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biocompatible membranes

H. Joisten,*a,c A. Truong,a S. Ponomareva,a C. Naud,a R. Morel,a Y. Hou,b I. Joumard,a 

S. Auffret,a P. Sabona and B. Dienya

Biocompatible suspended magneto-elastic membranes were prepared. They consist of PDMS (polydi-methylsiloxane) films, with embedded 
arrays of micrometric magnetic pillars made with lithography tech-niques. For visible light wavelengths, our membranes constitute 
magnetically tunable optical diffraction gratings, in transmission and reflection. The optical response has been quantitatively correlated with 
membrane structure and deformation, through optical and magneto-mechanical models. In contrast to the case of planar membranes, the 
diffraction patterns measured in reflection and transmission vary very differently upon magnetic field application. Indeed, the reflected beam is 
largely affected by the mem-brane bending, whereas the transmitted beam remains almost unchanged. In reflection, even weak mem-brane 
deformation can produce significant changes of the diffraction patterns. This field-controlled optical response may be used in adaptive optical 
applications, photonic devices, and for biological applications.

Introduction

The concept of physical membrane refers to thin films having

a certain flexibility. Artificial membranes are far less complex

than biological ones, which remain incomparable as inherent

components of any life form,1 and have been more and more

explored for various applications in the physical world.

Moreover, they may be intended to interact with biology, for

understanding the functioning of cells and living organisms,

or acting on them with therapeutic purposes.2 In particular,

numerous studies refer to membranes constituted of polydi-

methylsiloxane (PDMS) matrices, a polymer used for decades

for its tunable elastic modulus.3 The PDMS polymer is more-

over biocompatible, and highly cited as a biomaterial relevant

for its mechanical properties.4,5 Likewise highly transparent,

PDMS membranes may be good candidates for flexible photo-

nic devices, the optical and mechanical properties being

merged for instance in elastomeric lenses.6 Furthermore, the

contribution of micro-nanotechnology enables the fabrication

of micro-nanostructured PDMS devices with various types of

implementations and actuation schemes, keeping in mind the

PDMS biocompatibility for biological applications,7,8 for

instance as biomimetic microsystems9 or microfluidics

devices.10,11

Ultrasound waves and pneumatic, capacitive, and electro-

static actuation are among the main methods explored for the

actuation of synthetic membranes. Another alternative, used

in this study, is magnetic actuation. More precisely, the great

potential of elastic membranes embedded with magnetic par-

ticles lies in their ability to be remotely actuable by an external

magnetic field. The use of magnetic micro- and nano-particles,

pillars, disks or cantilevers embedded in a flexible membrane

(e.g. PDMS membrane) constitutes a very efficient option for

producing actuable flexible membranes.12–19

Instead of particles, permalloy multilayers nm-to-µm thick

can exhibit similar properties when deposited on large areas of

flexible substrates such as polyester, kapton,20,21 polyimides,21

and cyclo olefin copolymer, studied for instance for high-fre-

quency sensor application.22 These recent investigations21–23

are however not oriented towards a mechanical actuation

through the magnetic layers. Conversely, for a membrane actua-

tion, using separate magnetic particles/pillars instead of con-

tinuous layers constitutes an important difference in terms of

membrane deformability, the flexible substrate being free to

bend with its own elasticity between the particles. Compared to

the latter polymeric substrates, PDMS has the advantages of

elasticity which can be varied in a wide range by adjusting its

composition, its transparency useful for optical applications,

and its quasi-non-toxicity if biological applications are targeted.

Magnetic-field-sensitive gels called ferrogels24–26 likewise con-

stitute a class of materials, mixing polymers and magnetic par-
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ticles with a direct coupling between magnetic and elastic pro-

perties,27 with the advantage of being potentially fabricated in

large quantities. Although fabricated from stable colloidal sus-

pensions of non-agglomerated magnetic particles, the particles

have to be of sufficiently small dimensions (<50 nm), and their

uncontrolled random spatial distributions do not give rise to

optical applications using diffraction/interference phenomena.

On the one hand, biomedical applications (such as, for

instance, cancer cell destruction induced by magneto-mechani-

cal vibrations) use the same type of magnetic particles, although

dispersed in solutions e.g. (i) iron oxide nanoparticles produced

by chemical approaches28,29 or (ii) magnetic particles prepared

by lithography techniques, in particular magnetic vortex

particles.30–33 On the other hand, arrays of magnetic particles

and in particular of magnetic vortex particles are investigated in

the context of data storage or spintronics applications.34,35

Magnetic particles inserted in soft matrices at the micro- or

nanoscale have already been explored for the fabrication of

microswimmers36,37 or microscale pumps.38 Hinged anisotropic

vortex particles enabled the fabrication of magnetically actuable

nanotweezer arrays.39 Besides, magneto-active PDMS substrates

embedded with magnetic pillars have been investigated for

their potential action on cells in culture.40

Likewise, remotely actuable magnetic membranes can be of

interest in the broad area of photonic devices. In the photonic

domain, adaptive optics,6,41 in particular diffraction gratings

with adaptable properties, are of particularly great interest. They

are currently used for instance with piezo42 or capacitive actua-

tion.43 Deformable and flexible diffraction gratings, in particu-

lar on PDMS-based substrates, using fluidic or pneumatic actua-

tion in optofluidic devices,44–46 or by mechanical stretching,47

are studied for their tunable optical properties. Biomimetic

devices, consisting of bioinspired micrograting arrays, have

been likewise inspired by natural diffraction gratings.48

Magnetic-field-sensitive diffraction gratings were similarly devel-

oped, based on arrays of flexible magnetic microcantilevers as a

magnetic field mapping system.49 The two main non-contact

actuation approaches: (i) capacitive/electrostatic methods

(forces from an electric field) and (ii) (electro)magnetic

methods (forces from a magnetic field) were explicitly

compared.50–52 The magnetic approach provides the advantage

of larger forces and displacements at long range with much

smaller actuation voltages.53 In contrast, the electrostatic

approach is definitely more powerful at short distance, and is

preferable for its ease of integration with CMOS technology and

its fast response time, although vulnerable to breakdowns/pull-

in instabilities and electrostatic discharge.54 A distance

threshold separates the preferred actuation approach (electro-

static versus magnetostatic) which was estimated at around

1.75 µm in ref. 55, through energy density comparisons.50,55

Hence, magnetic actuation via permanent magnets is more

efficient for long-range actuation – by properly adjusting the

magnet size,53 with the advantage of being able to maintain a

static position without energy consumption. This approach is

potentially usable in a liquid environment e.g. in biology.

Regarding adaptive optics, the performance in terms of the

vibration frequency of an elastic membrane is limited by the

mechanical properties of the system; thus optical fiber modu-

lators and data transmission requiring tens of GHz should not

be envisaged for systems based on macro-/micro-membranes.

Conversely, adaptive/regulating optics studies already explored

the potential of deformable magnetic reflective membranes

(mirrors), using independent magnetic actuators, e.g. for vision

(ophthalmic)56 and astrophysics53,57 applications. Adaptive

liquid or wetting lenses or micro-lenses, based on dielectric elas-

tomer actuators,58 stimuli-responsive hydrogel,59 ferrofluid,60

chemical methods or bioinspired systems,61 constitute a large

variety of lens types studied in the adaptive optics area. The

present approach is inspired by the principle of a tunable mag-

netic membrane, as previously investigated in ref. 53 and 57.

In this context, we present here the development and

characterization of a microstructured suspended magneto-

elastic membrane (MEM), involving internal dimensions at

micrometric or nanometric scales, and its magnetic actuation.

Prepared by a top down approach, our MEMs consist of PDMS

films with embedded arrays of micrometric magnetic pillars.

They constitute a particular form of metamaterials, which may

address needs in biology and biomedical fields, as well as in

adaptive optics. Owing to the micrometric pitch of the pillar

array, close to the visible light wavelengths, and the transpar-

ency of PDMS, such membranes constitute nice magnetically

tunable optical diffraction gratings, in transmission and reflec-

tion. The membrane deformation under an external magnetic

field and the corresponding variations in the diffraction pat-

terns have been experimentally and theoretically studied. The

paper first describes the membranes fabrication, then their

magnetic properties and deformation under a magnetic field.

Finally their optical response is discussed from experimental

and theoretical points of view.

Results and discussion

The suspended magneto-elastic membranes, prepared as

described below and detailed in the Experimental section of

ESI 1,† were tested by a set of optical measurements. Step by

step (i) the membrane magnetic properties, (ii) the determi-

nation of the magnetic field amplitude and gradient applied

on the membrane by the used permanent magnet, (iii) the

resulting magnetic forces exerted on the membrane, (iv) the

determination of the corresponding elastic membrane defor-

mations, and (v) finally, the optical responses to magnetic

actuation when the membrane is illuminated by a laser beam

have been addressed. In particular, the relationships between

membrane deformations – sketched in Fig. 1(a)–(b) – and

optical diffraction patterns have been studied in reflected and

transmitted configurations. These two configurations have

revealed very different behaviors as explained further.

