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Abstract Spacecraft observations show that weak magnetic fields of crustal origin are ubiquitous
across the surface of the Moon. To investigate the origin of these magnetic anomalies, a model was
developed for the magnetic power spectrum that consists of ensembles of randomly magnetized sills or
prisms. Localized spectrum analyses constrained how the parameters of this model vary with position,
including the size of the sources, a quantity proportional to their mean-squared dipole moment, and the
depth to the top and bottom of the magnetized region. The depth to the top of the magnetized region
varies from the surface to about 25 km. The magnetic carriers in the deep crust likely formed at the
same time as the crust itself, implying that a core-generated dynamo field must have existed when the
crust was cooling during the first 100 Myr of lunar evolution. The parameter related to the strength of
magnetization shows the existence of a prominent region on the nearside hemisphere that is largely
unmagnetized and that correlates with a region of extremely low surface field strengths. This region lies
entirely within a geological province that is highly enriched in heat-producing elements (the Procellarum
KREEP Terrane), suggesting that this region escaped being magnetized because of prolonged high crustal
temperatures. The nearside magnetic low may be representative of the size of that portion of the crust
that is highly enriched in heat-producing elements, which is almost one third the size of the Procellarum
KREEP Terrane based on surface thorium abundances.

1. Introduction

The Moon today does not have a global magnetic field generated by a core dynamo, yet orbital magnetic field
data show the existence of strong crustal magnetic anomalies and paleomagnetic analyses show that some
lunar rocks are strongly magnetized (for reviews, see Fuller & Cisowski, 1987; Weiss & Tikoo, 2014). The simplest
explanation for these observations is that the core of the Moon once generated a magnetic field in its past
that magnetized portions of the crust, and that as the Moon continued to cool over time, the dynamo eventu-
ally stopped when the heat escaping the core passed below some critical threshold value. A similar scenario
has been proposed for the planet Mars (e.g., Acuña et al., 1999) that, like the Moon, has strong crustal magneti-
zation but does not possess a present day core-generated magnetic field.

Even though this broad outline of lunar magnetism is widely accepted, lunar magnetism remains poorly
understood with fundamental questions remaining about the timing and strength of the dynamo field, the
nature of the sources that powered the dynamo, and the origin of the magnetic carriers that are responsible
for crustal magnetization (e.g., Weiss & Tikoo, 2014). Paleomagnetic analyses of lunar samples have shown that
a core dynamo likely operated between as early as about 4.25 Ga (Garrick-Bethell et al., 2009, 2017) and as
late as somewhere between 1 and 2.5 Ga (Tikoo et al., 2017). The strength of the field on the surface is pre-
dicted to be similar to that of Earth up until 3.56 Ga Suavet et al. (2013), and afterward the surface field strength
decreased by an order of magnitude (Tikoo et al., 2014, 2017). Several sources of power have been proposed to
drive a lunar dynamo, including thermal convection (e.g., Evans et al., 2014; Konrad & Spohn, 1997), core crys-
tallization with compositional convection (e.g., Laneuville et al., 2014; Scheinberg et al., 2015), precession of
the solid mantle Dwyer et al. (2011), and short-lived perturbations in the Moon’s rotation rate following large
impact events Le Bars et al. (2011). Together, these sources could power continuously a long-lived dynamo
lasting more than a billion years after Moon formation. Regardless, a longstanding unresolved issue is that
the surface field strengths predicted by the dynamo models are more than 10 times smaller than required by
the paleomagnetic measurements.
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Figure 1. Total magnetic field strength of the Moon at 30 km altitude plotted using a (top) linear and (bottom)
logarithmic color scale. The magnetic field was evaluated using a 449∘ and order spherical harmonic expansion of
the model of Tsunakawa et al. (2015). The field strength maps are presented in Lambert azimuthal equal-area projections
centered over the (left) nearside and (right) farside hemispheres and are overlain by a shaded relief map derived from
the Lunar Orbiter Laser Altimeter Smith et al. (2010). Grid lines are spaced every 30∘ in latitude and longitude.

Another fundamental question concerning lunar magnetism is the origin of the magnetic carriers. Though it
is well known that metallic iron alloyed with small quantities of nickel (kamacite) is the primary magnetic
mineral in lunar rocks (e.g., Fuller & Cisowski, 1987), this metal could be either of lunar or meteoritic origin.
Given that most endogenous crustal rocks have low concentrations of metallic iron, they are incapable of
accounting for the strongest crustal magnetic anomalies observed from orbit Wieczorek et al. (2012). Recent
studies have thus highlighted the importance of the delivery of metallic iron to the Moon from the projectiles
that formed the largest impact basins. In one such study by Wieczorek et al. (2012), hydrocode simulations of
the impact process have shown that if the giant farside South Pole-Aitken basin formed under oblique impact
conditions, with the projectile traveling from south to north, projectile materials could have been deposited
precisely where the largest grouping of farside magnetic anomalies is found. In another study by Oliveira et al.
(2017), the impact melt sheets of several Nectarian-aged impact basins (including Mendel-Rydberg, Nectaris,
Serenitatis, Humboldtianum, and Crisium) were shown to possess central magnetic anomalies that could be
accounted for by small quantities of metallic iron derived from the projectile.

As a result of vectorial magnetic field measurements made from orbit by the Lunar Prospector and Kaguya
spacecraft, the global properties of the Moon’s lithospheric magnetic field are now well characterized.
The total magnetic field strength of the Moon at 30 km altitude from the model of Tsunakawa et al. (2015)
is plotted in Figure 1, which is based on measurements from both missions. The nearside and farside hemi-
spheres are plotted on the left and right, respectively, and the upper and lower set of images plot the field
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strength using a linear and logarithmic color scale, respectively. As shown in the upper set of images, there are
only a few dozen strong anomalies scattered across the lunar surface, and a large grouping of anomalies in the
farside highlands. Though a few of these anomalies are associated with impact basins, the vast majority have
no known correlation with any lunar geologic process. Many investigations have investigated the strength
and direction of magnetization of the strongest and most isolated of these anomalies (e.g., Arkani-Hamed &
Boutin, 2014; Blewett et al., 2007; Halekas et al., 2001, 2003; Hemingway & Garrick-Bethell, 2012; Hood, 2011;
Hood et al., 2001, 2013; Mitchell et al., 2008; Nayak et al., 2017; Nicholas et al., 2007; Oliveira & Wieczorek,
2017; Oliveira et al., 2017; Purucker et al., 2012; Richmond et al., 2003, 2005; Takahashi et al., 2014; Wieczorek
et al., 2012).

When the magnetic field strength is plotted using a linear scale, one could have the impression that only
a small portion of the crust of the Moon was ever magnetized. However, when the field strength is plotted
using a logarithmic scale, it is evident that magnetic fields are present everywhere and that large portions
of the crust must in fact be magnetized. The lowest intensities plotted in this map are not a result of mea-
surement noise as the same general tendencies can be seen in the surface field strengths derived from the
Lunar Prospector electron reflectometer, which is based on a completely different measurement technique
(see Mitchell et al., 2008). These weak, omnipresent crustal fields have not been investigated in any detail,
and their origin is thus largely unexplored. In particular, it is not known if the magnetized materials respon-
sible for these weak anomalies are located near the surface or if they are instead found deep in the crust.
It is not known if the magnetic minerals are derived from endogenous lunar materials, or if they are instead
a result of meteoritic contamination. Lastly, it is not known if these anomalies formed early in lunar history
when the primordial crust was cooling, or if they formed later as a result of processes related to impact events
or crustal magmatism. It is the origin of these weak fields that encompass the Moon that will be the main
focus of this work.

To address the origin of lunar crustal magnetism, one would like to know the strength of magnetization in the
crust, the geometry of the sources, and the depth range over which the sources reside. With this information,
it would be possible to test various hypotheses. For example, if the magnetic sources were all located close
to the surface, this might indicate that the sources were delivered to the Moon during impact events. If the
sources were instead found deep in the crust, this might suggest that they either formed at the same time
as the crust itself or they are related to later magmatic intrusions that cooled within the crust. Furthermore, if
there were any variations in the strength of crustal magnetization, this could either be indicative of lateral
variations in the abundance of magnetic carriers, or time variations in the strength of the field that magnetized
the crust.

These questions will be addressed in this paper by the use of a statistical model of crustal magnetization. It will
be assumed that crustal magnetization can be described by ensembles of magnetized sills or prisms, where
the locations and magnetization vectors of the sources are both random. As will be shown, it is possible to
derive analytic expressions for the power spectrum of the magnetic field that depend upon four parameters
that describe the strength, size, and depth range of the magnetic sources. This model is highly inspired by
a similar model that was developed by Voorhies (1998) and that was used to interpret the magnetic field of
both Earth and Mars. In contrast to the pioneering work of Voorhies et al. (2002) and Voorhies (2008), who
analyzed global magnetic power spectra, we will instead perform a localized power spectrum analysis using
the techniques developed by Wieczorek and Simons (2005, 2007) to constrain how the model parameters
vary across the surface of the Moon. A similar application of this approach applied to Mars can be found in
Lewis and Simons (2012).

Our analysis comprises several steps. In section 2, the mathematical relations needed for a power spectrum
analysis of a global magnetic field are provided. Two stochastic models of crustal magnetization are then
developed that predict the global power spectrum, where one consists of ensembles of magnetized prisms
and the other of magnetized sills. The properties of these two models are then explored and contrasted.
In section 3, the technique of using a localized power spectrum analysis to invert for model parameters is
described. This includes the construction of localization windows and a description of the manner by which
both the data and model are localized. Furthermore, a Monte Carlo technique for placing confidence limits
on the inversion parameters is described. In section 4, we perform a localized spectrum analysis of the Moon’s
magnetic field and invert for model parameters. Next, in section 5 we discuss two aspects of our model results.
First, we describe how the size, geometry, and depth of sources constrain the origin and timing of crustal
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Figure 2. Schematic diagram of the stochastic model of crustal magnetization used in the magnetic field power
spectrum analysis. (a) The magnetization is confined to a series of thick spherical prisms, each possessing the same
volume Vc , the same angular radius 𝜃0, and the same depths to the top and bottom of magnetization, dt and db ,
respectively. A spherical prism is here defined to be a cone with its apex at the center of the planet that is truncated
by two spheres of different radii. The magnetization vectors Mi are random, as are the locations of each cap. (b) The
magnetization is confined to a series of thin spherical caps with total magnetic moment MiVc , and each cap is located
randomly in the shell between the depths dt and db .

magnetization. Second, we discuss the origin of a region of crust on the nearside that has extremely weak
magnetization and field strengths. Finally, we conclude in section 6 by discussing some questions that remain
unresolved and by providing guidance for future directions of research.

