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Abstract

Let N ≥ 2. If g ∈ L1
c(R

N ) has zero integral, then the equation divX = g need not

have a solution X ∈ W 1,1
loc (RN ; RN ) (Wojciechowski 1999) or even X ∈ LN/(N−1)loc

(RN ; RN ) (Bourgain and Brezis 2003). Using these results, we prove that, whenever
N ≥ 3 and 2 ≤ ` ≤ N − 1, there exists some `-form f ∈ L1

c(R
N ; Λ`) such that

df = 0 and the equation dλ = f has no solution λ ∈W 1,1
loc (RN ; Λ`−1). This provides

a negative answer to a question raised by Baldi, Franchi and Pansu (2019).

Résumé

Sur la représentation comme différentielles extérieures des formes fermées
à coefficients L1

Soit N ≥ 2. Si g ∈ L1
c(R

N ) est d’integrale nulle, alors en général il n’est pas possible
de résoudre l’équation divX = g avec X ∈ W 1,1

loc (RN ; RN ) (Wojciechowski 1999),

ou même X ∈ L
N/(N−1)
loc (RN ; RN ) (Bourgain et Brezis 2003). En utilisant ces

résultats, nous prouvons que, pour N ≥ 3 et 2 ≤ ` ≤ N − 1, il existe une `-forme
f ∈ L1

c(R
N ; Λ`) avec df = 0 et telle que l’équation dλ = f n’ait pas de solution

λ ∈ W 1,1
loc (RN ; Λ`−1). Ceci donne une réponse négative à une question posée par

Baldi, Franchi et Pansu (2019).

Version française abrégée

Répondant à une question posée par Baldi, Franchi et Pansu ([1]), nous mon-
trons le résultat suivant :
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Théorème 1 Soit N, ` entiers tels que N ≥ 3 et 2 ≤ ` ≤ N − 1. Il existe
une `-forme différentielle fermée à coefficients L1, f ∈ L1

c(R
N ; Λ`), telle que

l’équation dλ = f n’ait pas de solution λ ∈ W 1,1
loc (RN ; Λ`−1).

La preuve est faite par l’absurde et repose sur un résultat de non-existence
bien connu pour l’équation divX = g. Plus précisément, il existe des fonctions
g ∈ L1

c((0, 1)`; R) avec
´
g = 0 et telles que l’équation divX = g n’ait pas

de solution X ∈ L`/(`−1)loc (R`; R`) (voir Bourgain et Brezis [2]). À partir d’une
telle fonction g, nous construisons une forme différentielle explicite f , fermée,
à support compact et à coefficients L1. En supposant le Théorème 1 faux,
nous obtenons l’existence d’une fonction G ∈ C2

c ((0, 1)`; R) et d’un champ

Y ∈ L`/(`−1)loc (R`; R`) tels que div Y = g+G, ce qui contredit les propriétés de
la fonction g.

En combinant ce résultat avec les résultats de [6], [2], nous obtenons la con-
séquence suivante.

Corollaire 2 Soient N ≥ 2 et 1 ≤ ` ≤ N . Soit A la classe des `-formes
f ∈ L1

c(R
N ; Λ`) satisfaisant la condition de compatibilité df = 0 (si 1 ≤ ` ≤

N − 1), respectivement
´
f = 0 (si ` = N). Alors nous avons l’équivalence

1 ⇐⇒ 2, où

1. l’équation dλ = f a une solution λ ∈ W 1,1
loc (RN ; Λ`−1) pour tout f ∈ A.

2. ` = 1.

1 Introduction

We consider the Hodge system

dλ = f in RN , (1)

where f and λ are ` and (`−1)-forms respectively, f being given and satisfying
the compatibility condition df = 0. We focus on the case where f has L1

coefficients.

To start with, let us recall some known facts about the cases ` = N and ` = 1.