Magneto-elastic membrane fabrication and imaging

The fabricated membranes were prepared by a top down

approach. They consist of PDMS films with embedded arrays
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of micrometric magnetic pillars coated with a 100 nm thick

gold layer. The membranes are suspended over cylindrical

apertures created in silicon substrates. The suspended mem-

branes characterized in this study (see Fig. 1(c)) have a dia-

meter of 8 mm and a thickness of a few micrometers (∼5 µm).

The polymer used for fabricating the membranes was PDMS

having a Young’s modulus of around 1.5 MPa (PDMS Sylgard

184, with a curing agent to monomer ratio of 1 : 10).

Alternatively, as presented in ref. 3, a large range of elasticity

could be further explored by adjusting the composition of

PDMS in mixtures of two different compositions (Sylgard 527

and Sylgard 184). The employed Sylgard 184 is the most

robust, however less flexible, composition. The tradeoff

between membrane flexibility and robustness can be adjusted

depending on the foreseen application.

The magnetic component embedded within the membrane

consists of an array of magnetic dots, regularly distributed in

its plane. They are composed here of permalloy, i.e. of mag-

netic nickel–iron alloy Ni80Fe20. The magnetic dots may be

shaped in the form of pillars with adjustable aspect ratios

from flat particles such as disks to vertically elongated cylin-

ders. The cylinders lay in arrays parallel to the membrane XY

plane, with their OZ axis perpendicular to the membrane

plane.

The surface dimensions, shapes and spacing can be arbitra-

rily chosen, defined when designing the lithography mask.

Two types of geometries have been designed: square and hex-

agonal arrays, each of them with various magnetic pillar dia-

meters. Moreover, some arrays mix pillars of different dia-

meters for testing the potential impact of two different coerciv-

ities. For remaining in the standard limits of optical lithogra-

phy, the areal dimensions have been held in the micron range

(≥1 µm). The permalloy has been deposited using a pulsed

electrodeposition technique. In practice, permalloy is a well-

known material,62–65 currently deposited by various methods

on a large variety of substrates, notably by electrodeposition

(e.g. for flux concentrators in magnetic sensors, shields in

magnetoresistive heads, flux guides in transformers…). The

aim here was to be able to deposit sufficiently thick magnetic

pillars, for a given membrane elasticity. Various thicknesses of

permalloy have been tested between 1 and 4 µm, pillar dia-

meters varying between 1 and 4 µm. An example of long-

shaped 4 µm-thick quasi-cylindrical pillars is imaged in

Fig. 2(a). The potential membrane deformation is directly

related to the magnetic volume deposited. Furthermore, a

100 nm gold layer had to be deposited as the first layer on the

silicon substrate for the electrical contact required in electro-

deposition. Permalloy thicknesses have been finally slightly

reduced, as presented below, enabling (i) easier serial fabrica-

tion, while still maintaining magnetic actuation, and (ii) elec-

trodeposition to be replaced by techniques of evaporation or

physical sputtering, which avoid the electrically conducting

coating and chemical bath environment. As long as electrode-

position is used to prepare the NiFe pillars, the suspended

PDMS membrane remains coated with the conducting gold

layer on one of its faces. This Au coating plays a significant or

even major role in limiting the membrane deformation and

has definitely to be taken into account in the mechanical mod-

elling of the membrane deformation.

Summarized in Fig. 2(b), the process involves lithography,

spin-coating, and electrodeposition steps, ending with the

membrane partially released through a Deep Reactive Ion

Etching (DRIE) technique on the back side of the silicon sub-

strate. The DRIE step, which consists of etching a window

throughout the silicon wafer (∼525 µm thick) till reaching the

gold layer, turned out to be challenging (see Experimental

section in ESI 1†). Finally, the process has allowed the suspen-

sion of magnetoelastic membranes 8 mm in diameter as can

be seen for instance in Fig. 1(c). This back side process could

be replaced by a sacrificial layer on the front side of the Si

wafer, such as for instance a PMMA (poly(methyl methacry-

late)) layer soluble in acetone. However, such a PMMA under-

layer dissolution could be difficult considering the Au layer

presence required by the electrodeposition step. Moreover, the

membrane would have to be reported and bonded on a

support such as a ring, before or after its release from the sub-

strate. Conversely, the back side technique chosen here

allowed a serial production of identical membranes immedi-

ately suspended in their thin hollow Si support, in a shape

adapted to the present optical study. The mechanical resis-

Fig. 1 Schematic principle of magneto-elastic membrane actuation, enlightened by a laser beam: incident (I), reflected (R), transmitted (T) beams,

and photo of several fabricated suspended membranes, at the centimetric scale, on a 4’’ silicon wafer. (a) In zero field: the membrane remains

planar; the magnetic array is sketched by dashed lines. (b) In an applied magnetic field B exerting a pulling force, the membrane becomes concave;

the magnetic array is deformed. (c) Fabricated suspended membranes on their silicon substrate. Using back side deep-etching (DRIE), the silicon

wafer on which the membrane was fabricated was locally etched through, thus resulting in circular apertures covered by the suspended membranes

of diameter 8 mm; the yellow color of the membranes is due to a 100 nm Au layer remaining attached to the PDMS layer.
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tance of these suspended membranes was sufficient to

perform the magneto-optical tests. Reflectometry and relevant

SEM (Scanning Electron Microscope) imaging confirmed the

PDMS thickness of ∼5 µm, as expected.

Clear images of the magnetic arrays embedded in PDMS

membranes have been obtained using optical microscopy, as

illustrated in Fig. 2(c–d), thanks to the PDMS transparency. For

SEM microscopy, as shown in Fig. 2(e–g), PDMS layers have

been removed. Top views of the magnetic arrays indicate that

the magnetic pillars’ size and pitch conformed to the expected

ones defined by the lithography mask patterns. However, the

presence of rings can be observed on the largest magnetic

pillars, as shown in Fig. 2(c)–(e). A zoomed in section shows

that the smaller pillars patterned in a hexagonal array came

out nicely. The rings that cover the large magnetic pillars are

made of Ni80Fe20 that overgrew on these pillars. Indeed, in

some cases, the electrochemical deposition (ECD) seems to

exhibit a faster rate at the edges of the pillars than at their

center. This can be in particular the case when some photo-

resist still remains at the center of the circular patterns corres-

ponding to the pillars. As a result, the ECD starts at the edge

of the cylinders. The deposited metallic permalloy gradually

coats the whole cylinder bottom so that the ECD finally takes

place over the whole cylinder area but starts with a delay at the

center. In the present study, all the hexagonal membranes com-

prise a rectangular array of dark cylindrical pillars of enhanced

visibility compared to the surrounding small pillar hexagonal

array. Both membranes of Fig. 2(c)–(e) comprise thus a visible

rectangular or square array of pillars, playing a predominant

role in the optical experiments, as presented below.

The NiFe pillar thickness was adjusted in the range 1–3 μm.

Its value was determined from VSM (Vibrating Sample

Magnetometer) measurements, and confirmed using SEM

imaging, as explained further.

Fig. 2 The fabrication process scheme and microscopy imaging of magneto-elastic membranes. (a) SEM image of a magnetic Ni80Fe20 pillar

obtained by electrodeposition (∼4 µm thick, ∼1 µm-diameter). (b) Flowchart of the process to fabricate arrays of permalloy pillars embedded in

PDMS: (1) 100 nm Au deposited by evaporation. (2) Template patterned using UV lithography with AR 4400 thick negative photoresist. (3) Ni80Fe20
pillars grown by electrochemical deposition (ECD). (4) 5 µm-thick PDMS layer spin-coating. (5) Silicon wafer reversed. (6)–(7) Lithography on the

wafer backside. (8) DRIE, till membrane release. (c–d) Optical microscopy of membranes embedding various magnetic arrays, seen through the

transparent PDMS: mask patterns, membrane images and zooms. (c) Example of membrane comprising both a rectangular array of large pillars and

a hexagonal one of smaller pillars; the unit cell is composed of pillars of radii: 1 × (R = 2 µm) + 3 × (R = 1 µm). (d) Example of a membrane with a

square array of 3 µm × 3 µm pitches, 2 µm diameter. (e–g) SEM images of the PDMS membrane, embedding 3 µm-diameter Ni80Fe20 pillars, in

square array with a pitch of 5 µm. (e) Permalloy pillars in top view. (f ) PDMS layer partially present, partially removed, revealing the permalloy pillars.