2. Stochastic Power Spectrum Models

The objective of this section is to calculate the theoretical power spectrum that results from a statistical
collection of magnetized regions in a planetary body. This problem was studied previously by several authors.
Voorhies, (1998, 2008) and Voorhies et al. (2002) gave expressions for the power spectrum when the magne-
tized regions were spatially uncorrelated dipoles in a spherical or ellipsoidal shell, depth correlated dipoles,
or infinitesimally thin radially magnetized spherical caps. Jackson (1990, 1994) gave expressions for the case
where the distribution of magnetization could be described by a lateral and vertical spatial correlation function.
Bouligand et al. (2009) made use of a fractal model of magnetization whose Cartesian power spectrum was
described by a power law in order to invert for the depth of magnetization on Earth. In a study by Thébault
and Vervelidou (2015), the power spectrum of laterally varying magnetic susceptibility was assumed to follow
a power law, which allowed to predict the magnetic power spectrum of the field induced by a central dipole.
This technique was applied to Earth by Vervelidou and Thébault (2015) to invert for the thickness of the
magnetic layer.

For the Moon, there are presently no fields generated by a core dynamo, and the observed static magnetic
field is due entirely to magnetization in its lithosphere. To describe the observed magnetic power spectrum,
two theoretical models will be developed that expand upon and generalize the results of Voorhies et al. (2002).
The first model assumes that the power spectrum of the magnetic field can be approximated by that due to an
ensemble of thick magnetized spherical prisms, each of which possesses a random lateral position, random
volumetric magnetization, and random magnetization direction (model A in Figure 2). The fixed parameters of
this model include the angular radius of the spherical prisms, a parameter that depends on the mean-squared
dipole moment, and the depth to the top and bottom of the magnetized region. The second model is a gen-
eralization of the first and accounts for the case of thin magnetized caps (referred to below as sills) that are
placed randomly within a thick spherical shell (model B in Figure 2). Both of these generic models are consis-
tent with the functional forms given in Jackson (1994). Furthermore, these models reduce to the equations
given in Voorhies et al. (2002) for their special cases of crustal magnetism. In particular, our model can account
for their model of random dipoles placed within a finite thickness shell, vertically correlated dipoles within a
finite thickness shell, and thin magnetized spherical caps. In contrast, we note that Voorhies et al. (2002) did
not provide equations for vertically correlated spherical caps (our model A), nor uncorrelated spherical caps
within a finite layer (our model B). Since the magnetic field of a uniformly magnetized sphere is equivalent
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to that of a single dipole in the center of this sphere, our magnetic power spectrum models also account
implicitly for uniformly magnetized spheres as well.

In the first subsection, definitions of the magnetic potential, power spectrum, and spherical harmonic nor-
malizations are provided that are required for the analysis. The theoretical power spectrum is then derived
for the two classes of magnetization that are shown in Figure 2. Following these derivations, the properties of
their power spectra are described and compared.

2.1. Definitions
In the absence of free currents and time-variable electric fields, the curl of the magnetic field B is zero. This
allows B to be expressed as the gradient of a scalar potential

B(r) = −∇U(r) (1)

that can be calculated explicitly via a surface and volume integral over the distribution of magnetization (e.g.,
Blakely, 1995, equation 5.4)

U(r′) =
𝜇0

4𝜋 ∫S

M(r) ⋅ da|r′ − r| −
𝜇0

4𝜋 ∫V

∇ ⋅ M(r)dV|r′ − r| , (2)

where M is the dipole moment per unit volume (in units of A m−1) within the volume V enclosed by the surface
S, da is the differential surface area with direction normal to the surface, and 𝜇0 is the magnetic constant, 4𝜋×
10−7 T m A−1. As a solution to Laplace’s equation, the potential can be expanded exterior to the magnetized
sources as a weighted sum of spherical harmonic functions

U(r) = a
L∑

l=1

l∑
m=−l

(a
r

)l+1
glm Ylm(𝜃, 𝜙), (3)

where Ylm is a spherical harmonic function of degree l and order m as a function of colatitude 𝜃 and longitude
𝜙, glm is the corresponding spherical harmonic Gauss coefficient (in units of teslas) evaluated at radius a, and
L is the maximum spherical harmonic degree of the expansion. The real spherical harmonic functions are
defined by

Ylm(𝜃, 𝜙) =
{

P̄lm(cos 𝜃) cos m𝜙 if m ≥ 0
P̄l|m|(cos 𝜃) sin |m|𝜙 if m < 0,

(4)

where the Schmidt seminormalized associated Legendre functions P̄lm are related to the unnormalized
functions, both of which exclude the Condon-Shortley phase of (−1)m, by

P̄lm(x) =

√
(2 − 𝛿0m)

(l − m)!
(l + m)!

Plm(x), (5)

where x=cos 𝜃, and where 𝛿 is the Kronecker delta function. With these definitions, the spherical harmonics
are orthogonal over the sphere and possess the normalization

∫Ω
Ylm(𝜃, 𝜙) Yl′m′ (𝜃, 𝜙)dΩ = 4𝜋

(2l + 1)
𝛿ll′𝛿mm′ , (6)

where dΩ = sin 𝜃 d𝜃 d𝜙. If the coefficients glm are initially referenced to a radius a, as in equation (3), the
corresponding coefficients referenced to a′ can be shown to be given by

g(a′)
lm = glm

( a
a′

)l+2
. (7)

Later, for the localized spectral analyses, it will be necessary to make use of 4𝜋-normalized harmonics, which
are defined by

∫Ω
Y(4𝜋)

lm (𝜃, 𝜙) Y(4𝜋)
l′m′ (𝜃, 𝜙)dΩ = 4𝜋 𝛿ll′𝛿mm′ . (8)

It is easily shown that Schmidt-seminormalized and 4𝜋-normalized spherical harmonic coefficients are related
by the expression

g(4𝜋)
lm =

glm√
2l + 1

. (9)
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The total power of the magnetic potential at the reference radius a is

1
4𝜋 ∫Ω

U(a, 𝜃, 𝜙)2 dΩ =
L∑

l=1

SU(l), (10)

where the power spectrum S is

SU(l) =
a2

(2l + 1)

l∑
m=−l

g2
lm = a2

l∑
m=−l

(
g(4𝜋)

lm

)2
. (11)

Similarly, the total power of the magnetic field at radius r can be shown (after a somewhat complicated
derivation) to be

1
4𝜋 ∫Ω

B(r) ⋅ B(r)dΩ =
L∑

l=1

SB(l, r), (12)

where the Lowes-Mauersberger power spectrum of the magnetic intensity is (e.g., Lowes, 1966)

SB(l, r) = (a∕r)2l+4 (l + 1)
l∑

m=−l

g2
lm,

= (a∕r)2l+4 (l + 1)(2l + 1) SU(l)∕a2.

(13)

For ease of notation, the radius at which the power spectrum is calculated will not be indicated when it is equal
to the reference radius of the coefficients a. In the geomagnetism community, SB is commonly denoted by the
symbol R. If it is assumed that the coefficients glm are independent Gaussian random variables with zero mean,
and that the variance of the coefficients depends only upon degree l, then it can be shown (see Wieczorek &
Simons, 2007, appendix C) that the variances of the magnetic potential and magnetic power spectra are

var
{

SU(l)
}
= 2

(2l + 1)
⟨SU(l)⟩2, (14)

var
{

SB(l)
}
= 2

(2l + 1)
⟨SB(l)⟩2, (15)

where the operator ⟨· · ·⟩ denotes an ensemble average over the random variables.

2.2. Magnetized Prisms
We start by calculating the Gauss coefficients of a single uniformly magnetized spherical prism of angular
radius 𝜃0 with upper and lower bounding radii r+ and r−, respectively (see Figure 2a). A spherical prism is here
defined to be a cone with its apex at the center of the planet that is truncated by two spheres of different
radii. For our inversions later in this paper, for convenience, the bounding radii will be expressed in terms of
the depth to the top and bottom of the magnetized region, dt and db, respectively. Since we are concerned
primarily with calculating the power spectrum of the magnetic field, and since the power spectrum is invariant
under a rotation of the coordinate system, with no loss of generality, we can place the center of the spherical
cap at 𝜃 = 0.

If the magnetization in the cap is constant in direction

M = Mx x̂ + My ŷ + Mz ẑ, (16)

then both the divergence of M and the volume integral in equation (2) are identically zero. By calculating a
surface integral over the prism, the Gauss coefficients can be shown to be equal to (see Appendix A)

glm =
𝜇0

2

[( r+
a

)l+2

−
( r−

a

)l+2
]

×
[

1
2

(
𝛿m1 Mx + 𝛿m,−1 My

)(
∫

1

cos 𝜃0

P̄l1(x)P̄11(x)dx +
P̄l1(cos 𝜃0) sin 𝜃0 cos 𝜃0

(l + 2)

)
+ 𝛿m0 Mz

(
∫

1

cos 𝜃0

P̄l0(x)P̄10(x)dx −
P̄l0(cos 𝜃0) sin2 𝜃0

(l + 2)

)]
.

