transforms in SHTools are calculated using exact quadrature rules. Several grid types
are available, including unevenly sampled grids in latitude that are appropriate for integration by Gauss-
Legendre quadrature, or regularly sampled grids that conform to the sampling theorem of Driscoll and
Healy (1994). This latter grid type is appropriate for cylindrically projected geographical data, where the grid
nodes are equally spaced in degrees latitude and longitude. By the use of a simple scaling when calculating
the associate Legendre functions (Holmes & Featherstone, 2002), the transforms are accurate to spherical
harmonic degree 2800, which corresponds to a spatial resolution of less than 4 arc minutes. By using fast
Fourier transforms when integrating and expanding over latitude bands, the routines are fast: on a modern
desktop computer, spherical harmonic transforms and reconstructions take on the order of 1 s for band-
widths close to 800 and about 30 s for bandwidths close to 2,600. The core software is written in Fortran 95,
and Python wrappers and class structures allow simple access to the Fortran-compiled routines. The Fourier
transforms are computed by the software FFTW (Frigo & Johnson, 2005), and the Fortran routines are
OpenMP thread-safe allowing for their use in parallelized programs.

In this document, we provide all information that is necessary to start using the SHTools software package.
In section 2, we start by providing the definitions of the spherical harmonic functions for both real and com-
plex fields. This includes descriptions of all the normalization conventions that can be found in the geo-
sciences. Next, in section 3, we provide some of the implementation details regarding how the spherical
harmonic expansions and reconstructions are performed. In sections 4 and 5, the Fortran 95 and Python
components are described separately. This includes simple installation instructions and the definitions of
common variables. For the Python environment, we provide a detailed description of the three main class
structures that encompass most operations on grids, spherical harmonic coefficients, and spatiospectral
localization windows. In section 6, we provide some simple examples of SHTools in the Python environ-
ment. Last, we end by discussing the software development roadmap, which includes better support for
map projections, class structures for gravitational and magnetic field data, ultrahigh spherical harmonic
transforms, and routines for reading and saving spherical harmonic coefficients in common formats.

2. Definitions

Many different conventions exist for both the associated Legendre and spherical harmonic functions, and
this is often a source of confusion, even for those who are well versed in the topic. In this section, we pro-
vide all necessary definitions for both the real and complex 4p-normalized spherical harmonics that are
commonly used in the fields of geodesy and spectral analysis. Though SHTools uses this normalization as
the default for most routines, all other normalizations can be handled readily by specifying optional param-
eters. In Tables 1 and 2, the equivalent definitions are provided for the Schmidt seminormalized harmonics
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that are used in the geomagnetism community, the orthonormalized harmonics that are used commonly in
the seismology community, and the unnormalized harmonics that are widely used when only the lowest
few degrees are of importance.

2.1. Real Spherical Harmonics
Spherical harmonics are the natural set of basis functions on the sphere, and any real square-integrable
function can be expressed as a series of these functions as

f h;/ð Þ5
X1
l50

Xl

m52l

flm Ylm h;/ð Þ; (1)

where flm is the spherical harmonic coefficient, Ylm is the corresponding spherical harmonic function, h is
colatitude, / is longitude, and l and m are the spherical harmonic degree and order, respectively. The real
spherical harmonics are defined as

Table 1
Normalization Conventions for Real Associated Legendre and Spherical Harmonic Functions

4p normalized Schmidt seminormalized

�P lmðlÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22dm0ð Þ 2l11ð Þ ðl2mÞ!

ðl1mÞ!

q
PlmðlÞ �P lmðlÞ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22dm0ð Þ ðl2mÞ!

ðl1mÞ!

q
PlmðlÞð1

21

�P lmðlÞ �P l0mðlÞ52 22d0mð Þ dll0

ð1

21

�P lmðlÞ �P l0mðlÞ5 2 22d0mð Þ
ð2l11Þ dll0ð

X
Ylmðh;/Þ Yl0m0 ðh;/Þ dX54p dll0dmm0

ð
X

Ylmðh;/Þ Yl0m0 ðh;/Þ dX5 4p
ð2l11Þ dll0 dmm0

SfgðlÞ5
Xl

m52l

flm glm SfgðlÞ5 1
ð2l11Þ

Xl

m52l

flm glm

Orthonormalized Unnormalized

�P lmðlÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22d0mð Þ 2l11ð Þ

4p
ðl2mÞ!
ðl1mÞ!

q
Plm lð Þ �P lmðlÞ5PlmðlÞð1

21

�P lmðlÞ �P l0mðlÞ5 22d0mð Þ
2p dll0

ð1

21

�P lmðlÞ �P l0mðlÞ5 2
ð2l11Þ

ðl1mÞ!
ðl2mÞ! dll0ð

X
Ylmðh;/Þ Yl0m0 ðh;/Þ dX5dll0 dmm0

ð
X

Ylmðh;/Þ Yl0m0 ðh;/Þ dX5
4p ðl1mÞ!

ð22d0mÞð2l11Þðl2mÞ! dll0 dmm0

SfgðlÞ5 1
4p

Xl

m52l

flm glm SfgðlÞ5
Xl

m52l

ðl1mÞ!
ð22d0mÞð2l11Þðl2mÞ!flm glm

Table 2
Normalization Conventions for Complex Associated Legendre and Spherical Harmonic Functions

4p normalized Schmidt seminormalized

�P m
l ðlÞ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l11ð Þ ðl2mÞ!

ðl1mÞ!

q
Plm lð Þ �P m

l ðlÞ5
ffiffiffiffiffiffiffiffiffiffi
ðl2mÞ!
ðl1mÞ!

q
Plm lð Þð1

21

�P m
l ðlÞ �P

m
l0 ðlÞ dl52 dll0

ð1

21

�P m
l ðlÞ �P

m
l0 ðlÞ dl5 2

ð2l11Þ dll0ð
X

Ym
l
�ðh;/ÞYm0

l0 ðh;/Þ dX54p dll0 dmm0

ð
X

Ym
l
�ðh;/Þ Ym0

l0 ðh;/Þ dX5 4p
ð2l11Þ dll0 dmm0

Sf g lð Þ5
Xl

m52l

f m
l gm�

l Sf g lð Þ5 1
ð2l11Þ

Xl

m52l

f m
l gm�

l

Orthonormalized Unnormalized

�P m
l ðlÞ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l11ð Þ

4p
ðl2mÞ!
ðl1mÞ!

q
Plm lð Þ �P m

l ðlÞ5Plm lð Þð1

21

�P m
l ðlÞ �P

m
l0 ðlÞ dl5 1

2p dll0

ð1

21

�P m
l ðlÞ �P

m
l0 ðlÞ5 2

ð2l11Þ
ðl1mÞ!
ðl2mÞ! dll0ð

X
Ym

l
�ðh;/Þ Ym0

l0 ðh;/Þ dX5dll0 dmm0

ð
X

Ym
l
�ðh;/Þ Ym0

l0 ðh;/Þ dX5 4p
ð2l11Þ

ðl1mÞ!
ðl2mÞ! dll0 dmm0

Sf g lð Þ5 1
4p

Xl

m52l

f m
l gm�

l Sf g lð Þ5
Xl

m52l

ðl1mÞ!
ð2l11Þðl2mÞ!f

m
l gm�

l
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Ylmðh;/Þ5
�P lmðcos hÞcos m/ if m � 0

�Pljmjðcos hÞsin jmj/ if m < 0;

(
(2)

where the normalized associated Legendre functions are given by

�PlmðlÞ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22dm0ð Þ 2l11ð Þ ðl2mÞ!