(g) Side view revealing ∼1.25 µm thick magnetic pillars.
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Magnetic properties of pillar arrays, experiment

The magnetic properties of the Ni80Fe20 pillar arrays were

investigated using VSM, by measuring their magnetic

moment µ0M versus applied magnetic field µ0H, (vacuum per-

meability constant µ0 = 4π × 10−7 H m−1). For these measure-

ments, the silicon wafer was only partially etched so that the

membranes remain flat and inflexible during the VSM

measurements, in contrast to magneto-active elastomers.66

The magnetic moments have been measured with the field

applied in-plane (IP) and out-of-plane (OOP). One goal was to

express the magnetic force FZ exerted by a permanent

magnet along the OZ axis (OOP), on a similar but suspended

and flexible neighboring membrane, and the resulting elastic

deformation. Both IP and OOP hysteresis loops are required

beforehand for evaluating the magnetic state of the NiFe

pillars.

Permalloy thickness LZ was first extracted from the non-nor-

malized hysteresis loops. The Ni80Fe20 saturation magnetiza-

tion MS is assumed to be equal to its bulk value µ0MS = 1 T

(104 Gauss in CGS). A sample imaged in Fig. 2(e–g), of volume

V = 0.35 cm × 0.5 cm × Lz, with 3 µm diameter pillars in an

array of 5 µm × 5 µm pitches bears ∼7 × 105 NiFe pillars and

yields 5 memu at saturation [emu = 4πM(Gauss) × V(cm3)/4π in

CGS]. The NiFe thickness is hence evaluated at LZ = 1.25 µm,

corroborated by SEM profile views, shown in Fig. 2(g). As will

be shown further, this thickness is sufficient for actuating

magneto-elastic membranes investigated in the optical set-up,

using an NdFeB magnet. Such LZ has thus been used in the

rest of the study.

Hysteresis loops and their derivatives partly reveal the NiFe

pillars’ magnetic state. Normalized IP and OOP hysteresis

loops shown in Fig. 3(a), and OOP zoomed in Fig. 3(b), corres-

pond to the samples imaged in Fig. 2(e–g). The experimental

OOP and IP curves are plotted respectively in black and blue

colors. Superimposed green dots on the OOP experimental

curve in Fig. 3(b) outline the upper hysteresis branch, H

varying from Hmax to −Hmax. From the experimental curves,

the magnetic susceptibilities have been derived: (1) the OOP

differential susceptibility dM/dH plotted in Fig. 3(c) as a func-

tion of µ0H and (2) the IP initial susceptibility χ(0) versus pillar

aspect ratio, Fig. 3(d).

As a first observation in Fig. 3(a), the OOP loop is more

slanted than the IP one. This indicates an in-plane anisotropy,

in agreement with the shape anisotropy of the magnetic pillars

(cylinder radius R = 1.5 µm in XY plane, thickness LZ =

1.25 µm on the OZ axis). The shape anisotropy is clearly the

dominant anisotropy here since magnetocrystalline anisotropy

is known to be weak in permalloy.69 Besides, the sample was

prepared without any field-induced-magnetic anisotropy, field-

annealing treatment, or field applied during electrodeposition,

thus without any induced magnetic anisotropy which could

exceed the shape anisotropy.70 Considering the geometry of

the used NiFe pillars, their ground magnetic states are likely in

a vortex36–47 for several reasons: (i) the aspect ratios β = LZ/R
68

Fig. 3 Magnetic membrane characterization: VSM measurements and fitting models; square permalloy arrays of pitches 5 µm × 5 µm, pillar dia-

meter 3 µm, thickness LZ ∼ 1.25 µm. (a) Experimental OOP (black color) and IP (blue color) hysteresis loops. Phenomenological model fitting the

OOP loop (red color): µ0M(µ0·H) = tanh(k·µ0·H), with k = 55; (b) zoom: OOP experiment in black color; superimposed upper branch, in green color:

Hmax to −Hmax. (c) OOP differential susceptibility dM/dH, calculated on (i) experimental loop (background black color), (ii) derivative of the TANH

model (red color); compromise for fitting the slope near µ0H ∼ 0.5 T and around 0, keeping experimentally largest values near 0. (d) IP initial suscep-

tibility χ(0) versus pillar aspect ratio β = LZ/R: (i) a large blue round dot for the present NiFe pillars ∅ 3 µm, 1.25 µm-thick imaged in Fig. 2(e–g), β =

0.83; and (ii) a large blue triangle dot from recent NiFe pillar array, ∅ 1.3 µm, 60 nm-thick, β = 0.09; fitting previous IP magnetic vortex curves.67,68
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are below the limit of an OOP shape anisotropy; (ii) the NiFe

cylinders’ circular shapes and diameters are below the limit of

multidomain structures;71,72 and (iii) according to phase dia-

grams mapping the magnetic ground states of cylindrical

dots,73–75 for the sizes of our NiFe pillars, the vortex state

should be the most stable one. Noticeably, in each pillar, the

magnetization of the upper ring described above may be

coupled with the cylinder one, thereby reinforcing the trend

towards vortex formation.76

Concerning the variation of the IP initial susceptibility χ(0)

versus aspect ratio β, the experimental data can be fitted by the

analytical model of Guslienko et al., 200168 (Fig. 3(d)). In this

model, the IP initial susceptibility is given by χ
−1(0) = 2β ×

[ln(8/β) − 1/2] in CGS units, χ(0) × 4π in SI units. A slight

increase of χ(0) above theoretical expectations, already

observed in an earlier study on arrays of vortices,67 is also

observed here. It may result from an IP interdisk magnetostatic

coupling, as interpreted in ref. 68. A vortex-type configuration

is therefore corroborated by the value of the IP initial suscepti-

bility χ(0) versus aspect ratio.

Let us now focus on OOP magnetization and differential

susceptibility.66,77,78 The OOP loop, displayed in Fig. 3(a), (b),

exhibits a quasi-null remanent magnetization Mr, and a nearly

perfect linearity around zero field. The low remanence, consist-

ent with the vortex state, should stem from the vortex core

only. The good signal-to-noise ratio of the VSM curves enables

Mr to be quantified. After an accurate loop recentering around

zero, Mr has been determined as Mr = 0.0073 × MS, lower than

one percent of the saturation magnetization. Considering its

very small amplitude, this remanent magnetization is neg-

lected in the following model.

Modelling of the magnetic pillar properties

In this section, a phenomenological expression with a tanh

function is used to fit our experimental OOP M(H) data. It sub-

sequently eases the calculation of the force expression but it

does not have a particular physical justification in relation to

the magnetization process:

μ0M ¼ tanhðK �μ0HÞ ð1Þ

yielding:

dðμ0MÞ=dðμ0HÞ ¼ K=cosh2ðK �μ0HÞ ð2Þ

as illustrated by the red color curves in Fig. 3(a)–(c). The phe-

nomenological constant K depends on the pillar shape, with

here K = 2.85 for R = 1.5 µm. An average error of ∼2% between

µ0H = 0.032 and 0.68 T has been evaluated in the OOP loop fit.

The experimental OOP dM/dH presents a near-Gaussian

shape, in which however two up and down spikes are added,

on back and forth branches. The coefficient K has been thus

chosen as a reasonable trade-off, for taking into account the

differential susceptibility in the range of field used in the

optical experiments (∼0.35 to 0.65 T), and its upward peak

only in the zero field vicinity, as shown in Fig. 3(c).

Similarly, membrane embedding pillars of the same thick-

ness and various diameters (2; 3; 4 µm) have been character-

ized and modelled. The corresponding values of K in eqn (1)

were determined: 2.2; 2.85; 2.85, respectively for pillars of radii

R = 1; 1.5; 2 µm, taking into account the NiFe upper rings pres-

ence (see Fig. 2(c–e)) for radii of 1.5 and 2 µm, only.

External magnetic field, generated on membranes

For conducting the membrane actuation, a NdFeB magnet is

mounted on a micrometric positioner, enabling controlled

micrometric displacements. The magnetic field, generated on

the embedded magnetic pillars, has to be evaluated. The

magnet consists of a parallelepiped of dimensions 2a = 5 mm;

2b = 20 mm; h = 20 mm, respectively along the OX-, OY-, and

OZ-axes. As imaged in Fig. 4(a), it faces the membrane sus-

pended in a vertical XY plane. The membrane is lit by a green

laser beam. Its uniform magnetization MMAG, given at µ0MMAG

∼ 1.29 T, is parallel to its OZ axis. The field component BZ along

the OZ axis has been measured and modelled in the vicinity of

the magnet, as a function of Z (distance magnet membrane

along the OZ axis) (see Fig. 4(b)). The BZ field component as a

function of X of lesser importance for this study is presented in

Fig. 4 Experimental and modelled magnetic field BZ, along the OZ axis,

generated by the NdFeB magnet, µ0MMAG = 1.29 T, 20 mm × 20 mm ×

5 mm; 5 mm-width //0X axis; membrane in the XY vertical plane, radius

Rm = 4 mm; OY axis vertical, XZ plan horizontal, (0, 0, 0) centered on the

magnet face. Analytic model of “two charged surfaces” BZ(X, Y, Z) = BZ1

− BZ2, according to eqn (3). (a) Photo of the magnet facing the mem-

brane; in green color, the laser beam impacting on the membrane. (b)

BZ = f (Z) in air, along the OZ axis, (X, Y) = (0, 0). Experimental curves BZ

in dark colors, model in red color. See in ESI 2† the experimental and

modelled X-dependence of BZ(X, 0, Z). A simplified model of BZ is

derived: in (b), a sketch showing the impact of the rectangular magnet

on the membrane (yellow color), outlined by the orange-hatched

reduced surface Sred. BZ is assumed to be constant, BZ(X, Y, Z) = BZ(0, 0, Z)

on the hatched surface Sred, and BZ(X, Y, Z) = 0 on the yellow color

periphery. (See Sred expression in the text.) Sred ∼80% of the membrane

surface Sm = πRm
2; 2 × wx ≈ 5.5 mm, width slightly larger than the

magnet’s one; Sred correlated to BZ(X, 0, Z) averaged along the OX axis in

ESI 2.†
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ESI 2.† The latter BZ(X) form is replaced by a simplified model,

intended to produce on average equivalent magnetic forces on

the membrane surface Sm. The small 5 mm-OX width of the

magnet, which generates non-uniform BZ(X) near the mem-

brane edges, is taken into account as presented in Fig. 4(b).