(17)

The coefficients for a magnetized spherical prism centered at any arbitrary location could be obtained using
standard spherical harmonic rotation algorithms (e.g., Blanco et al., 1997; Varshalovich et al., 1988).
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We next make the assumption that the planet contains N magnetized spherical prisms, all of the same size
𝜃0 and all with the same bounding radii r+ and r−. The Gauss coefficients for the ensemble of these prisms
are simply

g̃lm =
N∑

n=1

g(n)
lm (18)

where g(n)
lm are the coefficients of the nth prism centered at (𝜃n, 𝜙n). If the position, volumetric magnetization,

and magnetization direction of each prism are all random, the expectation of the power spectrum at radius
a is

⟨SB(l)⟩ = (l + 1)

⟨
l∑

m=−l

N∑
i=1

N∑
j=1

g(i)
lm g(j)

lm

⟩
. (19)

The expectation of the product of the two coefficients is zero when i ≠ j, and since the power for an individual
prism at degree l is unchanged by a rotation of coordinates, the power spectrum is simply N times the power
of a single prism

⟨SB(l)⟩ = N (l + 1)

⟨
l∑

m=−l

g2
lm

⟩
. (20)

Given the assumption of random volumetric magnetizations and magnetization directions, we have

⟨Mx My⟩ = ⟨Mx Mz⟩ = ⟨My Mz⟩ = 0, (21)

and

⟨M2
x⟩ = ⟨M2

y⟩ = ⟨M2
z ⟩ = ⟨M2⟩∕3, (22)

where ⟨M2⟩ is the average squared magnetization in the prisms. Using these equations to calculate the expec-
tation of the square of equation (17), the expectation value of the power spectrum can be shown to be
given by

⟨SB(l)⟩ = N ⟨M2⟩ Zp
l

(
𝜃0, r+, r−, a

)
, (23)

where we have introduced for convenience the function Zp that contains all terms related to the source
geometry and volume, and where the superscript denotes that this is for the model of composed of prisms:

Zp
l

(
𝜃0, r+, r−, a

)
=
𝜇2

0 (l + 1)
12

[( r+
a

)l+2

−
( r−

a

)l+2
]2

×

[
1
2

(
∫

1

cos 𝜃0

P̄l1(x)P̄11(x)dx +
P̄l1(cos 𝜃0) sin 𝜃0 cos 𝜃0

(l + 2)

)2

+
(
∫

1

cos 𝜃0

P̄l0(x)P̄10(x)dx −
P̄l0(cos 𝜃0) sin2 𝜃0

(l + 2)

)2]
.

(24)

In practice, it will be more convenient to solve for a quantity related to the magnetic moment (in units of
A m2) as opposed to the magnetization M. This is because there will be a partial trade-off between the chosen
magnetization and the volume of the magnetized region, with the volume dependence being accounted for
in the function Z. Multiplying and dividing equation (23) by the volume-squared of the prism yields

⟨SB(l)⟩ = N ⟨M2⟩ V2
p

⎧⎪⎨⎪⎩Zp
l

(
𝜃0, r+, r−, a

)( 3
2𝜋 (r3

+ − r3
−) (1 − cos 𝜃0)

)2⎫⎪⎬⎪⎭ , (25)
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where the volume of a single prism is given explicitly by

Vp = 2𝜋

3

(
r3
+ − r3

−
) (

1 − cos 𝜃0

)
. (26)

As shown in Appendix B, the integrals of the associated Legendre functions in equation (24) can be expressed
in terms of the first derivatives of ordinary Legendre polynomials. Using the power spectrum for a prism
of a specific size, it is straightforward to derive the predicted power spectrum for a given size-frequency
distribution of prisms.

2.3. Magnetized Sills
A related model for the magnetic power spectrum of a planet is to assume that the observed spectrum is
the result of many thin spherical caps that are each magnetized in a random direction and that are randomly
distributed in the volume between radii r+ and r− (see Figure 2b). Such thin caps could be thought of as
magmatic sills. We start by generalizing the power spectrum of N spherical prisms from equation (23) to that
of a single thin cap at radius rx with a finite, but small, thickness d. When r+ and r− approach rx it is easily
shown that

⟨SB(l, rx)⟩ =𝜇2
0 ⟨M2⟩ (l + 1)(l + 2)2

12

(d
a

)2 ( rx

a

)2l+2

×

[
1
2

(
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(27)

If N sills are located randomly within a volume V defined by upper and lower radii r+ and r−, such that the
spatial density of sills is simply N∕V , the total power spectrum can be calculated as

⟨SB(l)⟩ = N
V ∫

r+

r−
∫Ω

SB(l, rx) r2
x drx dΩ, (28)

where

V = 4𝜋
3

(
r3
+ − r3

−
)
. (29)

At this point, two possible assumptions could be made about the sills: either the volume of the sills or the
thickness of the sills could be considered constant. The two scenarios are nearly identical from a numerical
point of view, but the constant thickness sill solution is more amenable to analysis when there is a distribution
of sill sizes. Here we make the assumption that the sill thickness d is constant and present the results for
constant volume sills in Appendix C. Integrating equation (28), the power spectrum is shown easily to be

⟨SB(l)⟩ = N ⟨M2⟩ Zs
l

(
𝜃0, r+, r−, a

)
, (30)
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,

(31)
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Figure 3. Example power spectra for ensembles of magnetized prisms
(solid lines) and sills (thin dashed lines). (top) Dependence of the power
spectrum on the angular radius 𝜃0 of the magnetized sources (1∘ is
∼30 km on the lunar surface). All magnetized sources are placed
between the surface and 10 km depth. (middle) Dependence of the
power spectrum on the depth to the top of the magnetized region.
The depth to the bottom of the magnetized region is 30 km, and 𝜃0
is 0.1∘. (bottom) Dependence of the power spectrum on the depth to
the bottom of the magnetized region. The top of the magnetized
region is located at the surface and 𝜃0 is 0.1∘.

and where the superscript s denotes that this is for the model composed of
sills. Multiplying and dividing equation (30) by the volume squared of the
sills yields

⟨SB(l)⟩ = N ⟨M2⟩ V2
s

⎧⎪⎨⎪⎩Zs
l

(
𝜃0, r+, r−, a

)( 5 (r3
+ − r3

−)
6𝜋 d (r5

+ − r5
−) (1 − cos 𝜃0)

)2⎫⎪⎬⎪⎭ ,

(32)

where the average volume of a sill of constant thickness and angular radius
𝜃0 is

Vs =
6𝜋 d

5

(
r5
+ − r5

−
)(

r3
+ − r3

−
) (1 − cos 𝜃0). (33)

It is noted that the last term in brackets of equation (32) does not depend
upon the sill thickness d, as the reciprocal of d−2 is found in the function Zs.

2.4. Example Power Spectra
The model power spectra for randomly magnetized prisms and sills are very
similar in form. As seen in equations (25) and (32), the spectra depend upon
a multiplicative prefactor N⟨M2⟩V2 that is the total number of sources multi-
plied by their mean-squared dipole moment, and a degree-dependent term
Z that depends upon the geometry of the sources. The geometric function Z
is composed further of two multiplicative terms, one that depends solely on
the radii over which the sources reside and another that depends solely on
the angular size of the sources. Given the nature of the prefactor N⟨M2⟩V2,
it will not be possible to invert individually for the number of sources, their
magnetization, or their dipole moment, as they are all correlated.

The three terms that control the form of the geometric factor Z are the depth
to the top of the magnetized region dt , the depth to the bottom of the mag-
netized region db, and the angular radius of the sources 𝜃0. The dependence
of the model spectrum on these terms is illustrated in Figure 3, where the top
panel shows how the magnetic power spectrum varies as a function of the
angular size of the sources, the middle panel shows how the spectra vary as
a function of the depth to the top of the magnetized region, and the bottom
panel shows the dependence on the depth to the bottom of the magnetized
region. The maximum spherical harmonic degree plotted is 450, which cor-
responds to the maximum resolution of the lunar magnetic field that will be
employed later.

In Figure 3 (top), spectra are plotted for several values of 𝜃0 from 0.01∘
(∼30 m) to 1∘ (∼30 km), with dt and db set to constant values of 0 and 10 km,
respectively. It is first noted that the model spectra for magnetized sills and
prisms are nearly identical for degrees less than about 150. For higher degrees,
the power is slightly larger for magnetized sills than for magnetized prisms.
For both models, the majority of the power is found to reside in the first spec-
tral lobe, which empirically is found to have a bandwidth of about 1.2×180∕𝜃0,
with 𝜃0 in degrees. The spectral lobes are a result of the fact that the magne-

tized regions have a finite width with sharp boundaries. Each successive lobe has a lower maximum amplitude,
and for the smallest values of 𝜃0 plotted (0.01∘ and 0.1∘), only a portion of the first lobe is visible. As 𝜃0

approaches zero, the spectra are seen to converge rapidly to an asymptotic form.

In Figure 3 (middle), spectra are plotted for several values of the depth to the top of the magnetized region,
from 0 to 20 km. Here the depth to the bottom of the sources was set to 30 km, which is slightly smaller than
the average thickness of the lunar crust (e.g., Wieczorek et al., 2013), and the angular radius of the sources
was set to 0.1∘. The depth to the top of the sources is seen to have a major influence on the spectra at the
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Figure 4. Dependence of the magnetic power spectrum on the
direction of magnetization for ensembles of prisms (solid lines) and
sills (thin dashed lines). Black curves correspond to the case where
the magnetization directions are random, whereas the red and blue
curves correspond to the cases where the sources are all magnetized
in either the radial or horizontal directions, respectively. All magnetized
sources are placed between the surface and 10 km depth, and the
angular radius 𝜃0 of the sources is 0.1∘.

highest degrees. As the depth to the top of the sources increases, the high-
degree power decreases. This behavior is easily understood from the math-
ematical form of the geometric function Z in equations (24) and (31), and
suggests that this value will be constrained easily from observations.

Figure 3 (bottom) demonstrates how the magnetic power spectrum depends
upon the depth to the bottom of the magnetized sources. In this example, the
angular radius of the sources was set to 0.1∘, the top of the magnetic sources
was set to the surface, and the depth of the sources was varied from 10 to
40 km. For most of the degree range that is plotted, the spectra all have some-
what similar slopes, especially for degrees greater than about 100. Beyond
this degree, the spectra are approximately offset only by a vertical scaling fac-
tor. This behavior suggest that it will be difficult to invert for the depth to the
bottom of the magnetized region as this will partially trade off with the factor
N⟨M2⟩V2 that multiplies each of these curves.

Finally, we consider how the direction of magnetization affects the model
power spectra. Up until this point, we have treated the case where the direc-
tion of magnetization of each individual source was random. This assumption
provided a simple expression for the expectation of the magnetization vector
in each orthogonal direction as given by equation (22), as well as zero values
for the cross expectation of two components in equation (21). An alternative
model might be to instead assume that all magnetic sources were magne-

tized in the same direction. We quantify how the magnetic power spectrum for this case differs from that of
random magnetization by considering two end-member cases: horizontally magnetized sources and radially
magnetized sources.