ðl1mÞ!

s
PlmðlÞ; (3)

and where dij is the Kronecker delta function. The unnormalized associated Legendre functions are derived
from the standard Legendre polynomials using the relations

PlmðlÞ5 12l2
� �m=2 dm

dlm
PlðlÞ (4)

and

PlðlÞ5
1

2l l!

dl

dll
l221
� �l

: (5)

The normalized associated Legendre functions are orthogonal for a given value of m,ð1

21

�PlmðlÞ �Pl0mðlÞ52 22d0mð Þ dll0 ; (6)

and the spherical harmonics are orthogonal over both degree l and order m according toð
X

Ylmðh;/Þ Yl0m0 ðh;/Þ dX54p dll0 dmm0 ; (7)

where dX is the differential surface area on the unit sphere sin h dh d/. By multiplying equation (1) by Yl0m0

and integrating over all space, it is straightforward to show that the spherical harmonic coefficients of a
function can be calculated by the integral

flm5
1

4p

ð
X

f ðh;/Þ Ylmðh;/Þ dX: (8)

The normalized Legendre functions are efficiently calculated using standard three-term recursion relations
(e.g., Holmes & Featherstone, 2002), and the calculation of the integral in equation (8) will be discussed fur-
ther in section 3. It is important to note that the above definition of the Legendre functions does not
include the Condon-Shortley phase factor of ð21Þm that is often employed in the physics and seismology
communities (e.g., Dahlen & Tromp, 1998; Varshalovich et al., 1988). Nevertheless, this phase can be
included in most SHTools routines by specifying an optional parameter.

A few simple properties allow to visualize the spherical harmonic functions: A harmonic possesses 2jmj zero
crossings in the longitudinal direction, and l2jmj zero crossings in latitude. When the angular order m is
zero, the harmonics are called zonal and oscillate only in the latitudinal direction. When l5jmj the harmon-
ics are called sectoral and oscillate only in the longitudinal direction. For other values of m the harmonics
are called tesseral and oscillate in both the longitudinal and latitudinal directions (see Figure 1). Negative
and positive values of a given m correspond to the cosine and sine components in equation (2) and deter-
mine the longitudinal phase of the harmonic. The equivalent Cartesian wavelength for a spherical harmonic
function of degree l is approximately k52pR=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
lðl11Þ

p
, where R is the radius of the sphere, a result known

as the Jeans relation. In many fields, it is common to refer to the positive order spherical harmonic coeffi-
cient as Clm, and the negative order coefficient as Slm, in reference to the cosine and sine components of
equation (2). In the geomagnetism community, these are instead referred to as glm and hlm. Furthermore, in
some fields, one refers to the zonal Cl0 coefficients as 2Jl .

It is straightforward to generalize Parseval’s theorem from Cartesian geometry to spherical geometry using
the orthogonality properties of the spherical harmonic functions. Defining power to be the integral of the
function squared divided by the area it spans, the total power can be shown to be equal to a sum over its
power spectrum
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1
4p

ð
X

f 2ðh;/Þ dX5
X1
l50

Sff ðlÞ; (9)

where the power spectrum S is related to the spherical harmonic coefficients by

Sff ðlÞ5
Xl

m52l

f 2
lm: (10)

It can be shown that the power spectrum is unmodified by a rotation of the coordinate system. Further-
more, it should be noted that the numerical value of the power spectrum is independent of the normaliza-
tion convention used for the spherical harmonic functions (though the mathematical form of S will be
different). Similarly, the cross power of two functions f and g is given by

1
4p

ð
X

f ðh;/Þ gðh;/Þ dX5
X1
l50

SfgðlÞ; (11)

with

SfgðlÞ5
Xl

m52l

flm glm: (12)

If the functions f and g have a zero mean, then Sff and Sfg represent the contribution to the variance and
covariance, respectively, as a function of degree l.

The term ‘‘power spectrum’’ is often used ambiguously, with some definitions differing by factors of 4p and
ð2l11Þ. Here, S refers to the total power of the function at spherical harmonic degree l, which we will call
the power per degree. Alternatively, one can calculate the average power per coefficient at spherical har-
monic degree l, which we will refer to as the power per lm. Since there are ð2l11Þ spherical harmonic coeffi-
cients at degree l, this is simply

power per lm5
SðlÞ
ð2l11Þ : (13)

One can calculate the power from all angular orders over an infinitesimal logarithmic spherical harmonic
degree band dlog al, where a is the logarithmic base. We refer to this as the power per dlog al, which is given
by

power per d log al5SðlÞ l ln a: (14)

Finally, we define the energy of a function as the integral of its square. The energy spectrum is thus equal
to the power spectrum multiplied by 4p.

Figure 1. 3-D illustrations of zonal, tesseral, and sectoral spherical harmonic functions. These images were generated in
Python using the method plot3d() of the class SHGrid.
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2.2. Complex Spherical Harmonics
Complex functions can also be expressed as a spherical harmonics series with complex harmonics and coef-
ficients. To differentiate real from complex coefficients and functions, we will use mixed subscript-
superscripts for the complex quantities, and only subscripts for their real counterparts. With this convention,
any complex square-integrable function f can be expressed in spherical harmonics as

f h;/ð Þ5
X1
l50

Xl

m52l

f m
l Y m

l h;/ð Þ: (15)

The complex spherical harmonics are defined as

Ym
l ðh;/Þ5�Pm

l ðcos hÞ eim/; (16)

where the normalized associated Legendre functions are given by

�Pm
l ðlÞ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l11ð Þ ðl2mÞ!