Instead of varying the field in the XY plane, the effective surface

is reduced. BZ(X, 0, Z) is supposed to be uniform and equal to

BZ(0, 0, Z) on a reduced surface Sred and null on the remaining

peripheral surface Sm–Sred. The reduced surface Sred, hatched

in Fig. 4(b), is expressed as a function of the membrane

radius Rm and of the magnet “impact” 2wx, as follows:

Sred ¼ 2� wx�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rm
2 � wx

2ð Þ
p� �

þ Rm
2� tan�1 wx=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rm
2 � wx

2ð Þ
p� �� �

.

The surface Sred thus represents 80% of the membrane surface

Sm = πRm
2, considering the width 2 × wx ≈ 5.5 mm, for the

magnet (5 mm × 20 mm × 20 mm) close to the membrane

without contact, and Rm = 4 mm.

Due to their negligible dimensions compared to the

magnet size, the magnetic pillars within the membranes are

considered point like. The applied field is thus quasi-uniform

over their whole micrometric volume. With a reference frame

centered on the external XY magnet face, BZ is expressed at the

coordinates (X, 0, Z) by a classical electrostatic-like field

model. The magnet is modelled by two surfaces of opposite

charges, perpendicular to MMAG, separated by the distance h,

without any volumic charge density (div MMAG = 0). Each mag-

netic surface bears a constant charge density σ = ±MMAG. By

integration of the elementary fields generated by each unit of

area, BZ is analytically expressed at a point (X, 0, Z), as follows:

As illustrated in Fig. 4(b), the model fits perfectly with the

field BZ(Z) measured by a Hall sensor. The fit of BZ(X, 0, Z) as a

function of X, presented in ESI 2,† supports the simplified

BZ(X) model described above, based on the sketch in Fig. 4(b).

The gradient dBZ(0, 0, Z)/dZ, required in the force calculation,

is derived from the analytical expression of BZ, yielding:

dBZ 0; 0; Zð Þ=dZ ¼ μ0MMAG

4

� �

�4� gðZ þ hÞ � gðZÞ½ �

where

gðZÞ ¼ ða�b�ða2 þ b2 þ 2�Z2ÞÞ=

ða2 þ Z2Þ�ðb2 þ Z2Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2 þ Z2
p	 
	 


:

ð4Þ

Magnetic forces and pressure exerted on membranes

The magnetic force exerted on the membranes is mostly uni-

directional along the OZ axis. In the experimental configur-

ation described in Fig. 4, the magnet is brought close to the

membrane surface. BZ constitutes the main active component

of the field acting on the magnetic pillars. The in-plane field

components (BX, BY) are negligible over most of the membrane

surface, except potentially near the OX transverse edges;

however their sum is null by symmetry. Moreover, a residual

magnetic force parallel to the XY plane would not yield any

tangible deformation, the membrane degree of freedom being

essentially out of plane. As developed below, the membrane

OOP curvatures will remain small compared with their dia-

meter (out-of-plane deformation less than 1% of their dia-

meter). Thus, a potential planar force FX or FY, projected on a

normal of the concave membrane, remains negligible and

thus ineffective in the OOP direction. Let us therefore consider

FZ as the only magnetic force involved in the membrane actua-

tion. FZ is basically expressed as FZ(Z) = VP·grad(M·B), where

B = µ0H is generated by the magnet, on a pillar of magnetiza-

tion M, located at the distance Z from the magnet face, VP the

magnetic pillar volume, and −VPM·B the magnetic potential

energy of the moment VP·M in the field B. The gradient

includes a contribution of the OOP differential susceptibility,

being derived as:

FZ Zð Þ ¼ VP�
dM

dBZ
Zð Þ�dBZ

dz
Zð Þ�BZ Zð Þ þM Zð Þ�dBZ

dz
Zð Þ

� �

ð5Þ

developed using the expressions of eqn (1)–(4), as a function of

Z: (i) OOP pillar magnetization M(Z) may be expressed by eqn

(1) and thus (ii) OOP differential susceptibility µ0·d(M)/dBZ by

eqn (2); (iii) the magnet field BZ is given by eqn (3), and (iv) its

gradient dBZ/dZ by eqn (4).

The analytical model of the magnetic forces FZ(Z) is illus-

trated in Fig. 5(a), stemming from the fit of the hysteresis

loops by the TANH model and the analytical expression of BZ.

It yields the quantification of the magnetic forces on a single

NiFe pillar, as a function of the magnet position. In particular,

close to the magnet face (Z ∼ 0), FZ ≈ 1.3 nN on a pillar of 3 µm

diameter and 1.25 µm thickness, by fitting K ∼ 2.85 in eqn (1).

Furthermore, the force FZ exerted on a NiFe pillar of larger

aspect ratio, 1 µm-diameter and 4 µm-thickness requiring K ∼

11 in eqn (1) results in FZ ≈ 0.4 nN, a lower order of magnitude

due to the lower magnetic volume in this particular case.

The magnetic forces FZ(Z) exerted on the array of pillars

embedded in the membrane are then converted into a

pressure PZ(Z) exerted on the suspended membrane. The aim

is to predict the resulting membrane deformation when

approaching the magnet at the distance Z. In the further

mechanical model, the load is assumed to be uniformly dis-

BZ X ; 0; Zð Þ ¼ ½bZ X ; 0; Zð Þ � bZðX ; 0; ðZ þ hÞÞ�
where

bZ X ; 0;Zð Þ ¼ μ0MMAG

4

� �

�2� tanh�1 X þ að Þ�b

Z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X þ að Þ2þb2 þ Z2

q

� �

0

B

B

@

1

C

C

A

� tanh�1 X � að Þ�b

Z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X � að Þ2þb2 þ Z2

q

� �

0

B

B

@

1

C

C

A

2

6

6

4

3

7

7

5

ð3Þ
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tributed over the membrane area, disk of radius Rm = 4 mm,

and surface Sm = πRm
2, imaged in Fig. 1(c). A large centered

portion of the membrane surface is effectively subjected to a

mostly uniform magnetic field. As detailed above, the potential

variation of BZ(X, Y, Z) in the plane XY along OX is taken into

account by considering the magnetic field BZ(X, 0, Z) = BZ(0, 0, Z)

uniform on Sred, and null outside (Fig. 4(b)). Hence, the

average pressure PZeff(Z) exerted on the whole surface Sm is

expressed as follows: for a number Nred of identical pillars

embedded in the reduced surface Sred, PZeff(Z) = [Nred × FZ(Z)]/

Sm. A maximal pressure is furthermore defined by the

expression PZmax(Z) = [Nmax × FZ(Z)]/Sm, reflecting the case of a

field BZ(0, 0, Z) being uniformly applied on the whole mem-

brane Sm, embedding Nmax number of pillars. The ratio

PZeff(Z)/PZmax(Z) equals Sred/Sm calculated above at around 80%

for the relative dimensions of our magnet and membrane.

Both pressure curves are shown in Fig. 5(c), with PZeff(Z) = 0.80

× PZmax(Z), concerning the membranes used below.