In the case ` = N , (1) reduces to the divergence equation. It was first shown
by Wojciechowski [6] that there exists g ∈ L1

c(R
N), with zero integral, such

that the equation divX = g has no solution X ∈ W 1,1
loc (RN ; RN). On the

other hand, Bourgain and Brezis [2] proved, using a different method, the
following: there exists g ∈ L1

c(R
N) with zero integral, such that the equation

divX = g has no solution X ∈ LN/(N−1)loc (RN ; RN). In view of the embedding

W 1,1
loc ↪→ L

N/(N−1)
loc , this improves [6].
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In the case ` = 1, (1) reduces to the following “gradient” equation

∇λ = f, (2)

where f is a vector field satisfying the compatibility condition ∇ × f = 0
and λ is a function. Unlike the case ` = N , this time (2) has a solution
λ ∈ W 1,1

loc (RN). Actually, any solution of (2) belongs to W 1,1
loc and, moreover,

if f is compactly supported then we may choose λ ∈ W 1,1.

The question of the solvability in W 1,1
loc of the system (1) with datum in L1 in

the remaining cases, i.e., 2 ≤ ` ≤ N − 1, has been recently raised by Baldi,
Franchi and Pansu [1]. Our main result settles this problem.

Theorem 3 Let N ≥ 3. Let 2 ≤ ` ≤ N − 1. Then there exists some f ∈
L1
c(R

N ; Λ`) such that df = 0 and the equation dλ = f has no solution λ ∈
W 1,1
loc (RN ; Λ`−1).

The proof of Theorem 3 we present is a simplification, communicated to the
author by P. Mironescu, of the original one. This simplified version has the
advantage of being relatively self-contained and elementary.

2 Proof of Theorem 3

We start with some auxiliary results.

Lemma 4 Let 1 ≤ κ ≤ N − 1 and f ∈ L1
c(R

N ; Λκ) be such that df = 0. Then
there exists some ω ∈ Lqloc(RN ; Λκ−1), for all 1 ≤ q < N/(N − 1), such that
dω = f .

Proof. Let E be ”the” fundamental solution of ∆ and set η := E ∗ f . Let
ω := d∗η. First, η ∈ W 1,q

loc (RN) (by elliptic regularity) and thus ω ∈ Lqloc(RN),
1 ≤ q < N/(N − 1). Next, dη = E ∗ df = 0. Finally,

dω = dd∗η = (dd∗ + d∗d)η = ∆η = f.

Hence, ω has the required properties. �

A similar argument leads to the following.

Lemma 5 Let 1 < r <∞, k ∈ N. Let 1 ≤ κ ≤ N − 1. Let f ∈ W k,r
c (RN ; Λκ)

be such that df = 0. Then there exists some ω ∈ W k+1,r
loc (RN ; Λκ−1) such that

dω = f .
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We next recall the following “inversion of d with loss of regularity”. It is
folklore, and one possible proof consists of using Bogovskii’s formula (see for
example [4, Corollary 3.3 and Corollary 3.4] for related arguments).

Lemma 6 Let 1 ≤ κ ≤ N−1. Let Q be an open cube in RN . Then there exists
some integer m = m(N, κ) such that if f ∈ Ck

c (Q; Λκ−1), with k ∈ {m,m +
1, . . .}∪{∞}, satisfies df = 0, then there exists some ω ∈ Ck−m

c (Q; Λκ−1) such
that dω = f .

Combining Lemmas 4–6, we obtain the following

Proposition 7 Let 1 ≤ κ ≤ N − 1. Let Q be an open cube in RN . Let
f ∈ L1

c(Q; Λκ) be such that df = 0. Then there exists some ω ∈ Lqc(Q; Λκ−1),
for all 1 ≤ q < N/(N − 1), such that dω = f .