ðl1mÞ!

s
Plm lð Þ; (17)

and where the unnormalized Legendre functions are as given before by equations (4) and (5). The normal-
ized Legendre functions are orthogonal for each order m as given byð1

21

�Pm
l ðlÞ �P

m
l0 ðlÞ dl52 dll0 : (18)

The complex spherical harmonics possess a symmetry relationship for positive and negative angular orders

Y m
l
�ðh;/Þ5ð21Þm Y2m

l ðh;/Þ; (19)

where the asterisk denotes complex conjugation, and satisfy the orthogonality relationshipð
X

Ym
l
�ðh;/Þ Ym0

l0 ðh;/Þ dX54p dll0 dmm0 : (20)

Using this relationship, it is straightforward to show that the spherical harmonic coefficients of a complex
function can be calculated by the integral

f m
l 5

1
4p

ð
X

f ðh;/Þ Ym�
l ðh;/Þ dX: (21)

The generalized Parseval’s theorem for complex functions is given by

1
4p

ð
X

f ðh;/Þ f �ðh;/Þ dX5
X1
l50

Sf f lð Þ; (22)

where the power spectrum is

Sf f lð Þ5
Xl

m52l

f m
l f m�

l : (23)

Similarly, the cross-power of two functions f and g is given by

1
4p

ð
X

f ðh;/Þ g�ðh;/Þ dX5
X1
l50

Sf g lð Þ; (24)

where the cross-power spectrum is

Sf g lð Þ5
Xl

m52l

f m
l gm�

l : (25)

It should be noted that while the power spectrum of a function is inherently real, the cross power of two
functions may be a complex quantity. Finally, it is noted that if a function defined on the sphere is entirely
real, then the real and complex spherical harmonic coefficients are related by
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f m
l 5

ðflm2ifl2mÞ=
ffiffiffi
2
p

if m > 0

fl0 if m50

ð21Þm f 2m�
l if m < 0:

8>><
>>: (26)

3. Implementation Details

The majority of the routines in SHTools make use of spherical harmonic transforms and reconstructions,
and we describe the main details of how these operations are performed in this section. As with most other
software packages, these operations make use of fast Fourier transforms over latitude bands, which
decrease the computational time dramatically with respect to a more naive implementation (e.g., Sneeuw,
1994). Furthermore, symmetry relations about the equator are used to halve the amount computational
effort when calculating the associated Legendre functions. As we demonstrate, the transforms are both
accurate and fast up to about spherical harmonic degree 2800.

We start with the reconstruction of a function from its spherical harmonic coefficients. Using the separate
variables Clm and Slm for the cosine and sine coefficients, respectively, and after interchanging the order of
summations over l and m, equation (1) can be written as

f h;/ð Þ5
XL

m50

XL

l5m

Clm
�Plmðcos hÞ cos m/1Slm

�Plmðcos hÞ sin m/ð Þ; (27)

where the summation is truncated at a maximum spherical harmonic degree L that is appropriate for the
analysis. Making use of two component vectors

amðhÞ; bmðhÞð Þ5
XL

l5m

Clm; Slmð Þ �Plmðcos hÞ; (28)

Equation (27) can be written more simply as

f h;/ð Þ5
XL

m50

amðhÞ cos m/1bmðhÞ sin m/ð Þ: (29)

For a given latitude band, the function f can thus be evaluated on a series of grid nodes all at the same time
using an inverse fast Fourier transform. For this operation, SHTools makes use of the highly optimized soft-
ware package FFTW (Frigo & Johnson, 2005) that supports grids of arbitrary length and both real and complex
data. To adequately sample the function in longitude, a minimum of 2L11 data points should be employed.

The slowest part of reconstructing the function f involves the computation of the coefficients am and bm.
These coefficients depend upon the associated Legendre functions, which are calculated efficiently using
standard three-term recursion relations over adjacent spherical harmonic degrees (e.g., Holmes & Feather-
stone, 2002). For a given colatitude, the sectoral term �Pmm is first calculated using an analytic equation, and
then �Plm is calculated for all values of l>m. It is well known, however, that the standard formulas can lead
to numerical underflows near the poles for large values of m, even when using double precision floating
point numbers. To circumvent this problem, the associated Legendre functions are here calculated using
the approach of Holmes and Featherstone (2002), where the sectoral �Pmm terms are multiplied by 10280

sin mh prior to performing the recursions, and then appropriately unscaled at the end of the recursion.

For the spherical harmonic transform, we start by writing equation (8) in a two-component vector notation,
where the two elements are for the cosine and sine spherical harmonic coefficients, respectively:

Clm; Slmð Þ5 1
4p

ð2p

0

ðp

0
f ðh;/Þ �P lmðhÞ cos m/; sin m/ð Þ sin h dh d/: (30)

Defining the two intermediary variables

cðiÞlm; sðiÞlm

� �
5

ð2p

0
f ðhi;/Þ cos m/; sin m/ð Þd/; (31)

it is seen that for a given colatitude hi and degree l, all of the angular orders can be calculated at once by
making use of a fast Fourier transform of the function f. By replacing the integral over latitude in equation
(30) with a numerical quadrature rule, the spherical harmonic coefficients can be calculated as
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Clm; Slmð Þ5 1
4p

XN

i51

wi
�Plmðcos hiÞ cðiÞlm; sðiÞlm

� �
: (32)

Here, w is the latitudinal weight, and N is the number of latitudinal
points over which the integration is performed.

It is possible to choose the weights wi and the locations of the latitu-
dinal sampling points hi such that the quadrature in equation (32) is
exact. SHTools implements two such quadrature rules, one based on
Gauss-Legendre quadrature (e.g., Press et al., 1992) and the other
based on the sampling theorem of Driscoll and Healy (1994). In both
techniques, the quadrature is exact only when the function being
integrated is a terminating polynomial, i.e., when the spherical har-
monic degree is limited to a maximum value L. As seen in equation
(32), the functions clm and slm can be approximated as polynomials
of maximum degree L, and when multiplied by the associated

Legendre function, the integrand is approximately a polynomial of maximum degree 2L. For the case of
Gauss-Legendre quadrature, the quadrature is exact when the function f is sampled in latitude at the ðL11Þ
zeros of the Legendre Polynomial of degree ðL11Þ. Since the function also needs to be sampled on ð2L11Þ
equally space grid nodes for the Fourier transforms in longitude, the function f is sampled on a grid of size
ðL11Þ3ð2L11Þ.