Magnetic forces FZ exerted on a pillar depend on the

applied magnetic field and its gradient, i.e. on the magnetic

source design. Various magnet compositions, shapes and

dimensions can be chosen, depending on the size of the mem-

brane, its distance Z to the magnet, and its flexibility. A few

magnet geometries were compared with the one used here, the

forces FZ on a pillar being calculated in Fig. 5(c–d). On the one

hand, smaller magnets such as small magnetic tips, which

locally create larger gradients, produce larger forces. However,

the field is applied more locally, requiring very elastic PDMS

Fig. 5 Modelled magnetic forces FZ, generated by the magnet on NiFe pillars, and resulting pressure PZ loading the membrane tested in optics

(membrane of surface Sm, diameter 8 mm, PZ ∼ ∑(FZ/Sm)). Experimental NdFeB magnet of section 2a × 2b = 5 mm × 20 mm, height h = 20 mm,

µ0MMAG = 1,29 T; NiFe pillars of µ0Ms = 1 T. (a) (1) FZ on a NiFe pillar of ∅ 3 µm, thickness 1.25 µm, imaged in Fig. 2(e–g); µ0HSAT ≈ 0.36 T, saturated

for Z ≤ 1.7 mm. (2) FZ on a NiFe pillar of ∅ 1 µm, thickness 4 µm, imaged in Fig. 2(a), µ0HSAT ≈ 0.12 T, saturated for Z ≤ 6 mm. In (i) and (ii) respectively

coincide 3 close dots: (i) (1) FZ(Z = 4.7 mm) = 0.220 nN; (2) FZ(Z = 4.7 mm–38 µm) = 0.224 nN yielding FZ variation of 1.8% for dZ = wmax = 38 µm;

(3) similarly for dZ = 50 µm, FZ(Z = 4.7 mm–50 µm) = 0.225 nN. (ii) (1) FZ(Z = 7.7 mm) = 0.0558 nN; (2) FZ(Z = 7.7 mm–23.8 µm) = 0.0564 nN yielding

FZ variation of 1% for dZ = wmax = 23.8 µm; (3) similarly for dZ = 50 µm, FZ(Z = 7.7 mm–50 µm) = 0.0570 nN. (b) Pressure PZ(Z) on a membrane

shown in Fig. 2(c), NiFe thickness = 1.25 µm; hexagonal array; unit cell of surface Scell with pillars of radii: 1 × (R = 2 µm) + 3 × (R = 1 µm); PZ(Z) =

∑(FZ)/Sm = [1 × FZ(R = 2 µm) + 3 × FZ(R = 1 µm)]/Scell. In blue color: a maximized PZmax(Z), with B(X, Y, Z) assumed = B(0, 0, Z) over the whole surface

Sm; in green color: an effective pressure PZeff, with B(X, Y, Z) assumed = B(0, 0, Z) over a reduced surface Sred, and B = 0 near membrane edges; Sred
≈ 80% × Sm. PZeff = 0.80 × PZmax. In red color: BZ(Z) inducing the pressure. (c–d) Modelled forces FZ, exerted by magnets of various dimensions on a

NiFe pillar of ∅ 3 µm, thickness 1.25 µm, along the OZ axis only; FZ compared to FZ from our experimental magnet of section 5 mm × 20 mm, height

h = 20 mm. (c) Magnets of larger sections than the membrane surface Sm, two heights, yielding smaller forces on OZ near Z = 0: appropriate if the

magnet is placed relatively “far” from the membrane. (d) Magnets of smaller sections than the membrane surface Sm, two heights, yielding locally

larger forces on OZ near Z = 0, appropriate if the magnet is placed close to the membrane (requiring thus more flexibility).
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and close approach of the field source. On the other hand,

magnets with sections covering the full membrane surface Sm
(e.g. magnet section of 10 mm × 10 mm, instead of the 5 mm ×

20 mm used here) create smaller forces close to the magnet

face (at small Z), and larger forces at longer distance. The geo-

metry of the present magnet is then considered as a good com-

promise for generating sufficient forces between Z = 3 to 8 mm

yielding large membrane deformations from Z = 0 to 2 mm.

For a further utilization of the magneto-elastic membrane

in adaptive optics, arrays of local actuators could be used,

instead of the global one presented here. As presented in ref.

57, arrays of planar microcoils, or more efficiently, small

magnet/electromagnet arrays could be designed, formed of

magnetic tips acting very locally on membrane portions, dis-

placed along the OZ axis, for instance, by current coils.57 For

instance, the calculation of forces FZ generated by a magnetic

NdFeB tip of section 10 µm × 10 µm and height h = 100 µm

yields: FZ = 160 nN at Z ≈ 7 µm, and 460 nN at Z ≈ 4 µm,

which are respectively 100 and 320 times larger than with our

experimental macroscopic magnet, however at a very local

range of less than a few tens of micrometers. Forces from tips

of millimetric dimensions can be likewise compared

(Fig. 5(d)).

Remember that the force FZ depends on B, its gradient, but

also on the susceptibility dM/dB of the magnetic pillar

material.

From this point, we will focus exclusively on the magnet

described in Fig. 4, and membranes investigated in optical

experiments, developed in the last section. Such membranes

tested in optics are similar to the one imaged in Fig. 2(c),

embedding hexagonal arrays of NiFe pillars of two different

radii, R1 = 1 µm and R2 = 2 µm. In the pillars’ distribution

appears the unit cell of surface Scell = 10 µm × [10 × (∨3/2)]

µm = 8.66 × 10−11 m2, with a proportion of one R2 for three R1

pillars. The total force FZcell exerted on the unit cell is

obtained by summing the elementary forces calculated on

each pillar, such as: FZcell = 1 × FZ(R = 4 µm) + 3 × FZ(R =

2 µm), the two hysteresis loops being modelled using K = 2.2;

2.85 in eqn (1), respectively, for R1 and R2, (thicknesses of

1.25 µm). The maximal and effective pressures loading the

membrane have been quantified (see Fig. 5(b)), yielding PZ ∼

50 N m−2 and Peff ∼ 40 N m−2 when such a membrane is

close to the magnet (near Z = 0). For each magnet position Z,

the graph in Fig. 5(b) shows simultaneously the magnetic

field generated on the membrane (red color curve) replicated

from Fig. 4, and the induced loading pressure. The resulting

membrane deformation is then modelled in the next section.

Modelling membrane deformation vs. magnetic forces

The membrane becomes concave, attracted by the magnet,

when submitted to the constant or slowly varying magnetic

field BZ(Z). The membrane profile w(r) along OZ, in particular

the maximum deflection wmax = w(0), has been calculated

analytically using the “clamped circular plate” model from

the “theory of plates” (Timoshenko and Woinowsky-Krieger,

1959)79 and (Zhang, 2016).80 Our membranes essentially

consist of PDMS/gold bilayers. When no external forces are

exerted, they are flat. Since the embedded magnetic material

is not continuous and represents only a small fraction of the

total area (at most 25%), its contribution to membrane elas-

ticity has not been considered in the present calculation. The

mechanical properties of PDMS and Au layers have been

therefore expressed and compared: (1) gold: Young’s

modulus E = 80 GPa; Poisson’s ratio ν = 0.42; thickness hAU =

100 nm; (2) PDMS: E = 1.5 MPa; ν = 0.49; hPDMS = 5 µm (mem-

brane radius Rm = 4 mm). Due to the very large difference in

Young’s modulus between Au and PDMS (more than 4 orders

of magnitude), the rigidity of the membrane is determined by

the Au layer despite its lower thickness. The membranes have

therefore been considered as elastic plates made of gold (Au)

only in the mechanical model. From the experimental point

of view, the presence of the PDMS layer remains however

important for the magnetic pillar fabrication process.

Zhang’s model is then applied, assuming no initial in-plane

tension, the assumption confirmed in hindsight through the

diffraction signal measured in zero field on the suspended

membranes, directly related to the “as grown” pillar

periodicity (see Optical section). The membrane profile w(r),

r(0 ≤ r ≤ Rm) being the distance from the membrane center,

is expressed as:80

wðrÞ ¼ wmax� 1� r2

Rm
2

� �i

ð6Þ

with i = 2, wmax þ ð0:4118þ 0:25 ν� 0:16088 ν2Þðwmax
3=h2Þ ¼

ðPzðZÞ�Rm
4Þ=ð64DÞ and the membrane bending stiffness D =

(E × h3)/(12 × (1 − ν
2)). Zhang’s model uses either i = 2 or 1,

according to whether the clamped condition of the zero slope

is required or not.80 Our experimental situation corresponds to

the former case (i = 2) since the membrane edge is plated on

the silicon substrate. The membrane profile is represented in

Fig. 6(a), on which is outlined in green color an arbitrary

section where the incident laser beam hits the membrane.

Since the laser diameter Dλ = 3.5 mm is smaller than the mem-

brane radius, the incident beam may be directed towards

various areas of the membrane, and thus may illuminate

different portions of this membrane profile. It should be

noted that the optical model developed below enables to

select, as one of its inputs, which portion of the membrane

profile is illuminated. The maximal deflection wmax has been

calculated, and plotted in Fig. 6(b) versus the exerted pressure

PZ. As benchmarks, two deflection values wmax, determined

from the optical experiments, are indicated by blue straight

lines in Fig. 6(b).