Proof. Set f0 := f . We consider a sequence (ζj)j>0 in C∞c (Q; R) such that
ζ0 = 1 on supp f0 and, for j > 1, ζj = 1 on supp ζj−1. We let η0 be a solution
of dη0 = f0, constructed as in Lemma 4. We set ω0 := ζ0η0, so that ω0 ∈
Lqc(Q; Λκ−1), 1 ≤ q < N/(N − 1) and

dω0 = dζ0 ∧ η0 + ζ0dη0 = dζ0 ∧ η0 + ζ0f0 = dζ0 ∧ η0︸ ︷︷ ︸
−f1

+f0.

Let us note that df1 = −d2ω0 + df0 = 0 and that f1 ∈ Lqc(Q; Λκ), 1 ≤ q <
N/(N − 1).

Fix some 1 < r < N/(N−1). By Lemma 5, there exists some η1 ∈ W 1,r
loc (RN ; Λκ−1)

such that dη1 = f1. Set ω1 := ζ1η1. Then ω1 ∈ W 1,r
c (Q; Λκ−1) and, as above,

f2 := f1 − dω1 satisfies df2 = 0 and f2 ∈ W 1,r
c (Q; Λκ). Applying again Lemma

5, we may find η2 ∈ W 2,r
loc (RN) such that dη2 = f2.

Iterating the above, we have

ω0 + · · ·+ ωj ∈ Lqc(Q; Λκ−1), 1 ≤ q < N/(N − 1),

d(ω0 + · · ·+ ωj) = f0 − fj, with dfj = 0 and fj ∈ W j,r
c (Q; Λκ).

Let now j be such that W j,q(Q) ↪→ Cm(Q), with m as in Lemma 6. Let
ξ ∈ C0

c (Q; Λκ−1) be such that dξ = −fj. Set ω := ω0 + · · · + ωj + ξ. Then ω
has all the required properties. �

Let us note the following consequence of hypoellipticity of ∆ and of the proofs
of Proposition 7 and Lemmas 4 and 5 (but not of their statements).
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Corollary 8 Assume, in addition to the hypotheses of Proposition 7, that
f ∈ C∞(U) for some open set U ⊂ Q. Let s ∈ N. Then we may choose ω
such that, in addition, ω ∈ Cs(U).

Proof of Theorem 3. We write the variables in RN as follows: x = (x′, x′′),
with x′ ∈ R` and x′′ ∈ RN−`.

Pick some g ∈ L1
c((0, 1)`; R) with zero integral, such that the equation divX =

g has no solution X ∈ L
`/(`−1)
loc (R`; R`) (see [6], [2]). Clearly, for any G ∈

C2
c ((0, 1)`; R),

the equation div Y = g +G has no solution Y ∈ L`/(`−1)loc (R`; R`). (3)

Let ψ ∈ C∞c ((0, 1)N−`) be such that ψ ≡ 1 in some nonempty open set V ⊂
(0, 1)N−`. Set Q := (0, 1)N and η := g(x′)ψ(x′′)dx′ ∈ L1

c(Q; Λ`). We note
that dη = g(x′) dψ(x′′) ∧ dx′ ∈ L1

c(Q; Λ`+1). Let us also note that dη = 0 in
R`×V . By Corollary 8 with U = (0, 1)`×V , there exists some ω ∈ Lqc(Q; Λ`),
1 ≤ q < N/(N − 1), such that dω = dη and ω ∈ C2((0, 1)` × V ).

Consider now the closed form f := η − ω ∈ L1
c(Q; Λ`). We claim that there

exists no λ ∈ W 1,1
loc (RN ; Λ`−1) such that dλ = f . Argue by contradiction and

let λi denote the coefficient, in λ, of dx1 ∧ dx2 · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dx`,
1 ≤ i ≤ `. Let ω0 denote the coefficient of dx′ in ω. Then, in R` × V , we have

∑̀
i=1

(−1)i+1∂iλi(x
′, x′′) = g(x′)ψ(x′′)− ω0(x

′, x′′) = g(x′)− ω0(x
′, x′′). (4)

Hence, for a.e. x′′ ∈ V , the following equation is satisfied in D′(R`):