The second type of quadrature used in SHTools is appropriate for data that are sampled on regular
grids. We make use of the work of Driscoll and Healy (1994) who showed that an exact quadrature
exists when the function f is sampled at N equally spaced nodes in latitude and N equally spaced nodes
in longitude. For this sampling, the grids make use of the latitude band at 908N, but not 908S, and the
number of samples is 2ðL11Þ, which is always even. Given that the sampling in latitude was imposed a
priori, it should not be a surprise that these grids contain almost twice as many samples in latitude as
the grids used with Gauss-Legendre quadrature. The convenience of using a regularly spaced grid
comes with the drawback of being computationally slower by about a factor of two. In the geosciences,
it is common to work with grids that are equally spaced in degrees latitude and longitude, such as with
data sets expressed in cylindrical projections, and SHTools provides the option of using grids of size
N32N. For this case, when performing the Fourier transform in equation (31), the coefficients clm and
slm with m> L are simply discarded. A graphical summary of the Gauss-Legendre quadrature and Dris-
coll and Healy (1994) grids is shown in Figure 2, and the properties of these grids are summarized in
Table 3.

The accuracy of the spherical harmonic transforms depends upon a number of factors, including the accu-
racy of the numerical quadrature, the accuracy of the Legendre functions, the accumulation of roundoff
errors, and the nature of the function being transformed. Concerning the numerical quadrature, it is noted
that this will be exact when the integrand is a terminating polynomial. Though the zonal Legendre func-
tions Pl0 are polynomials of degree l, the Legendre functions for m> 0 are not. Nevertheless, after replacing

the function f by its spherical harmonic series, the integrand in equa-
tion (32) is seen to consist of a series of products of two Legendre
functions Plm and Pl0m0 . It can be verified that when m1m0 is even, this
product is a polynomial of order l1l0. The present algorithm makes
the assumption that this product is also a polynomial when m1m0 is
odd. Tests using more samples in latitude than required by this
assumption do not give rise to any noticeable improvement, indicat-
ing that this assumption is valid for all practical purposes.

To test the accuracy of the spherical harmonic transforms and recon-
structions, two sets of synthetic spherical harmonic coefficients were
created. Each coefficient was chosen to be a random Gaussian distrib-
uted number with unit variance, and the coefficients were then scaled
such that the power spectrum was proportional to either l2 or l22. It is
noted that a power spectrum proportional to l22 is representative of

Figure 2. Schematic diagram illustrating the properties of the grids used with
the Driscoll and Healy and Gauss-Legendre quadrature routines in SHTools.

Table 3
Properties of the Three Grid Types Used in SHTools

DH 1 DH 2 GLQ

Name
Driscoll-

Healy
Driscoll-

Healy
Gauss-Legendre

Quadrature

Shape (Nlat3Nlon) N 3 N N32N N3ð2N21Þ
L N=221 N=221 N – 1
N 2L12 2L12 L 1 1
Dh 180�=N 180�=N Variable
D/ 360�=N 180�=N 360�=ð2N21Þ

Note. Dh and D/ are the latitudinal and longitudinal grid spacings in
degrees, respectively.
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many geophysical observables, such as gravity and topography. For a
given spherical harmonic bandwidth L, the function was recon-
structed in the space domain using the Gauss-Legendre quadrature
implementation and then re-expanded into spherical harmonics. The
maximum and root-mean square (rms) relative errors between the ini-
tial and final set of coefficients were then computed.

Figure 3 plots these two errors as a function of the bandwidth of the
initial function. The errors associated with the transform and inverse
pair increase in an quasi-exponential manner, with the maximum rela-
tive error being approximately 1 part in a billion for degrees close to
400, and about 1 part in a million for degrees close to 2600. Though
the errors are negligible to about degree 2600, they then grow some-
what between degrees 2700 and 2800. The rms errors for the coeffi-
cients as a function of the bandwidth L are typically 3 orders of
magnitude smaller than the maximum relative errors. While the errors
are slightly larger for the set of coefficients that possessed a power
spectrum proportional to l2, the difference with respect to the coeffi-
cients with the l22 power spectrum is modest, implying that the form
of the data does not strongly affect the accuracy of the routines. Rela-

tive errors using the Driscoll and Healy (1994) sampled grids are nearly identical to those using Gauss-
Legendre quadrature. The errors associated with the routines for complex data are lower by a few orders of
magnitude.

Finally, we tested the speed of the spherical harmonic reconstructions and transforms for both real and
complex data using the Gauss-Legendre and Driscoll and Healy (1994) quadrature implementations. The
amount of time in seconds required to perform these operations is plotted in Figure 4 as a function of the
spherical harmonic bandwidth of the function. These calculations were performed on a modern Mac Pro
2.7 GHz 12 Core Intel Xeon E5 using 64 bit executables and level 3 optimizations. For the real Gauss-
Legendre quadrature routines, the transform time is seen to be on the order of one second for degrees
close to 800 and about 30 s for degree 2600. For the real Driscoll and Healy (1994) sampled grids, the trans-
form time is close to a second for degree 600 and about 1 min for degrees close to 2600. The complex rou-
tines are slower by a factor of about 1.4.

4. SHTools for Fortran 95

Installation of the Fortran 95 components of SHTools is straightfor-
ward and has been tested on multiple platforms using multiple com-
pilers. Before attempting an installation, it will first be necessary to
install both the FFTW (Frigo & Johnson, 2005) and LAPACK software
packages. After having done this, the most generic way to install the
SHTools archive is by use of the unix command-line utility make. To
build both the standard library, as well as the thread-safe library that
is OpenMP compatible, it is only necessary to execute

make fortran fortran-mp

in a unix terminal. By default, the archive will be built using the
gfortran compiler, but alternative compilers and compiler flags can
be used by specifying optional arguments to the make variables F95

and F95FLAGS. Tested compilers include Absoft ProFortran (f95),
Intel fortran (ifort) and g95. A series of tests programs can be built
and executed using

make fortran-tests

and the compiled library, modules, man pages, and web documenta-
tion can be made available on a system level by executing

Figure 3. Maximum relative errors (solid lines) and rms relative errors (dashed
lines) of the spherical harmonic coefficients as a function of spherical harmonic
bandwidth. The function was first reconstructed on a grid appropriate for
Gauss-Legendre quadrature, expanded into spherical harmonics, and then
compared with the initial coefficients.

Figure 4. Time to perform the reconstruction of a function from its spherical
harmonic coefficients (solid lines) and the spherical harmonic transform of the
function (dashed lines). Plotted are timing results as a function of spherical har-
monic bandwidth using the real and complex Gauss-Legendre and Driscoll and
Healy (1994) quadrature implementations. Calculations were performed on a
Mac Pro 2.7 GHz 12 Core Intel Xeon E5 using 64 bit executables and level 3
optimizations.
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make install-fortran

Alternatively, if using the macOS operating system, the Fortran 95 components can be installed using the
brew package manager by executing

brew tap shtools/shtools

brew install shtools

Additional installation instructions can be found in the web documentation.