The magneto-mechanical model led to the deflections

wmax triggered by the application of magnetic fields. It

should be mentioned that the forces FZ(Z) exerted on the

magnetic pillars were supposed to be independent of the

membrane deformation: FZ(Z) ∼ FZ(Z − wmax). Indeed, the

resulting deflections wmax (a few tens of micrometers) are

negligible compared to the magnet-to-membrane distance Z

(∼1 to 10 mm). More precisely, FZ(Z − wmax) is applied at
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the membrane center, while FZ(Z) at the membrane edges.

Their slight difference FZ(Z) − FZ(Z − wmax) was a posteriori

evaluated by our magneto-mechanical model, as shown in

Fig. 5(a) on the NiFe pillars of ∅ 3 µm, 1.25 µm-thick. Each

red dot labelled (i) and (ii) on the curve FZ(Z) comprises 3

forces nearly coinciding, modelled with and without mem-

brane deflections. In particular, magnets placed at (i) Z =

4.7 mm yielding wmax = 38 µm, at (ii) Z = 7.7 mm, yielding

wmax = 23.8 µm, produce FZ edge-to-center variations of,

respectively, 1.8% and 1% (see Fig. 5(a) caption). Self-consist-

ently calculating the pressure PZ and the deformation wmax

would result in a correction of less than 1.8% or 1%. Forces

FZ(Z) can therefore be reasonably considered as quasi-identical

on a flat or deformed membrane, given our experimental data.

Optical characterization of the magneto-elastic membrane

deformation and modelling

The next objective was to characterize the membrane optical

response to magnetic field-induced actuation. The vertical

membrane was illuminated by a horizontal green laser beam

(wavelength λ = 532 nm), and submitted to the magnetic field

generated by the NdFeB magnet. Both reflected and trans-

mitted beam variations were studied as a function of magnet-

membrane distance. The membranes were first optically

characterized in their rest configuration i.e. in zero external

magnetic field. The NdFeB magnet was subsequently

approached thanks to a micrometric stage and the resulting

optical response of the concave membranes was measured.

Diffraction of the laser beam by the membranes

First of all, the observation of a transmitted beam indicates

that the PDMS membranes are semi-transparent, despite the

presence of the embedded pillars and of the 100 nm-thick Au

layer. The reflected and transmitted images consist of inter-

ference and diffraction patterns. As a matter of fact, such

optical patterns can be expected from these membranes since

the spacing between pillars and their size are of the order of

the laser wavelength. As shown in Fig. 7(a), the optical diffrac-

tion patterns were recorded on a screen without inserting the

lens on the optical paths. Pattern evolution is shown for

instance in Fig. 7(b–c), as a function of the magnet position.

The OX and OY axes are represented in Fig. 7(b–c). We

mention that the reflected patterns were captured either from

the front or from the back side of the semi-transparent screen

used in the reflection. The reflected image is viewed on its

front side in Fig. 7(a–b) and on its back side in Fig. 7(c).

In zero magnetic field, the grating being flat, both reflection

and transmission diffraction patterns consist of arrays of light

spots, periodically spaced along the OX and OY axes on the

screen. Surprisingly, the membrane embedding the hexagonal

array produces a rectangular diffraction pattern, illustrated in

Fig. 7. Its hexagonal periodicity does not produce any clear

influence. As mentioned in the first section, the prominent

rectangular cells made by the dark upper rings shown in

Fig. 2(c) form the visible rectangular grating, optically and

visually predominant. This is due to the dominant optical con-

trast produced by the particles in rectangular arrangement as

compared to the one produced by the particles in hexagonal

arrangement.81 The resulting 2D rectangular grating is

oriented in the vertical XY membrane plane, with 8.66 µm and

10 µm pitches respectively parallel to the OX axis and OY axis.

A first observation is that the incident angle θ0 has a

different impact on the diffraction patterns along OX- and OY-

axis. The aspect ratio of the rectangular 2D diffraction pattern

(i.e. periodicity along OX divided by periodicity along OY)

increases with θ0: increasing θ0 enlarges the diffraction spot

spacing lx along the horizontal OX axis, without modifying the

spot spacing ly along the vertical OY axis. This results from the

fact that since the laser beam is within the plane defined by

OX and the normal to the membrane, the difference of optical

paths between successive pillars aligned along the y direction

is independent of θ0 and only depends of the OY pillar spacing

in the membrane. On the contrary, the spot spacing lx along

the horizontal OX axis depends on θ0, as modelled here below.

We have first checked the correlation between the pitches

of the grating dy and of the diffraction patterns ly along the ver-

tical OY axis: dy ≈ (λ·D)/ly where D is the distance membrane to

screen. The two membranes imaged in Fig. 2(c–d) were charac-

Fig. 6 Profile and deflection of the membrane, modelled as a clamped

circular plate, of radius Rm = 4 mm; thickness hPDMS = 5 µm; hAU =

100 nm. Model considering the Au layer only; with E = 80 GPa; ν = 0.49.

(a) Membrane cross section profile w(r) in grey (+green) colors, using i =

2 in eqn (6); r distance to center. In green color is shown an arbitrary

location of the incident laser beam on the membrane; the laser beam of

diameter Dλ = 3.5 mm, smaller than the membrane radius Rm = 4 mm.

(b) Deflection wmax = w(0), versus the load pressure PZ(Z).
80 The blue

color lines indicate two particular deflections determined from the

experiment + model: wmax = 23.8 µm from PZ = 1.5 N m−2 and wmax =

38 µm from PZ = 6 N m−2 corresponding to situations where the magnet

was placed respectively at Z ∼ 7.7 mm and 4.7 mm, i.e. BZ ∼ 0.09 T and

0.16 T (PZ and BZ illustrated in Fig. 5(b)).
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terized. Their respective Y pitches from the lithography masks

should be 10 and 3 µm, which have been corroborated by

direct microscopy imaging (Fig. 2). The Y-pitch measured at

the center of the diffraction patterns is respectively ly = 2.1 and

6.8 cm, yielding the calculated dY = 10.13 and 3.12 µm, in good

agreement with the actual Y-pitches in the membrane.

Diffraction pattern evolution from the concave membrane in

the external magnetic field

The membrane becomes concave by application of the external

magnetic field. The resulting diffraction patterns and their

progressive evolution during the membrane actuation, from

planar to concave, have been observed and modelled, in par-

ticular in reflection.

We have first compared the reflection and transmission

experimental patterns. At zero magnetic field, the membrane is

planar. Both beams produce similar types of diffraction pat-

terns, forming rectangular spot matrices for any θ0, as illus-

trated in Fig. 7(a). However, reflected and transmitted beams

interact differently with the membrane, resulting in very

different transmitted and reflected diffraction patterns when

the membrane becomes concave under magnetic field, as

shown in Fig. 8(a). Clearly, the reflected pattern is highly

deformed, whereas the transmitted one remains unchanged.

This immediate observation is coherent with basic optical prin-

ciples, as outlined in the ref. 82. Indeed, let us consider the 0th

order of diffraction, the brightest spot at the center of the diffr-

action pattern. Its position in reflection, on the horizontal OX

axis on the screen, is determined by the specular reflection.

Notably, the incidence and reflection angles θ0 depend on the

normal-to-the-membrane direction, which precisely varies over

the whole membrane surface when the membrane is concave.

All the reflected rays are directed at 2 × θ0 from the incidence

direction, highly variable angle versus the impact point of each

ray on the concave membrane surface. The sum of these out-of-

phase waves can produce a quite extended diffraction/inter-

ference pattern along the OX axis. The experiment shows that

the interference spots are progressively converted into sets of

fringes with possible shadow areas, when the field is increased.

An extension of the spot along the vertical OY axis may occur,

since the membrane is clamped on its whole periphery, and its

deformation is thus not only cylindrical. However the spot

deformations are less marked along OY than along OX, since

the laser beam is horizontal – i.e. the incidence angles present

less variation along the vertical membrane profiles than along

the horizontal profiles. By contrast, the 0th order of diffraction

in the transmitted pattern remains fixed by the direction of the

incident beam, invariant with the normal-to-the-membrane

direction. It thus remains independent of the concavity. A non-

planar membrane will influence the transmitted beam by only

negligible and invisible variations of the optical paths, since

our current membrane deflections wmax remain here negligible

as compared to the membrane diameter. Both reflection and

transmission patterns shown in Fig. 8(a) have been recorded

with the same applied magnetic field B and the same incident

angle θ0. Moreover, reflection patterns turn out to be highly

sensitive to small micrometric/even nanometric membrane

deflections. The following optical model aims at fitting the

shape of the diffraction patterns of a concave membrane along

the horizontal direction of the screen.