The derivations for these models are nearly identical to those presented earlier in this section, and only dif-
fer by setting M = Mx x̂ for horizontally magnetized sources and M = Mz ẑ for vertically magnetized sources.
In Figure 4 we plot these two models in blue and red, respectively. The power spectrum for the case of radi-
ally magnetized sources is found to be always about 2 times larger than the case of horizontally magnetized
sources. As these two curves are very similar to our model with random magnetization directions, which
lies between the two end-members, we do not expect the results of our inversion to depend sensitively on
the actual direction of magnetization. This factor of 2 difference will simply become incorporated into the
prefactor N⟨M2⟩V2.

3. Localized Spectrum Analysis

A stochastic model consisting of randomly magnetized prisms or sills was developed in section 2 that predicts
the expected global magnetic power spectrum of a planet. This model assumes implicitly that the proper-
ties of the magnetic sources are globally uniform and do not vary from place to place. In reality, as a result
of lateral variations in geologic processes (such as variations in crustal cooling rates and variations in the
abundance of the magnetic carriers), one might expect that the model parameters should also vary as a func-
tion of position. To quantify such lateral variations, instead of inverting the observed global magnetic power
spectrum for best fitting model parameters, we will perform a localized multitaper power spectrum analysis
that extracts the spectral properties of the magnetic field over prescribed regions. In this section, we describe
the methodology used in this analysis, which includes the construction of a global spherical harmonic model
of the Moon’s magnetic field based on the gridded data of Tsunakawa et al. (2015), the construction of spa-
tiospectral localization windows for the multitaper spectrum analyses, the inversion of the localized spectra
for model parameters, and Monte Carlo techniques for estimating the uncertainties of the model parameters.

We first develop a global spherical harmonic model of the Moon’s magnetic field that is based on the global
0.2∘ gridded map of the radial component of the magnetic field developed by Tsunakawa et al. (2015). This
model is based on a combination of vector magnetic field measurements from the Kaguya and Lunar Prospec-
tor spacecraft, and after a global model for the radial field was constructed, Tsunakawa et al. (2015) were
able to derive maps of the other two horizontal components directly from their radial field map. The gridded
model of the radial field thus contains all the information in their model. Using the software package SHTOOLS
(Wieczorek et al., 2016), the spherical harmonic coefficients of the radial magnetic field were calculated,
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Figure 5. Magnetic power spectra of the Moon. The power spectrum
of the model developed by Tsunakawa et al. (2015) is based on
measurements obtained by the Kaguya and Lunar Prospector spacecraft,
whereas the three models of Purucker and Nicholas (2010) are based
exclusively on measurements from Lunar Prospector. The power is
calculated at a radius of 1,737.4 km.

and the Gauss coefficients of the magnetic potential were then obtained by
dividing these by (l + 1) (cf. equation (3). The final spherical harmonic model
is developed up to degree 449, which is the maximum degree allowed by the
Driscoll and Healy (1994) sampling theorem.

The magnetic field intensity of the Tsunakawa et al. (2015) model was shown
previously in map form in Figure 1, and here we plot in Figure 5 the mag-
netic power spectrum of this model. The form of the power spectrum is similar
in many respects to that of the model spectrum developed in section 2. The
power is low at the lowest degrees and then increases several orders of mag-
nitude over the first 100 degrees. The power then increases more slowly to
achieve a broad peak close to degree 200 and then decreases slightly and
continues with a nearly constant value after about degree 350. Also plotted
are the power spectra of three different global models developed by Purucker
and Nicholas (2010) that were based solely on Lunar Prospector data. These
models have a lower spatial resolution than the Tsunakawa et al. (2015) model,
with a maximum spherical harmonic degree of 180. Furthermore, it is seen
that the power spectra of the three Purucker and Nicholas (2010) models dif-
fer by about a factor of 5, which they interpreted to be a result of the strong
regularization applied to their “coestimation” model. The power spectrum of

the Tsunakawa et al. (2015) model lies about halfway between the “sequential” and “coestimation” models of
Purucker and Nicholas (2010).

To obtain estimates of the magnetic power spectrum localized to a prescribed region of interest, we use the
multitaper spectrum analysis technique as developed in spherical geometry for scalar fields by Wieczorek and
Simons (2005, 2007). The technique is conceptually very simple: Several orthogonal windows of prescribed
spherical harmonic bandwidth are constructed that localize optimally their energy in a spherical cap of spec-
ified angular radius, the localization window is rotated to the region of interest, the data are multiplied by the
window, the resulting function is expanded in spherical harmonics, and the power spectrum of the localized
function is computed. The multitaper spectrum estimate is defined as the average of the spectra from each of
the individual localization windows. By using several orthogonal localization windows, statistical fluctuations
associated with the underlying process are reduced, which provides a better estimate of the power spectrum
expectation of the process. The uncertainty in the multitaper spectrum estimates decreases as 1∕

√
K , where

K is the number of localization windows (Wieczorek & Simons, 2007, equation 4.4). All of these computations
are readily performed by routines in the SHTOOLS software package.

Only minor modifications to this method are required when applying a multitaper spectrum analysis to
magnetic field data (see also Lewis & Simons, 2012). First, we convert the Schmidt seminormalized Gauss coef-
ficients to 4𝜋-normalized coefficients using equation (9) in order to be compatible with the normalization
used by the localization windows. Second, we localize the magnetic potential (not the vector components)
and then convert the localized spectrum of the potential to a localized power spectrum of the magnetic field
by multiplying by (2l + 1)(l + 1)∕a2 (see equation (13)). At this point, all that is left to do is to choose the size
and the spectral bandwidth Lwin of the window: these two quantities determine how many windows will be
well localized. We note that it is desirable that the spectral bandwidth of the windows be as small as possible,
since the localized spectrum can be interpreted only between Lwin and L − Lwin, where L is here 449. On the
low-degree end, this limitation is a result of the fact that it is not possible to resolve wavelengths that are
greater than the size of the localization region. On the high-degree end, this limitation arises because the local-
ized spectrum at degrees greater than L − Lwin depends upon global spherical harmonic model coefficients
beyond what are available. As Lwin increases, the number of windows that are well localized increases, the
uncertainty associated with the multitaper spectrum estimate decreases, and the degree range over which
the localized power spectrum can be interpreted decreases. Alternative localization techniques that make use
of vectorial fields can be found in Thébault et al. (2006) and Plattner and Simons (2017).

As an illustrative example, we chose the size of the localization region to be a spherical cap with an angular
radius of 10∘ and then chose the spectral bandwidth of the windows to be 26, 35, 46, and 60. Using the criteria
that a window is well localized if 99% of its power is concentrated in the region of interest, these bandwidths
provide 1, 3, 6, and 12 windows that are well localized. Figure 6 plots the localized magnetic power spectra
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Figure 6. Example localized magnetic power spectra using windows
with an angular radius of 10∘. The localized spectra were calculated over
two representative regions on the farside: a high field strength region
at (30∘S, 170∘E) and a medium field strength region at (15∘S, 120∘E).
The number of well-localized tapers K for the specified spectral
bandwidth of the window varies from 1 to 12 and the plotted error
bars correspond to the standard error of the multitaper estimate.

using these four sets of windows for two regions on the farside of the Moon,
one that has high field strengths in the northern portion of the South Pole-
Aitken basin and another with low field strengths to the northwest of this
basin. The spectra of the two regions are similar in form and differ primarily
by a multiplicative constant, reflecting different strengths of magnetization in
the crust. As is seen, when a single localization window is used (black lines),
the spectrum possesses substantial oscillations, but as more and more win-
dows are employed, the multitaper spectrum estimate becomes progressively
smoother. The uncertainty of the spectral estimates decreases with the num-
ber of windows, and as expected, the uncertainty using 12 windows is about
2 times smaller than when using 3 windows. As the number of well-localized
windows increases, the bandwidth of the windows also increases, which
reduces the range of spherical harmonic degrees that can be interpreted.

When a global function is multiplied by a localization window, the power
spectrum of the localized function will differ naturally from that of the global
function. Thus, when comparing localized spectra of the observed magnetic
field to a model, it is important that these be compared to models that are
localized in a similar manner. In many geophysical analyses, such as when ana-
lyzing the relation between gravity and topography (e.g., Besserer et al., 2014),
it is possible to construct a forward model of the field that is then localized in
exactly the same manner as the data. In our case, though, the magnetization

model is inherently statistical in nature, and the generation of individual forward models would be somewhat
more cumbersome. Fortunately, a relationship does exist that relates the statistical expectation of the local-
ized multitaper spectrum estimate to the power spectra of the global field and window (Wieczorek & Simons,
2005, 2007). In particular, for a global scalar function f and a set of localization windows h(k), the expectation
of the multitaper power spectrum of the localized field Φ is

⟨
S(mt)
ΦΦ (l)

⟩
=

Lwin∑
j=0

(
K∑

k=1

ak S(k)hh (j)

)
l+j∑

i=|l−j| Sff (i)
(

Cl0
j0i0

)2
, (34)

where the symbol C is a Clebsch-Gordan coefficient, Shh and Sff are respectively the power spectrum of the
window h and function f , and ak are the weights used in constructing the multitaper estimate. For this study,
ak will be set equal to 1∕K . The derivation of this equation makes only the assumption that the spherical
harmonic coefficients of the function f are zero-mean random variables, and that the coefficients are isotropic,
with the variance depending solely on spherical harmonic degree.

When inverting the observed localized magnetic power spectra for model parameters, the goodness of fit
between the observations and model will be quantified by a reduced𝜒2 function. This misfit function depends
upon the four parameters of our model, N⟨M2⟩V2, dt , db, and 𝜃0, and is given explicitly by

𝜒2
𝜈

(
N⟨M2⟩V2, dt, db, 𝜃0

)
= 1

𝜈

L−Lwin∑
l=Lwin

(
S(mt)

B (l) − S(mt)
B

(
l;N⟨M2⟩V2, dt, db, 𝜃0

)
𝜎(mt)(l)

)2

, (35)

where 𝜈 is the number of degrees of freedom that is equal to L−2Lwin −4, the first two terms in the numerator
are respectively the observed multitaper power spectrum and the localized version of the model calculated
from equation (34), and 𝜎(mt) is the uncertainty associated with the observed multitaper power spectrum,
which is simply the standard error of the K windowed power spectra. The best fitting model parameters will
be obtained by sampling the entire model space using an exhaustive grid search.