Almost all capabilities of SHTools can be accessed directly from within any Fortran 95 program. To call an
SHTools routine, it is necessary to make use of the shtools and/or planetsconstants modules by
including the commands

use shtools

use planetsconstants

in the source file. These should be placed after the program, subroutine, or function declaration, but before
any statements such as implicit none. The second use statement is only necessary if one needs to
access the constants defined by SHTools, such as the mean radii and GM of the planets. When compiling
the program, it is necessary to ensure that the SHTools library file libSHTOOLS.a and the directory con-
taining the module files are accessible to the compiler. For a standard installation, these should be found
in/usr/local/lib and/usr/local/include, respectively.

The SHTools package contains a large number of routines that can be accessed by Fortran 95 programs.
Each of these can be found in the web documentation, and each has an associated man page that can
be accessed from a unix terminal. The routines are organized into seven main themes, which include:
(1) Legendre functions, (2) spherical harmonic transforms and reconstructions, (3) spherical harmonic
input/output, storage, and conversions, (4) global spectral analyses, (5) localized spectral analyses, (6)
spherical harmonic rotations, and (7) specialized routines for working with gravity and magnetic fields.
In general, most of these routines use 4p-normalized harmonics that exclude the Condon-Shortley
phase factor as the default. (An exception to this rule are the magnetics routines that employ Schmidt
seminormalized harmonics.) Regardless, the normalization convention can be modified in most rou-
tines by specifying the optional parameters norm and csphase, of which norm accepts the following
values:

� 1: 4p normalized harmonics
� 2: Schmidt semi-normalized harmonics
� 3: unnormalized harmonics
� 4 orthonormalized harmonics.

By setting csphase5 21, the factor ð21Þm will be appended to either the associated Legendre functions
or the spherical harmonic functions.

5. SHTools for Python

The Python package pyshtools provides access to the Fortran-95 SHTOOLS library by use of Python wrapper
functions. This package requires the FFTW and LAPACK libraries to be installed, as well as the Python pack-
ages numpy, scipy, and matplotlib. With these dependencies installed, it is only necessary to execute the fol-
lowing command in a unix terminal to install pyshtools:

pip install pyshtools

In the Python environment, the command

import pyshtools

will load several packages into the pyshtools namespace. These packages are very similar to the seven high-
level groupings of functions in the SHTOOLS library, and include
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� shclasses: All pyshtools classes and subclasses,
� shtools: All Fortran-95 wrapped SHTools routines,
� legendre: Legendre functions,
� expand: Spherical harmonic expansion routines,
� shio: Spherical harmonic input/output, storage, and conversion routines,
� spectralanalysis: Global and local spectral analysis routines,
� rotate: Spherical harmonic rotation routines,
� gravmag: Gravity and magnetics routines,
� constant: Planetary constants,
� utils: Utilities.

In addition to loading these packages, three high-level class structures will be loaded into the primary
namespace that provided easy access to most operations on spherical harmonic coefficients, grids, and
localization windows:

� SHCoeffs: A high-level class for spherical harmonic coefficients,
� SHGrid: A high-level class for global grids,
� SHWindow: A high-level class for localization windows.

The vast majority of the pyshtools functionality can be accessed via the three high-level classes. Using these
classes, operations are exceedingly simple to perform, as all required metadata are stored as class attributes.
These attributes include the spherical harmonic normalization, Condon-Shortley phase convention, maxi-
mum spherical harmonic degree, data type, grid type, and grid size. Once the classes are initialized, it is
only necessary to execute one of its methods, usually without any arguments, to perform basic operations.
As an example, if clm is an SHCoeffs instance, then reconstructing these coefficients on a grid, and re-
expanding this grid into spherical harmonics is as easy as

grid5clm.expand()

clm25grid.expand()

Tables (4–6) provide all the attributes and methods that are implemented for these three classes.

When using the package IPython, which adds improved interactive functionality to Python, the available
pyshtools routines can be explored by typing

pyshtools.[tab]

where [tab] is the tab key. To read the documentation of a class, method, or routine in IPython, such as
SHCoeffs, it is only necessary to enter

pyshtools.SHCoeffs?

To access an SHTools constant and its associated info string, such as the mass of Mars, one would use the
commands

pyshtools.constant.mass_mars

pyshtools.constant.mass_mars.info()

Documentation for the Python functions used in SHTools can also be accessed by their unix man pages, by
appending py to the name and using all lower case letters.

6. Examples

The Python pyshtools package provides three classes for interacting with spherical harmonic coefficients,
grids, and localization windows: SHCoeffs, SHGrid, and SHWindow. These classes provide simple meth-
ods for initializing class instances, visualizing spectra and grids, basic data transformations, and output to
arrays and files. In this section, we first provide simple demonstrations of basic operations involving
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spherical harmonic coefficients and grids. Following this, the basic techniques for performing localized
spectral analyses are demonstrated using both spherical cap and arbitrarily shaped localization windows.

6.1. SHCoeffs Class
The SHCoeffs class provides all methods for working with spherical harmonic coefficients. Each class
instance saves as attributes the properties of the coefficients, including the normalization, the Condon-
Shortley phase convention, the spherical harmonic bandwidth, and whether the coefficients are real or

Table 4
Attributes and Methods of the pyshtools Class SHCoeffs

Attributes
lmax The maximum spherical harmonic degree of the coefficients.
coeffs The raw coefficients with the specified normalization and csphase conventions.
normalization The normalization of the coefficients: 4pi, ortho, schmidt, or unnorm.
csphase Defines whether the Condon-Shortley phase is used (1) or not (–1).
mask A boolean mask that is True for the permissible values of degree l and order m.
kind The coefficient data type: either complex or real.
Methods
to_array() Return an array of spherical harmonic coefficients, optionally with a different

normalization convention.
to_file() Save raw spherical harmonic coefficients to a file.
degrees() Return an array listing the spherical harmonic degrees from 0 to lmax.
spectrum() Return the spectrum of the function as a function of spherical harmonic degree.
set_coeffs() Set coefficients in-place to specified values.
rotate() Rotate the coordinate system used to express the spherical harmonic coefficients

and return a new class instance.
convert() Return a new class instance using a different normalization convention.
pad() Return a new class instance where the coefficients are zero padded or truncated to

a different lmax.
expand() Evaluate the coefficients either on a spherical grid and return an SHGrid class

instance, or for a list of latitude and longitude coordinates.
copy() Return a copy of the class instance.
plot_spectrum() Plot the spectrum as a function of spherical harmonic degree.
plot_spectrum2d() Plot the 2-D spectrum of all spherical harmonic coefficients.
info() Print a summary of the data stored in the SHCoeffs instance.