A schematic cross section of the concave membrane is pre-

sented in Fig. 8(b), on the horizontal XZ plane, OZ being per-

pendicular to the initial plane XY (in zero field). The mem-

brane profile may be modelled in particular by the “clamped

Fig. 7 Photos of diffraction patterns in reflection and transmission, from an incident laser beam on the targeted membrane. Rectangular grating of

pitches 8.66 µm × 10 µm. (a) Optical set-up; membrane in a quasi-null magnetic field. (b) View of the front side of the semi-transparent screen:

effect of an increasing magnetic field B, in reflection. (c) View of the semi-transparent screen back side: diffraction patterns in reflection, versus the

magnet distance Z (mm). Observation, at Z = 7 mm: the deformation of the membrane yielded the focus of the laser bean on the screen (b–c) (OX,

OY) axis directions, traced on front/back sides of the semi-transparent screen used in reflection.
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plate model” discussed above, usable for a circular plate. We

will consider, from here, a unidimensional curved grating

embedded in this membrane section, lying in the horizontal

XZ plane. The resulting diffraction and interference peak

intensity, and their evolution as a function of the membrane

deflection, have been modelled along the OX axis. They are

compared to experimental intensity curves recorded along the

OX axis on the screen. The mechanical model expresses above

the continuous deflection w(r) for any r, the distance to the

membrane center on OX, as previously described in Fig. 6.

However, the large density of magnetic pillars along the mem-

brane profile, with their pitch d ≪ Rm membrane radius, plus

the small order of magnitude of wmax, enables simplifications.

Our geometric model of concave grating has been built with

the two following simplifying assumptions: (1) the concave

grating profile is represented by a succession of straight seg-

ments linking each magnetic pillar to both their neighboring

pillars; and (2) each pillar (labelled by their respective number

“n”, located at Xn = n × d on the OX axis) is supposed to be

physically displaced by a simple horizontal projection along

OZ when the membrane is deformed. They are thus located on

the concave profile line at the distance wn from their initial

position on OX. Each straight segment direction will locally

define the direction of the reflected light in the optical model.

They determine the normal-to-the-membrane directions,

locally variable. The membrane deflection wn at the pillar “n”

is modelled by eqn (6) with i = 2 and r = Xn − Rm, leading to:

wn ¼ w Xn � Rmð Þ ¼ wmax� 1� Xn � Rmð Þ2
Rm

2

� �� �2

.

The total number of magnetic pillars NTOT enclosed in the

membrane along the OX diameter, is expressed versus the

pitch of the permalloy array along OX: NTOT = (2 × Rm)/d. The

pitch d = 8.66 µm and the radius Rm = 4 mm yield NTOT ≈ 923

pillars along the membrane diameter. However, the laser

beam hits only a portion of the membrane surface, since the

beam diameter Dλ < Rm, as sketched in Fig. 6(a) by the green

color line, highlighting the laser position on the membrane

profile. Hence, N = (Dλ/d ) × (1/cos θ0) is the number of mag-

netic pillars impacted by the laser beam in the planar mem-

brane profile, smaller than half NTOT for small incident angles.

For selecting the position of the laser beam on the membrane

profile, a number nmin is required, labelling the first of the lit

pillar series along the OX axis (with nmin + N − 1 ≤ NTOT). Dλ =

3.5 mm and dX = 8.66 µm yield N ≈ 3500/8.66 ≈ 404 illumi-

nated pillars at normal incidence. We have tested various

numbers of pillars impacted by the laser, such as 300 < N <

450 in the optical model, considering a reduced N for a laser

beam not perfectly centered on the membrane.

Reflected light intensity was modelled, based on the

concave grating schematized in Fig. 8(b). A local angle αn was

defined on each pillar: tan αn = (wn − wn−1)/d, for intermediate

calculations. The geometrical construction leads to the optical

path difference between two adjacent light rays, reflected on

the pillars n − 1 and n, while taking into account the local con-

cavity of the membrane, as follows:

BD� CAð Þn ¼ d� sin θ � sin θ0ð Þ½ �
� wn � wn�1ð Þ� cos θ þ cos θ0ð Þ½ � ð7Þ

where θ defines the direction of the considered reflected

beam: the angle between (1) the straight line linking the mem-

brane to the screen at the abscissa x = x(θ), and (2) the OZ axis

normal to the initial planar membrane. In particular, θ = θ0

corresponds to the 0th order of diffraction in the reflection for

the planar membrane only. Then, from the successive phase

differences of eqn (7), using the wavenumber k = 2π/λ, the light

distribution U(θ) reflected on N pillars, in the direction given

by the angle θ, is summed up as:

U θð Þ ¼ U 0ð Þ θð Þ� 1þ
X

nminþðN�1Þ

n¼1þnmin

e�ik� BD�CAð Þn

" #

, finally yielding the

following expression:

U θð Þ ¼ U 0ð Þ θð Þ�
X

nminþðN�1Þ

n¼nmin

e�ik n�d� sin θ�sin θ0ð Þ�wn � cos θþcos θ0ð Þ½ � ð8Þ

leading to the light intensity I θð Þ ¼ U θð Þ�U θð Þ
h i

.

Fig. 8 Optical experiment and scheme: reflected, transmitted and inci-

dent beams. (a) Photos of the diffracted patterns in transmission and

reflection, for a given BZ and θ0 (b) Scheme of the light beams (green &

blue colors) on a concave membrane. Cross section of the deformed

membrane, either planar (red color dashed line), or concave (red solid

lines). Lengths and angles used in the model: θ0 incident angle, wn

deflection of the pillar n, on the OZ axis. Concavity modelled as straight

segments tangent to the membrane shape, linking the neighboring

pillars n and (n − 1); d = pitch of the planar grating along the OX axis.
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I(θ) is modulated by I(0)(θ) = (U(0)(θ))2, reflecting the

Fraunhofer diffraction on the pillars of radius R, modelled as

small lines of width 2R on the membrane profile: I(0)(θ) =

(sinc(k·2R·p/2))2 with p = sin θ − sin θ0, “sinc” being the “cardi-

nal sine function”.83 We consider θ = a tan(x/D) to derive the

light intensity versus x along the OX axis on the screen.

Let us point out that various possible shapes of concave

membranes could be inserted in eqn (8) instead of eqn (6)

with i = 2, through various expressions of wn. A circle-segment

shape (i = 1 in eqn (6)), and a two-broken-lines (pointy hat)

shape have been likewise coded. The latter enables a fully

analytical expression of U(θ), resulting in the transformation of

each spot of the planar membrane into two spots only.

However, the best final fit to our experimental data was

obtained with eqn (6) and i = 2. It is therefore the only one pre-

sented in this paper. The model, analytical till eqn (8), has

required a numerical evaluation for the N − 1 values to be

summed, N in the range of 300 to 450 pillars.

Fitting interference/diffraction patterns from planar versus

concave membranes

The optical model is firstly applied to the membrane in its

basic planar state (wn = 0). As expected along OX on the screen,

the light intensity profile results in a semi-periodic series of

interference peaks modulated by the diffraction amplitude,

yielded by eqn (8) with wn = 0, as shown in Fig. 9(a). Each peak

corresponds to an mth order, localized at p ≡ sin θ(m) − sin θ0 =

m × λ/d, i.e. at the abscissa x(m) on the screen, such as x(m) =

D·tan(sin−1(sin θ0 + m·(λ/d ))), from the classical theory of the

diffraction gratings.83 The spacing x(m) − x(m − 1) between

neighboring peaks tends to vary due to the tangent relation-

ship between x and the diffraction angle θ. The involved semi-

period either simply increases in the OX axis direction for an

off-centered screen, or increases towards both sides of the

intersection of the membrane normal and the screen (θ = −θ0),

if relevant. In particular, it increases symmetrically around the

0th order along the OY axis, as well as along OX axis at normal

incidence. This classical well-defined set of interferences/diffr-

action fringes from the planar membrane is the starting point

for quantifying the optical response from the concave mem-

brane (spot shift and broadening), deformed by the appli-

cation of a magnetic field.

The aim is now to compare the experimentally recorded

diffraction patterns highly influenced by the membrane con-

cavity, and the model given by eqn (8). The experiments have

shown large broadening of the interference spots along the OX

axis in reflection, induced by approaching the magnet. The

magnetic-field-independent inputs in our optical model

consist of: the laser wavelength λ; the membrane radius Rm;

the grating pitch d and pillar radius R; the membrane-to-

screen distance D; the incidence angle θ0, measured and

slightly adjusted; the number of illuminated pillars N (300 to

450); and the number nmin localizing the laser impact.

Differently, the membrane deflection parameter wmax results

from the application of the magnetic field, and is modelled by

our magneto-mechanical approach. Arbitrary values of wmax

were firstly tested. As expected, increasing wmax increases the

broadening of the simulated spots, potentially transformed

into fringes of lower intensities along OX. An input wmax

≥200 µm can produce quasi-joined fringes from one spot to its

neighbor, while keeping their semi-periodicity apparent; wmax

≥700 µm produces quasi-continuous fringes along OX. Such

qualitative results match with the experiment.