The 1𝜎 uncertainties on the inversion parameters will be estimated by using a criterion for the maximum
allowable misfit that comes from Monte Carlo simulations. To determine this maximum allowable misfit, a
global model power spectrum of the magnetic potential is first calculated that corresponds to a set of rep-
resentative model parameters. Tests using different model parameters show that the final uncertainties are
insensitive to the exact values chosen. Assuming that the spherical harmonic coefficients of the magnetic
potential are random variables, which is consistent with the assumptions of our stochastic model, the Gauss
coefficients were set to Gaussian random deviates with variance given by equation (14). By definition, this
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ensures that the expectation of the magnetic power spectrum is equal to that of the global model. Next, a
localized analysis is performed on the simulated Gauss coefficients, and the best fitting model parameters
are determined by minimizing the 𝜒2

𝜈
function of equation (35). The best fitting 𝜒2

𝜈
is saved, and the entire

procedure is repeated using a new set of Gaussian deviates for the coefficients of the magnetic potential.
The cumulative probability distribution P(𝜒2

𝜈
) is computed, and the value of 𝜒2

𝜈
where P(𝜒2

𝜈
) is equal to 68.2%

is ultimately used as the maximum allowable misfit . This misfit defines the 68.2% confidence intervals for the
inversion parameters, which determines the 1-𝜎 uncertainties with respect to the best fitting value.

4. Results

A localized spectral analysis and inversion for model parameters was performed at each point on an equally
spaced grid that covered the lunar surface with a 5∘ grid spacing at the equator. At each location, the mag-
netic potential coefficients were downward continued to the mean elevation of the analysis region using
the global topographic map of Smith et al. (2010), and the depths to the top and bottom of the magnetized
region were referenced to this datum. The localization analyses made use of windows with an angular radii
of 8∘ (a diameter of about 480 km) and spectral bandwidths of 58, which yielded six well-localized windows.
The localized spectrum was analyzed from degree 58 to 391, and the misfit was calculated by an exhaustive
grid search of the four-parameter model space. As will be discussed at the end of this section, the results were
found to be insensitive to variations in the degree range of the localized spectrum that was analyzed and to
variations in the localization window parameters.

We start by discussing the inversion results using the magnetic power spectrum model that consists of magne-
tized sills (the results of the model using prisms are very similar). In Figure 7 are plotted from top to bottom the
results for the square root of N⟨M2⟩V2, the depth to the top of the magnetized region, the depth to the bottom
of the magnetized region, and the sill radius. From left to right are plotted the best fitting values interpolated
over the entire surface, and the 1𝜎 lower and upper limits of the model parameters. For the uncertainties,
individual points are plotted only when the misfit is below the maximum value expected for the 68% con-
fidence limit. As expected, about 74% of the analyses can be fit by the model to within the 68% confi-
dence limit.

The results for the square root of the parameter N⟨M2⟩V2 (in units of A m2) are perhaps the easiest to
interpret. This parameter is a measure of the number of magnetized sills in the crust, their magnetization, and
the sill volume. The best fitting values for this parameter vary over about 3 orders of magnitude, and the lateral
variations in this parameter are broadly similar to those seen in the observed magnetic field intensity as plot-
ted in the lower portion of Figure 1. Magnetic field strength is thus, unsurprisingly, largely correlated with
the number of magnetized sills in the crust, and/or their magnetization. As seen in this map, there are two
regions that have exceedingly weak magnetizations: one prominent region on the nearside in the region of
the Imbrium basin and Oceanus Procellarum and a second smaller region on the northern farside highlands.
Each of these regions has prominent magnetic lows in the total magnetic intensity. This map also shows that
some of strongest regions of magnetization are located in the central farside highlands, just north of the South
Pole-Aitken basin. This again correlates well with the regions having the strongest magnetic field intensities
in Figure 1. Maps of the 1𝜎 limits of this parameter show the same behavior as the best fitting values.

The next best constrained parameter is the depth to the top of the magnetized region. It is first noted that
even though this depth was allowed to lie above the surface in our inversions, the best fitting depths of mag-
netization lie almost always below the surface. This is a positive outcome of the model and lends credibility to
the assumptions under which it was generated. (It is noted that the depth of magnetization in a study of Mars
by Lewis and Simons (2012) was sometimes found to lie above the surface.) Though a few regions do predict
best fitting depths of magnetization above the surface, within uncertainties, these regions are consistent with
having the top of the magnetized zone located at the surface or below. A histogram of the best fitting depths
are plotted in Figure 8, which shows that the depth to the top of the magnetized region lies between the
surface and about 25 km depth. The average depth to the top of the magnetized region is 11 km, and the
average uncertainties on the depths are ±6 km. Thus, though some magnetization extends to the surface, in
other regions it is below the surface by more than 10 km.

The spatial distribution of the depth to the top of magnetization is heterogeneous, and it is not easy to corre-
late with known geologic processes. Nevertheless, it is noted that there is a broad region on the farside that
possesses extremely shallow depths of magnetization. This region encompasses a portion of the South Pole-
Aitken basin near (180∘E, 45∘S) and extends to both the northwest and northeast in a V-shaped pattern.
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Figure 7. Inversion results for ensembles of magnetized sills. From top to bottom are global maps centered on the farside of the square root of N⟨M2⟩V2,
depth to the top of the magnetized region, depth to the bottom of the magnetized region, and sill radius. From left to right are shown interpolated best fitting
parameters and the 1𝜎 lower and upper limits for each analysis. For the upper and lower limits, data points are plotted only if the minimum misfit is below
the expected 68% limit from Monte Carlo simulations. The angular radius of the localization windows is 8∘ , the window bandwidth is 58, and the number of
localization windows used is six. Analyses were performed on an equally spaced grid with a spacing of 5∘ at the equator, and data are presented in Mollweide
projections centered on the 180∘ meridian. Grid lines are spaced every 30∘ in latitude and longitude.

For this region, the best fitting depths range from about 0 to 7 km, the shallower 1𝜎 limit approaches the sur-
face (black circles), and the deeper 1𝜎 limit is close to 10 km. The depth to the top of magnetization in this
region is thus shallow. The region of low field intensities on the nearside also possesses shallow depths to the
top of magnetization, but the shallower 1𝜎 limits are here close to 20 km. Outside of these regions, the shal-
lowest 1𝜎 limits of the depths to the top of the magnetized regions are several kilometers below the surface
(i.e., those regions with non-black circles in the middle panel), suggesting that the upper portion of the crust
is there not magnetized.
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Figure 8. Histograms of the best fitting depths to the top of the (left) magnetized region and (right) sill radii.

In contrast to the depth to the top of the magnetized region, the depth to the bottom of this region is not
well constrained, if at all. Though there are regional variations in the best fitting depths to the bottom of
the magnetized region, the 1𝜎 lower limits extend to 100 km, which was the maximum value tested in our
inversions. It was noted previously in section 2.4 that the form of the theoretical power spectrum would make
it difficult to constrain this parameter.

Lastly, our inversions place some constraints on the angular radius of the sills in our model. A histogram of the
sill radii is plotted in Figure 8 showing that the radii are almost all less than about 15 km. This distribution is
somewhat bimodal, with peaks near 0 and 13 km, but as shown in Figure 7, the uncertainties on this parameter
are somewhat large. The vast majority of our analyses have 1𝜎 lower limits on the sill radii that approach 0 km,
and the 1𝜎 upper limits approach 20 km. There are some regions, however, as shown by the colored circles
in Figure 7 (middle column), that appear to constrain the sill radii to larger values close to 15 km. It is noted
that the maximum disk radii of about 20 km in our inversions is likely related to the spatial resolution of the
magnetic field model of Tsunakawa et al. (2015). As shown in section 2.4, the majority of the model power
is confined to lie within the first spectral lobe of bandwidth 1.2 × 180∕𝜃0. Since this spectral lobe is never
completely resolved in the localized spectra, the disk radii must be less than about 15 km. A higher-resolution
model of the magnetic field would help to further constrain this value.

In addition to inverting for model parameters using the model of magnetized sills, inversions were also per-
formed using magnetized prisms. The two models fit the observations equally well, and the results are quite
similar. The only difference worth noting is that the depths to the top of the magnetized region are often shal-
lower by up to 6 km when compared to the model of magnetized sills. As a result of this, those regions with
near-zero depths of magnetization in Figure 7 predict magnetization to lie above the surface. The reason for
this behavior can be seen in Figure 3, which shows that the power in the high-degree portion of the spectrum
is slightly greater for the model of magnetized sills than prisms. In our inversions with magnetized prisms, this
is compensated by decreasing the depth to the top of the magnetized region, which increases the power at
these degrees. Even though it is unphysical to have magnetization lying above the surface, we cannot exclude
the prism model given the uncertainties on this inversion parameter. For our simulations using sills with local-
ization windows of 10∘, out of 412 analyses, 6 analysis regions have best fitting magnetization depths above
the surface. Nevertheless, within 1𝜎 uncertainties, all of these are consistent with the magnetization being
located below the surface. For the prism model, 54 analysis regions have best fitting depths above the surface,
and 47 of these are consistent with lying below the surface within 1𝜎 uncertainties. If it were possible to
decrease the uncertainties on the depth to the top of magnetization (which is about ±6–8 km), it might be
possible to distinguish between these two models. The results for the sill model will be used in our discussion,
but none of the conclusions would differ if the prism model were used instead.

The sensitivity of our results to the parameters of our inversion was tested in several ways. First, as the highest
degrees of the magnetic field could perhaps be contaminated by noise, the degree range over which the
model was compared to the observations was first varied, by truncating the global model at spherical har-
monic degrees 250 and 350. The major consequence of using lower maximum degrees was to have higher
uncertainties on the inverted model parameters. The results for the square root of N⟨M2⟩V2 and the depth
to the bottom of the magnetized region were unchanged by using the lower degree ranges. As the inverted
degree range decreased, however, the shallower 1𝜎 limits on the depth to the top of the magnetized regions
also increased, such that a larger portion of the analyses were compatible with having the magnetized region
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extending to the surface. In contrast, the deeper 1𝜎 limit did not change much. As expected, the range of sill
radii increased as the maximum spatial resolution of the model was degraded.