Table 5
Attributes and Methods of the pyshtools Class SHGrid

Attributes
data Gridded array of the data.
nlat, nlon The number of latitude and longitude bands in the grid.
lmax The maximum spherical harmonic degree that can be resolved by the grid sampling.
sampling For Driscoll and Healy grids, the longitudinal sampling of the grid. Either 1 for nlong5 nlat

or 2 for nlong5 2*nlat.
kind Either complex or real for the data type.
grid Either DH or GLQ for Driscoll and Healy grids or Gauss-Legendre quadrature grids.
zeros The cos(colatitude) nodes used with Gauss-Legendre quadrature grids. Default is None.
weights The latitudinal weights used with Gauss-Legendre quadrature grids. Default is None.
Methods
to_array() Return the raw gridded data as a numpy array.
to_file() Save gridded data to a text or binary file.
lats() Return a vector containing the latitudes of each row of the gridded data.
lons() Return a vector containing the longitudes of each column of the gridded data.
expand() Expand the grid into spherical harmonics.
copy() Return a copy of the class instance.
plot() Plot the raw data using a simple cylindrical projection.
plot3d() Plot the raw data on a 3d sphere.
info() Print a summary of the data stored in the SHGrid instance.
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complex. Once these attributes are set, it is not necessary to specify these parameters when calling most of
the class methods. Most methods do not require the use of optional calling parameters, but we use them
here to demonstrate the full capabilities of the package.

Initialization of a new SHCoeffs class instance can be done in several ways. Random coefficients can be
generated from a specified input power spectrum using from_random(), the coefficients can be read
from a file using from_file(), the coefficients can be set to zero using from_zeros(), and the coeffi-
cients can be read from a numpy array using from_array(). By default, these methods assume that the
coefficients are real 4p-normalized excluding the Condon-Shortley phase factor, but this convention can be
modified by specifying optional parameters as demonstrated in these initialization examples:

Table 6
Attributes and Methods of the pyshtools Class SHWindow

Attributes
kind Either cap or mask.
tapers Matrix containing the spherical harmonic coefficients (in packed form) of either

the unrotated spherical cap localization windows or the localization windows
corresponding to the input mask.

coeffs Array of spherical harmonic coefficients of the rotated spherical cap localization
windows. These are 4pi normalized and do not use the Condon-Shortley phase
factor.

eigenvalues Concentration factors of the localization windows.
orders The angular orders for each of the spherical cap localization windows.
weights Taper weights used with the multitaper spectral analyses. Default is None.
lwin Spherical harmonic bandwidth of the localization windows.
theta Angular radius of the spherical cap localization domain (default in degrees).
theta_degrees True (default) if theta is in degrees.
nwin Number of localization windows. Default is (lwin11)2.
nwinrot The number of best concentrated windows that were rotated and whose

coefficients are stored in coeffs.
clat, clon Latitude and longitude of the center of the rotated spherical cap localization

windows (default in degrees).
coord_degrees True (default) if clat and clon are in degrees.
Methods
to_array() Return an array of the spherical harmonic coefficients for taper i, where i50 is the

best concentrated, optionally using a different normalization convention.
to_shcoeffs() Return the spherical harmonic coefficients of taper i, where i50 is the best

concentrated, as a new SHCoeffs class instance, optionally using a different
normalization convention.

to_shgrid() Return as a new SHGrid instance a grid of taper i, where i50 is the best
concentrated window.

number_concentrated() Return the number of windows that have concentration factors greater or equal to
a specified value.

degrees() Return an array containing the spherical harmonic degrees of the localization
windows, from 0 to lwin.

spectra() Return the spectra of one or more localization windows.
rotate() Rotate the spherical cap tapers, originally located at the north pole, to clat and

clon and save the spherical harmonic coefficients in the attribute coeffs.
coupling_matrix() Return the coupling matrix of the first nwin localization windows.
biased_spectrum() Calculate the multitaper (cross-) spectrum expectation of a localized function.
multitaper_spectrum() Return the multitaper power spectrum estimate and uncertainty for the input

SHCoeffs class instance.
multitaper_cross_spectrum()Return the multitaper cross-power spectrum estimate and uncertainty for two

input SHCoeffs class instances.
copy() Return a copy of the class instance.
plot_windows() Plot the best concentrated localization windows using a simple cylindrical

projection.
plot_spectra() Plot the spectra of the best-concentrated localization windows.
plot_coupling_matrix() Plot the multitaper coupling matrix.
info() Print a summary of the data stored in the SHWindow instance.
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clm5pyshtools.SHCoeffs.from_random(power, normalization5 ‘4pi’)

clm5pyshtools.SHCoeffs.from_file(filename, format5 ‘shtools,’ lmax550)

clm5pyshtools.SHCoeffs.from_zeros(lmax, kind5 ‘complex’)

clm5pyshtools.SHCoeffs.from_array(array, csphase5 21)

Here, power is an array containing the input power spectrum, lmax is the maximum spherical harmonic
degree to read from the file filename, normalization specifies the spherical harmonic normalization
(4pi, schmidt, ortho, or unnorm), kind specifies whether the coefficients are real or complex, and
csphase determines whether the Condon-Shortley phase factor is used (–1) or not (1). If the raw data
ever need to be accessed, they are stored in the attribute coeffs.

The spectrum of the coefficients, which is independent of the chosen normalization, can be output as a
numpy array using the spectrum() method. By default, the output spectrum corresponds to the power
per degree of the function with unit5‘per_l.’ The energy spectrum can be output by specifying
convention5 ‘energy,’ and the unit of the spectrum can be set alternatively to either per_lm or

per_dlogl. Two methods are provided for visualizing the spectrum graphically: plot_spectrum()
plots the spectrum as a function of spherical harmonic degree, and plot_spectrum2d() plots the spec-
trum as a function of degree and angular order. The following two lines of code demonstrate how to calcu-
late and plot the power per coefficient spectrum:

power5clm.spectrum(convention5 ‘power,’ unit5 ‘per_lm’)

fig, ax5clm.plot_spectrum(unit5 ‘per_lm’)

The spherical harmonic coefficients of a given SHCoeffs class instance can be converted easily to a differ-
ent normalization using the convert() method. To rotate either the physical body or coordinate system
by the three Euler angles alpha, beta, and gamma, one would use the method rotate(). The value of
the function at a specified latitude and longitude can be determined using the method expand() (expan-
sions on grids will be discussed in the following section). Finally, if you ever need to find out the normaliza-
tion conventions used with a specific class instance, the info() method will print an info string that
summarizes all the class attributes. Typical uses of these methods might include the following:

clm_ortho5clm.convert(normalization5 ‘ortho,’ csphase5 21)

clm_rot5clm.rotate(alpha, beta, gamma)

value5clm.expand(lat5[10.], lon5[275.])