The quantitative analysis is conducted in reflection, in par-

ticular for the two following experimental diffraction patterns,

from the above hexagonal-array membrane. The experiments

“1” and “2” display respectively 6 and 3 interference peaks

remaining close to their initial position, with relatively small

broadenings, as shown in Fig. 9(b), (c) and zoomed in

Fig. 10(a), (b). The vertical laser spot is supposed to be verti-

cally centered (along the OY axis) on the membrane, and

potentially off-centered in the XZ plane with respect to the

membrane center. The laser spot intersects the membrane

profile shown in Fig. 6(a) and 7(b) in an off-centered concave

line, which begins at the pillar number nmin, first pillar of the

unidimensional concave diffraction grating, and ends at pillar

number nmin + N − 1. The inputs for modelling the experi-

ments “1” and “2”, respectively, consist of: (i) the incidence

angles θ0, numbers N and nmin, given in the Fig. 9(b)–(c)

caption, slightly adjusted around the experimental and esti-

mated values; (ii) the magnetic field applied at Z = 7.7 and

4.7 mm; and (iii) the resulting membrane deflection, through

our magneto-mechanical model, wmax = 23.8 µm from BZ =

0.09 T and PZ = 1.5 N m−2, and wmax = 38 µm from BZ = 0.16 T

and PZ = 6 N m−2. Inserting wmax in eqn (8) leads to the mod-

elled diffraction patterns shown in Fig. 9(b)–(c). Adjusting N

and nmin around their estimated values allows our magneto-

mechanical-optical model (green color curves) to fit the experi-

mental optical data (black color curves) in a reasonably good

agreement. The order of magnitude of nmin is in good agree-

ment with the shift direction of the interference peaks from

the planar to the concave membrane, reflecting the laser spot

location on the concave membrane: nmin = 530 (Fig. 9(b) for a

laser illuminating the second half of the membrane area, as

sketched in Fig. 6(a) and nmin = 37 (Fig. 9(c)) reflecting a spot

enlightening the first half of the membrane. From this

approach, the semi-period, the peaks shift and broadenings in

the diffraction patterns from planar to concave membranes

can therefore be quantified as a function of the applied mag-

netic field. The curves zoomed in Fig. 10(a–b) further detail

the fit with the experimental envelope of single peak profiles,

for both experiments “1” and “2”.

The complete magneto-mechanical-optical model confirms

that the magneto-elastic membranes presented here can gene-

rate large optical responses, easily detectable, for tiny concav-

ities produced by the applied magnetic field and quantified.

(Membrane deflections are in the range of only a few tens of

micrometers <1% of the membrane diameter of 8 mm.) For

estimating the limits of detection of the membrane deflection

through the optical experiment, without improving the present

experimental conditions, the optical model was used with a

similar parameter set, varying only wmax from 0 to 10 µm. The

13



Acc
ep

te
d 

M
an

us
cr

ip
t

resulting evolution of the interference fringes, displayed in

Fig. 10(c) for a 0th order peak, indicates that a deflection of

500 nm could be likewise detected.

In summary, the magnetic properties of the experimental

membrane were fitted by a magnetic model (eqn (1)–(2)). The

stray field from the magnet used for the membrane actuation

was also fitted by a theoretical model (eqn (3)–(4)). The

merging of both models led the calculation of the magnetic

forces (eqn (5)) and pressure exerted on the membrane.

These forces were not directly experimentally measured. The

modelled pressure constituted the input of the elastic plate

model (eqn (6)), which was used to calculate the membrane

deflection wmax. In parallel, the membrane was optically

characterized, flat or deformed by the actuating magnet.

Experimental optical patterns were fitted by the optical

model (eqn (7)–(8)), with the following input parameter: laser

wavelength and spot location on the membrane, membrane

size and distance from the screen, embedded grating dimen-

sions, and the unknown geometrical deflection wmax charac-

terizing the deformed membrane concavity. A precise fit of

our optical model with the experimental optical patterns, by

adjusting the parameter wmax, yielded the experimental deter-

Fig. 9 Optics. Interference/diffraction patterns from a concave versus planar membrane, in reflection; planar membrane in B = 0, deformed by the

applied magnetic field B. Experimental and modelled light intensity along the OX axis. Laser wavelength λ = 532 nm; membrane embedding the hex-

agonal array of R = 1 and 2 µm-radii-magnetic pillars; optical pattern yielded by the rectangular sub-array of the R = 2 µm-pillars, grating of 0X-

pitch d = 8.66 µm; membrane-to-screen distance D = 40 cm; screen parallel to the membrane initial plane. (a) Planar membrane, in B = 0; θ0 = 0.45

rad; experiment spots of semi-periods x(m) − x(m − 1): lx1–39; lx2–35; lx3–32; ly1 ≈ ly2–21 (mm), and modelled intensity, on the screen front side.

(b–c) Concave membrane, in the applied B; light intensity profile parallel to the OX axis on the back side of the screen: experiment in black color,

model in green color; in red color: from the planar membrane (in B = 0). (b) Experiment 1: 6 light spots; the magnet positioned at Z = 7.7 mm;

optical model fitting by (i) the membrane deflection wmax = 23.8 µm, resulting from [BZ = 0.09 T, PZ = 1.5 N m−2]; (ii) the number of pillars illuminated

by the laser beam N = 350; (iii) the first illuminated pillar in the membrane profile nmin = 530; (iv) the adjusted incidence angle θ0 = 0.288 rad. (c)

Experiment 2: 3 light spots; the magnet at Z = 4.7 mm; fitting parameters: (i) wmax = 38 µm, from [BZ ≈ 0.16 T, PZ = 6 N m−2]; (ii) N = 380; (iii) nmin =

37; and (iv) θ0 = 0.209 rad. All the light intensity profiles are modelled with 5000 points in the interval [xmin, xmax] along the OX axis on the screen.
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mination of the deflection wmax. A very good agreement was

then obtained between the deflection calculated by the

magneto-elastic model and the one determined from the

optical experiments, thus confirming the validity of the

various models.

Conclusion

The optical response of the magneto-elastic membrane (MEM)

actuated by a magnetic field was experimentally characterized

and fitted by a magneto-mechanical and optical model. Based

on the magnetic properties of the membrane and magnet, and

adopting an elastic plate model, the resulting membrane

deflection wmax led to the expected diffraction/interference pat-

terns. The membrane concavity and its impact on the optical

signal transformation were quantified.

To achieve this, the magneto-elastic membrane presented

here was first fabricated. It comprises arrays of magnetic par-

ticles of various geometries deposited on a PDMS membrane

coated with a 100 nm thick Au layer. The PDMS membrane

played here the role of a protective transparent layer, required

for the membrane resilience and a potential biocompatibility.

However, the 100 nm Au layer determined the membrane

deflection amplitude. Further studies will aim at suppressing

or at least thinning this Au layer, by adapting the technique of

magnetic material deposition, for fabricating either Au/PDMS

bilayers, or PDMS monolayers, presenting the lower and

tunable Young’s modulus of the PDMS instead of the gold’s

modulus.

The MEM was then characterized – magnetic and mechani-

cal properties explored – and tested in magnetic fields by

optical experiments. The magnetic properties of the embedded

arrays of permalloy cylinders were measured and modelled,

revealing the probable presence of magnetic vortex states.

Membrane actuation by the applied magnetic field was pre-

cisely measured and modelled. The resulting micrometric

membrane deformations were calculated using a “clamped

plate” mechanical model. The MEM can be viewed as an actu-

able diffraction grating. The resulting diffraction patterns were

characterized, and correlated to the expected patterns for two-

dimensional (2D) periodic arrays. A very strong optical

response to the magnetic field was demonstrated, especially

when the membrane is used in reflection. Indeed, the trans-

mitted pattern remains almost unchanged, while the reflected

patterns present largely extended interference fringes when

the membrane is actuated. Such optical responses have been

quantitatively correlated with the membrane structure. Firstly,

Fig. 10 Optics. Experiment and optical model, zoomed around the interference order m = 0. (a–b) Zooms of the light profiles presented in Fig. 9.

(a) Experiment 1 + optical model, (b) experiment 2 + optical model, (c) extrapolation of the light intensity on the screen: model only, along the OX

axis around the interference peak of order m = 0, for small membrane concavities: wmax = 0 (planar); 500 nm; 1 µm; 5 µm; 10 µm.
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the optical model takes into account the membrane concavity

influence on the reflected light intensity. Then, the analytical

magneto-mechanical models are used for the input parameters

in optics. This magneto-mechanical modelling turned out to

be quantitatively pertinent when used in the final modelling

of the membrane optical response. As an order of magnitude,

the diffraction patterns of a membrane of diameter 0.8 cm can

be significantly impacted by membrane deformations in

micro- and nanoscale ranges, from <50 µm down to about a

few hundred nm.

The optical properties of these magneto-elastic membranes

can be further explored, and the study of their optical response

to the magnetic actuation deepened. Finally, such a field-con-

trolled optical response, especially in reflection, may be used

in optical applications, photonic devices, and for biological

applications, where the membrane deformations can be used

to stimulate biological reactions on biological species.
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