The sensitivity of our inversion results to the size of the localization windows was also tested. Inversions were
performed using localization windows with angular radii of 8, 9, 10, 12, and 16∘, all with spectral bandwidths
of 50. For these parameters, there were respectively 3, 5, 6, 12, and 25 orthogonal well-localized windows for
computing the multitaper spectrum. For our inversions using the full resolution of the global model, the best
fitting parameters and 1𝜎 limits were largely unchanged. Though the uncertainties were somewhat greater
for the inversions with smaller window sizes, this effect was not nearly as dramatic as truncating the global
model to lower degrees. As the window size decreased, the lateral variability in the best fitting model param-
eters increased somewhat. Six orthogonal localization windows with a size of 8∘ were chosen subjectively to
present our nominal results as it was visually smooth and largely devoid of statistical fluctuations. The con-
clusions of this work would not be affected if they were based on the results using either larger or smaller
localization windows.

5. Discussion
5.1. Origin and Timing of Crustal Magnetization
The results of our analysis place constraints on the strength, depth, and geometry of magnetic sources in the
lunar crust, and this allows us to investigate not only the origin of lunar magnetic materials but also the timing
of when they became magnetized. One of the first results concerns the size and thickness of the regions that
are magnetized in the crust. Our inversions imply that the horizontal scale of magnetization is less than about
30 km, but given that this upper limit is likely related to the maximum spatial resolution of the magnetic field
model, it is plausible that the width of the magnetized regions could be even smaller. Thus, as opposed to
having wide coherent blocks of materials that are magnetized, the picture that emerges for the Moon is rather
a scenario where the magnetization is confined to numerous small regions.

The range of depths where the magnetized sills in our model reside is well constrained. As shown in Figure 8,
the depths to the top of the magnetized region vary laterally and extend from the surface down to about
25 km. When considering the shallower 1𝜎 uncertainty on this parameter, the depths to the top of the magne-
tized region must be deeper than more than several kilometers for over more than half of the Moon’s surface.
In contrast to the depth to the top of the magnetized region, the depth to the bottom of this region is rela-
tively unconstrained with the 1𝜎 limits extending to more than 100 km. One might expect that the maximum
depth to the bottom of the magnetized region would correspond to the crust-mantle interface. Inversions of
both Gravity Recovery and Interior Laboratory (GRAIL) gravity and Apollo seismic data suggest that the aver-
age thickness of the crust lies somewhere between 34 and 43 km, and that locally, the thickness can be as great
as 80 km Wieczorek et al. (2013). Together, these observations imply that much of the deep crust of the Moon
(deeper than 10 km) is magnetized, and that in some places the magnetization extends to the surface. The upper
10 km or so of the crust is unmagnetized in places, suggesting that either the upper crust was never mag-
netized in these regions or the upper crust was subsequently demagnetized, such as by later impact events.

The depth range, lateral size of the magnetized regions, and distribution of magnetization place important
constraints on the origin of the magnetic carriers. Three possibilities that can be considered are that (1) the
magnetization is related to magmatic intrusions in the crust, (2) the magnetization is related to materials
accreted to the Moon during large impacts, and (3) the magnetization is primordial and formed at the same
time as the crust. The first scenario involving magmatic intrusions can be safely ruled out. Though the size of
the magnetized regions is consistent with what one might expect for magmatic sills, nearly the entire crust
of the Moon possesses significant magnetization from the perspective of the parameter N⟨M2⟩V2. The vast
majority of this crust resides in the lunar highlands where there are few basaltic eruptions and where there is
little remote sensing evidence for basaltic intrusions in the largely anorthositic crust. In fact, the vast major-
ity of lavas that erupted on the Moon are located on the nearside in Oceanus Procellarum and Mare Imbrium,
and it is this region that has the lowest magnetic field intensities. Magmatic intrusions might account for a
few isolated magnetic anomalies in the highlands, but not the majority of the ubiquitous weak fields that are
found there.

The second possibility for the origin of the magnetic carriers is that they were delivered to the Moon during
large impact events. For this scenario, one might expect that the magnetization would be shallowest within
and surrounding the largest basins. The depth to the top of the magnetized region is replotted in Figure 9
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Figure 9. Impact basins with sizes greater than 500 km diameter
superposed on the depth to the top of magnetization. Basin sizes
and locations are from Neumann et al. (2015), with the exception of
the South Pole-Aitken basin where both the inner basin floor and outer
structural rim of Garrick-Bethell and Zuber (2009) are plotted. Data are
presented in a Mollweide projection centered on the 180∘ meridian.
Grid lines are spaced every 30∘ in latitude and longitude.

along with the sizes of all impact basins that are greater than 500 km in diame-
ter. Though there are few obvious correlations between impact basins and the
depth of magnetization, two possible exceptions are the 1,321 km diameter
Imbrium basin centered at (37∘N, 18.5∘W) and the 2,400 km diameter South
Pole-Aitken basin centered at (53∘S, 191∘W). For the Imbrium basin, the best
fitting depth to the top of the magnetized region is only a few kilometers, with
1𝜎 uncertainties extending from the surface to about 20 km. A plausible but
equivocal interpretation is that the shallow depths of magnetization here are
related to iron-rich materials derived from the impactor that were deposited
in the basin center. The interior of the South Pole-Aitken basin is also associ-
ated with best fitting depths to the top of magnetization that are only a few
kilometers. Furthermore, these shallow depths appear to extend to both the
northwest and northeast of this basin in a broad V-shaped pattern. The 1𝜎
limits for these depths are also shallow, extending from the surface to about
10 km depth. The shallow magnetization in this region of the Moon is plau-
sibly attributed to iron-rich materials derived from the projectile that formed
this basin, as originally proposed by Wieczorek et al. (2012). The northwest
and northeast extensions of this material are consistent with projectile mate-
rials being deposited in the downrange direction of a south to north oblique
impact Garrick-Bethell and Zuber (2009).

Even if some of the magnetization that resides at shallow depths might be
the result of materials delivered to the Moon during large impact events, the

majority of magnetization is located at depths greater than about 10 km. The only explanation that remains
for these regions is that the magnetic carriers formed at these depths at the same time as the primordial crust
of the Moon. Though anorthositic rocks contain low abundances of metallic iron (e.g., Fuller & Cisowski, 1987),
most of these regions are associated with low field strengths, especially when viewed in the magnetic field
intensity plot of Figure 1 that uses a linear scale. Thermal evolution models predict that the highland crust
would cool entirely below the Curie temperature of metallic iron (1038 K, Dunlop & Özdemir, 2015) within the
first 100 Myr of lunar evolution (e.g., Arkani-Hamed & Boutin, 2017; Laneuville et al., 2017). Furthermore, most
thermal evolution models predict that the core could have driven a dynamo powered by thermal convection
during the first couple hundred million years (e.g., Evans et al., 2014; Konrad & Spohn, 1997; Laneuville et al.,
2014; Scheinberg et al., 2015). Thus, the primordial deep crust was likely magnetized during the first 100 Myr
of lunar evolution when a lunar dynamo was operating.

In summary, our results imply that the vast majority of the crust is heterogeneously magnetized over small
scales, with the depth to the top of the magnetized region extending from the surface to about 25 km and with
the bottom of this region extending probably to the base of the crust. The majority of the magnetic carriers
found in the crust formed at the same time as the crust itself, and these materials became magnetized during
the first 100 Myr of lunar evolution when the Moon had a dynamo-generated magnetic field. The projectiles
that formed the Imbrium and South Pole-Aitken basins could have delivered some magnetic materials to the
Moon as well and may account for some of the shallowest magnetization.

5.2. Origin of the Nearside Magnetic Low
The magnetic field intensity map of Figure 1 shows that the vast majority of the Moon’s crust is at least par-
tially magnetized. One major exception to this, which is best highlighted when plotting the field intensity
logarithmically, is a large contiguous region on the nearside hemisphere centered at about (30∘N, 20∘W)
where the field strengths are exceedingly weak (<0.1 nT at 30 km altitude). A considerably smaller region
with similarly weak fields is found in the northern farside highlands near (70∘N, 180∘E). The weak crustal
fields in these regions are not artifacts of the magnetic field map used in this study as maps of the surface
field strength derived from the Lunar Prospector electron reflectometer also show weak fields in these same
regions (Halekas et al., 2001; Mitchell et al., 2008). Our inversions show that these low field regions are asso-
ciated with values of the square root of N⟨M2⟩V2 that are 1 to 2 orders of magnitude lower than average.
Three possible explanations can be considered for the origin of these prominent magnetic lows. The first is
that they are related to demagnetization of the crust by impact events, the second is that they were never
magnetized because of higher than average crustal temperatures, and the third is that these regions possess
lower than average abundances of magnetic carriers. Though the abundance of magnetic carriers likely does
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Figure 10. Confines of the Procellarum KREEP Terrane (white) and size
of the Imbrium impact basin (black) superposed on the square root of
N⟨M2⟩V2. Inversion results are from Figure 7 and the contour plotted
corresponds to the Procellarum KREEP Terrane, as defined here by
abundances greater than 4.1 ppm Th from the map of Lawrence et al.
(2003). For comparison with Figure 11, the confines of the Orientale
impact basin (dashed) are also shown. Data are presented in a Mollweide
projection centered on the prime meridian, and grid lines are spaced
every 30∘ in latitude and longitude.

vary from place to place in the lunar crust, as we know of no way of testing
this hypothesis, it will not be considered further.

The first explanation for the magnetic lows is that they are a result of crustal
demagnetization related to large impact events. As seen in Figure 10, the near-
side demagnetized zone does indeed correlate well with the Imbrium impact
basin. The Imbrium basin is the largest basin on the nearside of the Moon and
is one of the last three basins to have formed. It is well known that the shock
waves generated during impact events are sufficient to partially demagnetize
common magnetic minerals (e.g., Artemieva et al., 2005; Bezaeva et al., 2010;
Gattacceca et al., 2010; Louzada et al., 2011), and several basins on both the
Moon and Mars have been shown to have weaker than average magnetic field
strengths in their interiors (e.g., Halekas et al., 2002, 2003; Langlais & Thébault,
2011; Lillis et al., 2010, 2013; Mohit & Arkani-Hamed, 2004). Thus, as originally
proposed by Halekas et al. (2003), it should not be surprising that the Imbrium
impact would partially demagnetize the surrounding crust, and that this
impact is at least partially responsible for the magnetic low found in this
region of the Moon. Regardless, it should be noted that the much smaller
farside anomaly is not associated with any known impact basin.