The spherical harmonic coefficients in an SHCoeffs class instance can be edited and output to either an
array or file. The method set_coeffs() allows one to modify the value of one or more degrees and
orders by providing a list of values for the degrees ls and orders ms. To obtain a numpy array of the coeffi-
cients, with the option of using a different normalization, one would use the method to_array(). Finally,
the method to_file() outputs the coefficients either to a numpy formatted file or to an shtools ascii-
formatted list of degrees, orders, and cosine and sine coefficients. The following example lines of code
show how to set the degree 2 coefficients to zero and to output the spherical-harmonic coefficients to an
array and file:

clm.set_coeffs(values50, ls52, ms5[–2, 21, 0, 1, 2])

coeffs5clm.to_array()

clm.to_file(filename, lmax540)

It is further noted that one can apply arithmetic operations to SHCoeffs class instances, including addi-
tion, subtraction, multiplication, division, and powers.

6.2. SHGrid Class
The class SHGrid is the counterpart to SHCoeffs. Each class instance contains as attributes all informa-
tion about the gridded data that are necessary for computing its associated spherical harmonic coefficients.
This includes the grid type, the number of latitude and longitude samples, and whether the data type is
real or complex. The grid type is specified by the attribute grid which can take values of GLQ for Gauss-
Legendre quadrature grids and DH for grids that conform to the Driscoll and Healy (1994) sampling
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theorem. The shape of the input Driscoll and Healy grids determines whether they are N 3 N (with attribute
sampling51) or N32N (with sampling52).

Two methods exist for initializing an SHGrid class instance using preexisting arrays. The method fro-

m_array() initializes the class instance using a numpy array, whereas the method from_file() uses a
grid stored in either an ascii-formatted or binary npy file. These two examples demonstrate the use of typi-
cal optional parameters employed during initialization:

grid5pyshtools.from_array(array, grid5 ‘GLQ’)

grid5pyshtools.from_file(filename, binary5 True)

The latitude and longitude coordinates for each row and column of the gridded data can be obtained using
the lats() and lons() methods. If the raw gridded data ever need to be accessed, they are stored in
the data attribute.

In addition to initializing an SHGrid class instance with data from an array, one can also initialize the class
instance by performing a spherical harmonic reconstruction using a preexisting SHCoeffs class instance.
In this case, one would make use of the SHCoeffs method expand(), while specifying grid as either
GLQ for Gauss-Legendre quadrature grids, DH for N 3 N Driscoll and Healy sampled grids, or DH2 for N32N
Driscoll and Healy sampled grids. The following example creates an SHGrid class instance for use with

Figure 5. Realization of a random process with an expected power spectrum equal to l22. (a) The power spectrum of a single realization of the process along with
the process expectation, (b) the contribution to the power from each coefficient, and (c) a global map of the realization.
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Gauss-Legendre quadrature using only the first 30 spherical harmonic degrees, and then plots the grid
using a cylindrical projection with the method plot():

grid5clm.expand(grid5 ‘GLQ,’ lmax530)

fig, ax5grid.plot()

To obtain an SHCoeffs class instance containing the spherical harmonic coefficients associated with an
SHGrid class instance, it is only necessary to use the expand() method:

clm5grid.expand()

In this case, it is not necessary to specify the grid type, as this is already saved in the attributes of the
SHGrid class instance. Like the SHCoeffs class, basic arithmetic operations can be used with SHGrid

class instances, including addition, subtraction, multiplication, division, and powers.

Figure 5 demonstrates some of the graphical output capabilities of the pyshtools package. In this example,
the SHCoeffs method from_random() was used to generate a single realization of a random process
whose power spectrum is l22. The from_random() method treats each coefficient as an independent
Gaussian random variable, whose variance is the input power at degree l divided by the number of coeffi-
cients at this degree. The power spectrum of this individual realization, along with the expected value are
plotted in Figure 5a by making use of the method plot_spectrum(). The contribution to this power
spectrum from each coefficient is plotted in Figure 5b by making use of the method plot_spec-

trum2d(). Finally, the data are expanded on a grid using the method expand() and plotted on a global
map using the SHGrid method plot().

6.3. SHWindow Class
The class SHWindow provides all methods that are necessary to perform a localized spectral analysis. The
theoretical foundations of this analysis technique can be found in Wieczorek and Simons (2005), Simons
et al. (2006), and Wieczorek and Simons (2007), and pyshtools implements the use of localization windows
concentrated within either a spherical cap or an arbitrarily shaped region. The procedure for obtaining a
multitaper spectrum estimate is straight forward. After the localization windows are constructed, each is
multiplied by the data, the result is expanded in spherical harmonics and the power spectrum is computed.
The multitaper spectrum estimate is simply the average of the power spectra associated with each of the
localization windows.

SHWindow class instances can be initialized either with the from_cap() or from_mask() methods:

win5pyshtools.SHWindow.from_cap(theta530., lwin530)

win5pyshtools.SHWindow.from_mask(array, lwin530, nwin510)

For spherical cap windows, theta specifies the angular radius of the window in degrees and lwin specifies
the spherical harmonic bandwidth. For arbitrarily shaped windows, instead of providing a value for theta
one only needs to provide a Driscoll and Healy sampled binary mask as a numpy array. With these input
parameters, the total number of windows whose fraction of power in the concentration region is greater than
a can be determined using the method number_concentrated(alpha). In practice, for a given concen-
tration domain, the analyst chooses lwin to obtain the number of desired well-localized windows.

The above initializations compute the spherical harmonic coefficients and concentration factors of all
ðlwin11Þ2 windows and saves them in the attributes tapers and eigenvalues, respectively. For spherical
cap localization windows, the angular orders of the windows are stored in the attribute orders. The poorly
localized windows are in general not used, and to compute only a subset of the localization windows, one
can specify the number of best-concentrated windows to retain with the optional parameter nwin.

When using spherical cap localization windows, the windows are by default centered at the north pole. The
rotate() method is used to rotate these to an arbitrary latitude and longitude, as specified by clat and
clon in degrees, respectively. Given that most windows will be poorly concentrated and not utilized in a
localized spectral analysis, and in order to speed up the calculations, one can choose to rotate only the first
nwinrot best-concentrated windows, as demonstrated in this example:

Geochemistry, Geophysics, Geosystems 10.1029/2018GC007529

WIECZOREK AND MESCHEDE 2589



win.rotate(clat545., clon590., nwinrot550)

As part of this operation, the rotated coefficients are saved in the attribute coeffs. If you ever need to
determine the details of how the windows were constructed and rotated, the info() method outputs an
info string containing the window properties.