∑̀
i=1

(−1)i+1∂iλ
′
i = g − ω′0, (5)

with

λ′i := λi(·, x′′) ∈ W 1,1
loc (R`) and ω′0 = ω0(·, x′′) ∈ C2

c ((0, 1)`). (6)

The above properties (5) and (6), combined with the embedding W 1,1
loc (R`) ↪→

L`/(`−1)(R`), contradict (3). �

Remark 1 We have actually proved the following improvement of Theorem 3.
Let N ≥ 3 and 2 ≤ ` ≤ N − 1. Then there exists some f ∈ L1

c(R
d; Λ`)
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satisfying df = 0 and such that the system dλ = f has no solution

λ ∈ L1
loc(R

(N−`);L
`/(`−1)
loc (R`; Λ`−1)).

Remark 2 A similar question can be raised in L∞. We have the following
analogue of Theorem 3.

Theorem 9 Let N ≥ 3. Let 2 ≤ ` ≤ N − 1. Then there exists some f ∈
L∞c (RN ; Λ`) such that df = 0 and the equation dλ = f has no solution λ ∈
W 1,∞
loc (RN ; Λ`−1).

The proof of Theorem 9 is very similar to the one of Theorem 3. The main
difference is the starting point, in dimension `. Here, we use the fact that there
exists some g ∈ L∞c (R`), with zero integral, such that the equation divX = g
has no solution X ∈ W 1,∞

loc (R`;R`) (see [5]).

3 Solution in LN/(N−1) when 1 ≤ ` ≤ N − 1

As mentioned in the introduction, when ` = N , the system (1) with right-

hand side f ∈ L1 need not have a solution λ ∈ LN/(N−1)loc . In view of Theorem
3 and of Proposition 7, it is natural to ask whether, in the remaining cases
1 ≤ ` ≤ N − 1, given a closed `-form f ∈ L1

c , it is possible to solve (1) with

λ ∈ LN/(N−1)loc . This is clearly the case when ` = 1 (by the Sobolev embedding

W 1,1
loc ↪→ L

N/(N−1)
loc ). Moreover, we may pick λ ∈ W 1,1. The remaining cases

are settled by our next result. In what follows, we do not make any support
assumption on f , and therefore the case where ` = 1 is also of interest.

Proposition 10 Let N ≥ 2 and 1 ≤ ` ≤ N − 1. Then, for every f ∈
L1(RN ; Λ`) with df = 0, there exists some λ ∈ LN/(N−1)(RN ; Λ`−1) such that
f = dλ.

Proof. Suppose f ∈ L1(RN ; Λ`−1) with df = 0 as above. According to Bourgain
and Brezis [3] (see Corollary 20 in [3] for a very similar statement; see also
Theorem 3 in [7]), we have∣∣∣∣∣

ˆ
Rd

〈ψ, f〉
∣∣∣∣∣ . ‖f‖L1 ‖d∗ψ‖LN , ∀ψ ∈ C∞c (RN ; Λ`). (7)

Consider the functional

Lf : S = {d∗ψ; ψ ∈ C∞c (RN ; Λ`)} → R, Lf (d∗ψ) :=

ˆ
Rd

〈ψ, f〉 .
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Here, S is endowed with the LN -norm. The inequality (7) shows that Lf
is well-defined and bounded. By the Hahn-Banach theorem, there exists an
extension L̃f : LN(RN ; Λ`+1) → R of Lf with

∥∥∥L̃f∥∥∥ = ‖Lf‖. Hence, there

exists an (`− 1)-form λ ∈ LN/(N−1)(RN ; Λ`−1) such that

ˆ
RN

〈ψ, f〉 = Lf (d∗ψ) = L̃f (d∗ψ) =

ˆ
RN

〈d∗ψ, λ〉 =

ˆ
RN

〈ψ, dλ〉

for all ` -forms ψ ∈ C∞c (RN ; Λ`).

This implies that λ ∈ LN/(N−1)(RN ; Λ`−1) satisfies dλ = f. �
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