There are couple of observations, however, that question whether the
Imbrium impact is the sole cause of the nearside magnetic low. First, even
though some impact basins have relatively low magnetic field strengths in
their interiors, none have absolute strengths as low as those near the Imbrium

basin, nor as large in spatial extent. As an example, as shown in Figure 11, the Orientale basin at (20.1∘S,
265.2∘E) is seen to have weak field strengths in its vicinity, but the size and magnitude of this anomaly are
unlike those near the Imbrium basin. Furthermore, as shown in Figure 10, in contrast to the Imbrium basin, the
Orientale basin is barely visible in our map of N⟨M2⟩V2. Though it is true that Orientale is smaller than Imbrium
(937 km in comparison to 1,321 km, Neumann et al., 2015), Orientale is not only one of the largest basins on

Figure 11. Total magnetic field strength of the Moon at 30 km altitude centered over the (left) Imbrium and (right)
Orientale basins. The field strengths of Tsunakawa et al. (2015) are plotted using a logarithmic color scale, and the maps
are presented in Lambert azimuthal equal-area projections overlain by a shaded relief map derived from the Lunar
Orbiter Laser Altimeter (Smith et al., 2010). Grid lines are spaced every 30∘ in latitude and longitude.
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the Moon but it is also younger than the Imbrium basin. The Crisium basin, which is the only basin intermedi-
ate in size between Imbrium and Orientale, does not have any clear demagnetization signature at all (in fact,
its interior is strongly magnetized). The next largest basins of Serentitatis and Nectaris have annuli of weak
fields surrounding a central high, but the magnitudes of the fields in the low-amplitude annuli are not com-
parable to those near the Imbrium basin. Finally, it is noted that even though the magnetic low encompasses
most of the Imbrium basin, neither the maps of N⟨M2⟩V2 nor the magnetic intensity are entirely symmetric
about the basin center.

An alternative explanation for the prominent magnetic low on the nearside of the Moon is that it is instead
related to high crustal temperatures that were above the blocking temperature of metallic iron at the time
when the lunar dynamo was operating. As shown in Figure 10, the nearside magnetic low lies entirely within
the confines of the Procellarum KREEP Terrane (PKT) (Jolliff et al., 2000), which is a geologic province that
has high concentrations of the heat-producing elements potassium (K), uranium and thorium, the rare-Earth
elements (REE), and phosphorous (P). The enrichment of these elements in the PKT appears to be related
both to moderate enhancements of these elements in the mare basalts that erupted within this region and
high concentrations in the underlying crust. In fact, exposures of highlands materials within this province
that were not covered by mare basalts have considerably higher abundances of KREEP than the surrounding
mare basalts themselves. This observation, when combined with the measured composition of materials that
were excavated by the Imbrium impact event (Korotev, 2000), implies that the highest abundances of heat-
producing elements reside within the crust, which is volumetrically more important than the thin surface
veneer of mare basalts. Though the origin of this province is debated (see Shearer et al., 2006), it is related in
some way to the final materials that crystallized from a global lunar magma ocean shortly after formation of
the Earth-Moon system.

No other region of the Moon has enrichments in heat-producing elements, either at the surface or at depth,
that are comparable to the Procellarum KREEP Terrane. The high heat production within this province cer-
tainly had a major influence on the thermal evolution of this region, and thermal evolution models predict
the crust and underlying mantle of the PKT to have been considerably hotter than other regions of the Moon
(Hess & Parmentier, 2001; Grimm, 2013; Laneuville et al., 2013; Wieczorek & Phillips, 2000). Indeed, these
models predict the underlying mantle to have partially melted, giving rise to the mare basalts that erupted
in the same region. It is thus conceivable that large portions of the crust within the PKT could have had tem-
peratures above the Curie temperature of metallic iron at the same time when other regions of the highland
crust had already cooled below this temperature.

If a strong dynamo field were present when the highland crust was cooling below the blocking tempera-
ture of iron, but not later when the crust of the PKT cooled below the same temperature, the crust of the
PKT could escape becoming magnetized and would today be associated with a magnetic low. Thermal evo-
lution models and paleomagnetic analyses of lunar rocks appear to be consistent with this scenario. Thermal
evolution models predict that it could take more than 1 Gyr for the entire crust of the Procellarum KREEP
Terrane to cool below the Curie temperature of metallic iron, as opposed to less than 100 Myr for the highland
crust (Laneuville et al., 2017). Though a dynamo could have operated during this time (Laneuville et al., 2014;
Scheinberg et al., 2015), paleomagnetic analyses suggest that the strength of the dynamo field weakened
by more than an order of magnitude sometime after about 3.56 Ga (Tikoo et al., 2014; Weiss & Tikoo, 2014).
Thus, large portions of the PKT could have cooled when the field strengths were considerably weaker than
during the first 100 Myr of lunar evolution.

One consequence of this scenario is that the size of the Procellarum KREEP Terrane might be considerably
smaller than once thought. The confines of the PKT are often delimited by those regions having thorium
abundances greater than about 4 ppm thorium. However, the mare basalts in the PKT are thought to have
moderate thorium enhancements, and portions of the underlying crust are likely to be considerably more
enriched than the mare. Unfortunately, the confines of the region of the underlying crust with high thorium
abundances is difficult to estimate given that this region was later resurfaced by mare basalts. We suggest
here that the region of crust with extremely low magnetic field intensities might be a better indication of the
size of the enhanced thorium abundances in the crust than are the surface abundances of the thorium. If this
is true, the size of the PKT would be almost 3 times smaller than previous estimates.

The origin of the magnetic low in the northern farside highlands remains enigmatic. It does not appear to be
associated with an impact basin, there is no associated enhancement of KREEP at the surface, and there is no
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evidence for any volcanic activity in this region. One possible explanation for this magnetic low is that the
crust in this region possesses lower than average abundances of metallic iron.

6. Conclusions

The problem of inverting for the depth and geometry of magnetic sources is notoriously difficult given that
analyses of potential fields are inherently nonunique. To make progress on understanding the properties of
crustal magnetization, it is often necessary to make assumptions about either the geometry of the magne-
tized sources or the direction of magnetization (e.g., Parker, 1991). In this analysis, the nonuniqueness problem
was bypassed by making a few simple statistical assumptions about the sources. The magnetization was
assumed to reside in an ensemble of magnetized sills or prisms with a specified size and range of depths.
By assuming that the locations of the sources and magnetization directions were random, the model pre-
dicts a global power spectrum that depends upon the strength of magnetization, the size of the magnetized
regions, and the depth range over which the magnetization is found. The model was shown to be insensi-
tive to the assumed direction of magnetization, and for the longest wavelengths, the two models of sills and
prisms were nearly identical.

Using this power spectrum model, a localized power spectrum analysis was used to invert for lateral varia-
tions in the model parameters. Our analysis showed that (1) the depth to the top of the magnetized region
lies between the surface and about 25 km depth, (2) the depth to the bottom of the magnetized region was
unconstrained, (3) the lateral size of the magnetic sources was less than about 30 km, and (4) the intensity
of magnetization was extremely weak in a small region on the nearside hemisphere. It was argued that the
magnetic sources in the deep crust were magnetized in the presence of a dynamo field when the crust cooled
below the blocking temperature of metallic iron during the first 100 Myr of lunar evolution. Some magneti-
zation that was located close to the surface may instead be partially a result of metallic iron delivered to the
Moon by large impact events, such as the giant South Pole-Aitken impact. The region of low magnetization
corresponds to the region where crustal fields are extremely weak, and although this anomaly could be a result
of crustal demagnetization by the Imbrium impact, it was noted that its signature is atypical of other simi-
larly sized impact basins. Instead, it was argued that this region of the crust was never magnetized as a result
of prolonged high crustal temperatures that were present in the Procellarum KREEP Terrane. If the region of
crust that is highly enriched in heat-producing elements corresponds to the size of the magnetic low, the size
of the Procellarum KREEP Terrane could be about 3 times smaller than typically assumed.

Our analysis, however, leaves unresolved several problems related to lunar magnetism. For example, it was
not possible to constrain the depth to the bottom of the magnetized region. Though it might be reasonable
to assume that the maximum depth of magnetization would correspond to the base of the crust, in principle,
it is possible that the upper mantle could host small quantities of metallic iron and that the upper mantle
could also be partially magnetized (for a discussion concerning the possibility of magnetization in the upper
mantle of Earth, see Ferré et al., 2014). The geometry of the magnetizing field is also not well understood, with
both dipolar and highly quadrupolar fields being possible (e.g., Nayak et al., 2017; Oliveira & Wieczorek, 2017;
Takahashi et al., 2014). If the field were predominantly dipolar, one might expect the strength of magnetization
to vary by a factor of 2 from pole to equator, but this signal is not seen in our results. Nevertheless, one could
argue that this factor of 2 would likely be overwhelmed by lateral variations in the abundance of magnetic
carriers in the crust.

The time dependence of the strength of the dynamo field is also not well constrained. Though our results
imply that a core dynamo must have operated earlier than the oldest paleomagnetic constraint of 4.25 Ga,
neither the duration of the dynamo nor the evolution of its intensity is easily addressed from spacecraft
measurements of crustal magnetism. If the magnetic low on the nearside is indeed a result of high crustal tem-
peratures within the Procellarum KREEP Terrane, we can only say that the field strength decreased in intensity
by more than an order of magnitude before this province cooled below the blocking temperature of metal-
lic iron. Detailed thermal evolution models of the Procellarum KREEP Terrane could turn out to be invaluable
for understanding not only the origin of the nearside magnetic low but also how the strength of the lunar
dynamo evolved with time.

The results of this study could be improved upon in several ways. First, even though the most recent mag-
netic field models make use of Lunar Prospector and Kaguya vector magnetic field measurements, the spatial
resolution of these fields is limited by the altitude of the measurements above the surface, which was about
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30 km. In contrast, the Lunar Prospector electron reflectometer experiment directly sensed the magnetic field
strength at the surface, and it is in principle possible to investigate the spectral properties of this total inten-
sity field. This could potentially provide power spectrum estimates with higher spatial resolution that would
better constrain the characteristic size of the magnetic sources and reduce the uncertainties on important
model parameters. Second, our analysis assumed that the characteristic size of the magnetic sources was the
same in each analysis region. Using our formalism, it would be straightforward to make use of a size-frequency
distribution of magnetic sources. Though this might provide a more realistic description of crustal magnetism,
and fit the available data better, the downside would be of having to introduce an additional parameter in
our inversions. Finally, it is possible that remotely sensed spectroscopic data could be used to investigate the
abundance of macroscopic metallic iron in the crust and how it varies with depth (e.g., Cahill et al., 2014).
Results from such studies could not only be compared with geophysical inversions of the lunar magnetic field
but also be used as an independent constraint on the abundance of magnetic carriers in the crust.