The localization windows, their spectra, and their corresponding coupling matrix can be easily visualized
using the methods plot_windows(), plot_spectra(), and plot_coupling_matrix(), respec-
tively. The coupling matrix is the transformation matrix between the global input spectrum and the expec-
tation of the localized spectrum. In the following example code, the first four windows and their spectra are
plotted, and the coupling matrix is plotted for a data spectral bandwidth of ldata,

fig1, axes15win.plot_windows(4)

fig2, axes25win.plot_spectra(4)

fig3, axes35win.plot_coupling_matrix(ldata)

If a specific window is needed for use elsewhere, it can be output as an SHCoeffs or SHGrid class
instance using the methods to_shcoeffs() and to_shgrid(), respectively:

bestwin_lm5win.to_shcoeffs(0, normalization5 ‘ortho’)

bestwin5win.to_shgrid(0, grid5 ‘GLQ’)

As an example of the graphical capabilities of pyshtools, we calculate spherical cap localization windows with
theta equal to 608 and lwin equal to 18, and then rotate them to the equator at 1808E longitude. In plot a of
Figure 6, the best four concentrated windows are plotted in the space domain using the method plot_wind-

ows(), and in Figure 6b their corresponding power spectra are plotted using the method plot_spectra().

Once the localization windows are constructed, it is trivial to calculate the multitaper power spectrum estimate
and its uncertainty using the method multitaper_spectrum(). For this method, one only needs to pro-
vide an SHCoeffs class instance of the function’s spherical harmonic coefficients, the number of tapers k to
use, and for spherical cap localization windows, the latitude and longitude of the analysis as specified by
clat and clon. When performing a cross-power spectrum analysis, one would use the corresponding
method multitaper_cross_spectrum(). The following lines of code demonstrated how to obtain the
localized power and cross-power spectrum using all tapers with concentration factors greater than 0.99:

k5win.number_concentrated(0.99)

mtse, se5win.multitaper_spectrum(clm, k, clat5 255., clon590.)

mtse, se5win.multitaper_cross_spectrum(clm, slm, k)

where the output parameters are vectors of the multitaper spectrum estimate and standard error, respec-
tively. Optionally, one could provide a vector taper_wt that provides the weights when calculating the

Figure 6. Spherical cap localization windows with theta equal to 608 and lwin equal to 18. (a) The four best concentrated windows after rotation to the equator,
where loss is 1 minus the concentration factor. (b) The corresponding power spectra of the four best concentrated localization windows. Note that tapers 1 and 2
have the same power spectrum.
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multitaper average. In practice, these could be either the eigenvalues of the employed localization win-
dows, or they could be specially constructed to minimize the estimation variance using the function
SHMTVarOpt that is provided in the spectralanalysis subpackage (see Wieczorek & Simons, 2007).

When a function is multiplied by a window, the power spectrum of the localized function is modified. Because
of this, when comparing a model with the observed multitaper power spectrum, it is necessary to bias the
model in the same way as the data. When the model is statistical in nature and described by a global power
spectrum, the biased power spectrum can be obtained using the method biased_spectrum():

power_biased5win.biased_spectrum(power, k)

It is noted that the method multitaper_spectrum() returns a power spectrum whose maximum
degree is ldata-lwin. This is because localized degrees beyond this limit depend upon coefficients of
the global data beyond ldata, and these are not known. The method biased_spectrum(), in contrast,
assumes that the model spectrum power is zero beyond its maximum degree, and returns a spectrum with
a maximum degree ldata1lwin.

An example of two spectral analyses localized over the land mass and oceans of Earth is provided in Figure 7
(a similar example using the lithospheric magnetic field can be found in Beggan et al., 2013). In this example,
two realizations of a random process with global power spectra of l22 and l23 were synthesized. The two
maps were then masked for the continents and oceans, respectively, and combined as shown in Figure 7a.
Localization windows were next constructed that were concentrated over both the land mass and oceans
using the method from_mask(). With a spectral bandwidth L equal to 30, a total of 83 and 433 windows
are obtained that concentrate more than 99% of their power over the land and ocean localization domains,
respectively. The localized spectral analysis using these windows is shown in the right plot of Figure 7, where
the dashed lines represent the global power spectrum of the process over the land and oceans, the red and
blue lines represent the localized power spectrum over the land and oceans, and the dotted lines represent
the statistical expectation of the localized spectrum using the method biased_spectrum(). As is seen, the
localized spectra are very close to their statistical expectations, demonstrating that their is little leakage of sig-
nal between the two localization domains. The localized spectra are seen to be biased significantly away from
the global spectrum for degrees close to the spectral bandwidth of the localization windows, which is a direct
result of the signal from low degrees leaking into the high degrees over the spectral bandwidth of the win-
dow. Importantly, this bias is quantifiable, as given by the method biased_spectrum().

7. Development Roadmap

The SHTools software package started development in 2004. It is time and user-tested, and new features
have been continuously implemented based on real-life needs of scientists working in the geosciences. Ini-
tially started as a Fortran 95 project, full Python capabilities were added in 2015, and the pyshtools package
is now being actively developed and expanded upon.

Figure 7. Localized spectral analysis over the land mass and oceans of Earth. (a) A realization of a random process where
the power spectrum over the land mass and oceans are l22 and l23, respectively. (b) The global power spectra of the pro-
cess over the land and oceans (solid lines), the localized spectra over the land (red dashed line) and oceans (blue dashed
line), and the statistical expectation of the two localized power spectra (dotted lines).

Geochemistry, Geophysics, Geosystems 10.1029/2018GC007529

WIECZOREK AND MESCHEDE 2591



In its current state (version 4.2), pyshtools supports all basic operations involving spherical harmonic coeffi-
cients, grids, and localization windows. In coming releases, four different development activities will be
emphasized. First, even though basic plotting routines are provided for inspecting SHCoeffs, SHGrid,
and SHWindow class instances, these graphical routines will be improved upon by adding map projection
capabilities from the generic mapping tools (GMT) package (Wessel & Smith, 1991). A Python implementation
of GMT is currently being developed based on GMT version 6 (http://www.gmtpython.xyz/), and this will
allow for the production of publication quality images. Second, high-level classes will be developed for
working with both magnetic and gravity field data. This will allow easy access to all of the specialized rou-
tines available in SHTools, and would provide for standard geodetic operations. Third, support for ultrahigh
spherical-harmonic transforms and reconstructions will be implemented using the technique of extended
range arithmetic (Fukushima, 2012; Rexer & Hirt, 2015). Finally, improved input/output routines will be pro-
vided for interacting with standard geographical and spherical harmonic coefficient data formats.
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