Appendix A: Gauss Coefficients of a Uniformly Magnetized Spherical Prism

The Gauss coefficients of a uniformly magnetized spherical prism are derived in this section. If the magneti-
zation in the prism is constant in direction, as given by its three Cartesian coordinates,

M = Mx x̂ + My ŷ + Mz ẑ, (A1)

then both the divergence of M and the volume integral in equation (2) are identically zero and the magnetic
potential reduces to

U(r′) =
𝜇0

4𝜋 ∫S

M(r) ⋅ da|r′ − r| . (A2)

Calculation of the potential requires the evaluation of three surface integrals: two for the spherical inter-
faces that truncate the cone (surfaces I and II) and one for the surface of the cone between these interfaces
(surface III). For this calculation, the axis of the cone will be assumed to coincide with the z axis, with the prism
centered over the north pole.

For the upper interface (surface I), the area element is

da = r2
+ dΩ r̂, (A3)

where the Cartesian coordinates of the radial unit vector are

r̂ = sin 𝜃 cos𝜙 x̂ + sin 𝜃 sin𝜙 ŷ + cos 𝜃 ẑ. (A4)

Using the definitions of the degree-1 Schmidt seminormalized spherical harmonic functions

Y10(𝜃, 𝜙) = cos 𝜃 (A5)

Y11(𝜃, 𝜙) = sin 𝜃 cos𝜙 (A6)

Y1,−1(𝜃, 𝜙) = sin 𝜃 sin𝜙, (A7)

the scalar product in the numerator in equation (A2) can be expressed as

M(r) ⋅ da = r2
+ dΩ

(
Mx Y11(𝜃, 𝜙) + My Y1,−1(𝜃, 𝜙) + Mz Y10(𝜃, 𝜙)

)
. (A8)

The denominator in equation (A2) can be simplified by making use of the identities

1|r′ − r| = 1
r′

∞∑
l=0

( r
r′

)l
Pl(cos 𝛾) for r′ ≥ r, (A9)

Pl(cos 𝛾) =
l∑

m=−l

Ylm(𝜃, 𝜙)Ylm(𝜃′, 𝜙′), (A10)
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where 𝛾 is the angle subtended between the vectors r and r′. Combing the above equations yields the
following expression for the integral over the upper surface:

UI(r′) =
𝜇0 r′

4𝜋

∞∑
l=0

l∑
m=−l

( r+
r′

)l+2

Ylm(𝜃′, 𝜙′)

× ∫I
Ylm(𝜃, 𝜙)

[
Mx Y11(𝜃, 𝜙) + My Y1,−1(𝜃, 𝜙) + Mz Y10(𝜃, 𝜙)

]
dΩ.

(A11)

For surface II, the differential surface area element is

da = −r2
− dΩ r̂, (A12)

and the derivation for the contribution to the potential differs only trivially from that for surface I. Given that
the integration domain over the angular coordinates is the same for surfaces I and II, it is easily shown that
the contribution to the potential from both surfaces is

UI+II(r′) =
𝜇0 r′

4𝜋

∞∑
l=0

l∑
m=−l

[( r+
r′

)l+2

−
( r−

r′

)l+2
]

Ylm(𝜃′, 𝜙′)

× ∫I,II
Ylm(𝜃, 𝜙)

[
Mx Y11(𝜃, 𝜙) + My Y1,−1(𝜃, 𝜙) + Mz Y10(𝜃, 𝜙)

]
dΩ.

(A13)

Finally, by performing the integral over 𝜙 from 0 to 2𝜋, and taking into account the orthogonality properties
of the sin and cos functions, we arrive at

UI+II(r′) =
𝜇0 r′

2

∞∑
l=0

l∑
m=−l

[( r+
r′

)l+2

−
( r−

r′

)l+2
]

Ylm(𝜃′, 𝜙′)

×
[

1
2

(
𝛿m1 Mx + 𝛿m,−1 My

)
∫

1

cos 𝜃0

P̄l1(x) P̄11(x)dx + 𝛿m0 Mz ∫
1

cos 𝜃0

P̄l0(x) P̄10(x)dx

]
.

(A14)

For surface III, the differential area element is

da = r sin 𝜃0 dr d𝜙 �̂�, (A15)

where for our case with a constant colatitude

�̂� = cos 𝜃0 cos𝜙 x̂ + cos 𝜃0 sin𝜙 ŷ − sin 𝜃0 ẑ. (A16)

Inserting the scalar product of M ⋅ da into equation (A2) yields

UIII(r′) =
𝜇0 r′

4𝜋

∞∑
l=0

l∑
m=−l

Ylm(𝜃′, 𝜙′)∫
r+

r−

rl+1

r′l+2
dr

× ∫
2𝜋

0
Ylm(𝜃0, 𝜙) sin 𝜃0

(
Mx cos 𝜃0 cos𝜙 + My cos 𝜃0 sin𝜙 − Mz sin 𝜃0

)
d𝜙

(A17)

Performing the integrals over r and 𝜙 yields

UIII(r′) =
𝜇0 r′

2

∞∑
l=0

l∑
m=−l

Ylm(𝜃′, 𝜙′)
[( r+

r′

)l+2

−
( r−

r′

)l+2
]

× 1
(l + 2)

[1
2

(
𝛿m1 Mx + 𝛿m,−1 My

)
P̄l1(cos 𝜃0) sin 𝜃0 cos 𝜃0 − 𝛿m0 Mz P̄l0(cos 𝜃0) sin2 𝜃0

]
.

(A18)
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Combing equations (A14) and (A18), and making use of equation (3), the Gauss coefficients of the uniformly
magnetized spherical prism are given by

glm =
𝜇0

2

[( r+
a

)l+2

−
( r−

a

)l+2
]

×
[

1
2

(
𝛿m1 Mx + 𝛿m,−1 My

)(
∫

1

cos 𝜃0

P̄l1(x)P̄11(x)dx +
P̄l1(cos 𝜃0) sin 𝜃0 cos 𝜃0

(l + 2)

)
+ 𝛿m0 Mz

(
∫

1

cos 𝜃0

P̄l0(x)P̄10(x)dx −
P̄l0(cos 𝜃0) sin2 𝜃0

(l + 2)

)]
.

(A19)

Appendix B: Integrals of Associated Legendre Functions

The calculation of the theoretical power spectra in sections 2.2 and 2.3 can be simplified by noting that
the Schmidt seminormalized Legendre functions and integrals of products of Legendre functions can be
expressed in terms of ordinary Legendre polynomials and their first derivatives. We start with the formula for
the integral of two (unnormalized) Legendre polynomials (e.g., Byerly, 1893, p. 172)

∫
1

x
Pl(x) Pm(x)dx =

(
1 − x2

) [
Pm(x) P

′

l (x) − Pl(x) P
′

m(x)
]

l(l + 1) − m(m + 1)
, l ≠ m, (B1)

where the first derivatives of the Legendre polynomials with respect to their argument are

P
′

l (x) =
−l x Pl(x) + l Pl−1(x)

(1 − x2)
. (B2)

With equations (B1) and (B2), the second integral in equation (23) can be expressed as

∫
1

x0

P̄l0(x)P̄10(x)dx =

{
frac13

(
1 − x3

0

)
l = 1

(1−x2
0)

(l+2)(l−1)

[
x0 P

′

l (x0) − Pl(x0)
]

l ≠ 1.
(B3)

Using the definition of the associated Legendre functions for m = 1

Pl1(x) =
√

1 − x2 P
′

l (x), (B4)

the definition of the first derivative of the Legendre polynomials (equation (B2), the integral

∫
1

x0

Pl(x)dx =
(1 − x2

0) P
′

l (x0)
l(l + 1)

, l ≠ 0, (B5)

and equation (B3), the first integral in equation (23) can be shown to be

∫
1

x0

P̄l1(x)P̄11(x)dx =
⎧⎪⎨⎪⎩

2
3
− x0 +

x3
0

3
l = 1√

2
l(l+1)

(1−x2
0 )

(l+2)(l−1)

[
(l + 2)P′

l−1(x0) − l x0 P
′

l (x0) + l Pl(x0)
]

l ≠ 1.
(B6)

Finally, using equation (B4), we have

P̄l1(cos 𝜃) =
√

2
l(l + 1)

sin 𝜃 dPl(cos 𝜃)∕d(cos 𝜃). (B7)

With equations (B3), (B6), and (B7), it is possible to calculate Z in equations (24), (25), (31), and (32) using only
the standard Legendre polynomials and their first derivatives, which are easily calculated using well known
recursion relationships.
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Appendix C: Alternative Model Power Spectrum for Magnetized Sills

A model for the magnetic power spectrum was presented in section 2.3 that was the result of many thin
spherical caps that were each magnetized in a random direction and that were randomly distributed between
radii r+ and r−. For that model, the thickness of each sill was assumed to be constant, which implied that the
sill volume depended on the radius at which it formed. In this section, results are presented where the sills are
assumed to have a constant volume. Such thin caps could be thought of as magmatic sills. For this scenario,
we multiply and divide the integrand of equation (27) by the area of each sill squared,

[
2𝜋(1 − cos 𝜃0)

]2
, and

replace the terms that correspond to the sill volume by the constant Vs. Integrating the equation, the total
power spectrum of the collection of sills can be shown to be given by

⟨SB(l)⟩ =N ⟨M2⟩ V2
s

𝜇2
0

V 12𝜋 a3 (1 − cos 𝜃0)2

(l + 1)(l + 2)2

(2l + 1)

[( r+
a

)2l+1

−
( r−

a

)2l+1
]

×

[
1
2

(
∫

1

cos 𝜃0

P̄l1(x)P̄11(x)dx +
P̄l1(cos 𝜃0) sin 𝜃0 cos 𝜃0

(l + 2)

)2 (C1)

+
(
∫

1

cos 𝜃0

P̄l0(x)P̄10(x)dx −
P̄l0(cos 𝜃0) sin2 𝜃0

(l + 2)

)2]
, (C2)

where

V = 4𝜋
3

(
r3
+ − r3

−
)
. (C3)
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