
HAL Id: hal-02105362
https://hal.science/hal-02105362

Submitted on 13 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A BPMN/HLA-Based Methodology for Collaborative
Distributed DES

Jalal Possik, Aicha Amrani, Bruno Vallespir, Andrea d’Ambrogio, Grégory
Zacharewicz

To cite this version:
Jalal Possik, Aicha Amrani, Bruno Vallespir, Andrea d’Ambrogio, Grégory Zacharewicz. A
BPMN/HLA-Based Methodology for Collaborative Distributed DES. 28th IEEE International Con-
ference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE-2019), Jun
2019, Capri, Italy. �10.1109/WETICE.2019.00033�. �hal-02105362�

https://hal.science/hal-02105362
https://hal.archives-ouvertes.fr

A BPMN/HLA-Based Methodology for
Collaborative Distributed DES

Jalal Joseph Possik, Aicha Amrani,
Bruno Vallespir

IMS- University of Bordeaux
33405 Talence cedex, France
{jalal.possik, aicha.amrani,

bruno.vallespir}@u-bordeaux.fr

Andrea D’Ambrogio
Dept. of Enterprise Engineering

University of Rome “Tor Vergata”
Rome, Italy

dambro@uniroma2.it

Gregory Zacharewicz
LG2IP – IMT- Mines Ales

30100 Alès, France
gregory.zacharewicz@mines-ales.fr

Abstract— In many domains, Discrete-Event Simulations
(DES) are usually used to reproduce the behavior of a certain
system or process, where events are processed one after another
in chronological and sequential order. Classical DES will no
longer be a possible solution for Complex and Large-scale
systems, System of Systems (SoS), and Performance Evaluation
Systems that compare multiple different simulations running
simultaneously in parallel. Advances in network and
communications made the Distributed Simulation (DS)
approach one of the best solutions for the aforementioned
Systems Simulations. One of the challenges faced when
developing a DS from DES components is the federation
behavior including time management and synchronization
between these components. In most of the traditional DES
platforms, simulations cannot exchange messages, nor change
the configuration at run time. This makes the DES connection
and integration very hard and at times, impossible to
implement. This article presents the method used to integrate
different DES components, using High-Level Architecture
(HLA) Evolved Standard, Business Process Model and Notation
(BPMN), and Jaamsim, a Java open source DES.

Keywords— Discrete-Event Simulation (DES), High Level
Architecture (HLA), Business Process Model and Notation
(BPMN), Distributed Simulation (DS).

I. INTRODUCTION
Across different sectors, Modeling and Simulation (M&S)

has become one of the best ways to try, explore, analyze and
optimize systems structure, behavior and performance prior to
the implementation process. Simulation is necessary to deal
with real-world uncertainties, variations, and complexities [1].

DES is an effective tool for process improvement [2]. It is
a method to simulate real system or process and it is nowadays
used in different environments such as manufacturing plants,
queuing systems, distribution systems, inventory and delivery
systems, health-care, transportation networks, communication
networks, and many others [3]. In DES, the simulated system
changes state or value at discrete points in time, and the
simulation moves from one state to another upon an event
occurrence [4].

In some cases, DES alone is not an effective solution. The
simulation system must be disassembled into subsystems or
nodes in order to be parallelized or distributed on a
multiprocessing environment for performance enhancements
[5]. In other cases, a collection of interacting simulations is
needed to form a more complex system that offers additional
functionalities to the existing ones [6]. There are also
scenarios where users need to compare many different DESs,
and this cannot be run sequentially and needs to be also
parallelized or distributed on a network of processors [7]. For
all the aforementioned scenarios, time management and
synchronization protocols are necessary to avoid timing
discrepancies and to ensure precise event interconnections and
data communication between subsystems or simulations.

In this article, we will study the case where multiple DESs
run in parallel on a network of processors. This work is part of
a project developed to test the behavior of Lean tools and
techniques during context changes. Lean Manufacturing is a
systematic method that uses multiple tools and techniques in
order to eliminate wastes from the manufacturing processes,
improve inventory, quality, and customer satisfaction [8]. The
goal of this project is to guide the companies willing to
implement Lean Manufacturing in their industries to choose
the right Lean tools that suit their production processes and
economic contexts.

We use the HLA Evolved Standard to develop a
collaborative distributed DES. HLA is an architecture for
interoperation and reuse of interacting simulations. The US
Department of Defense first developed this Standard in the
90’s and now it became an international IEE standard for
distributed simulation. HLA was first used in the military
domain. Nowadays, it is applicable in many application
domains and across wide simulation areas [9] [10]. HLA has
three versions, HLA 1.3 published by the Defense Modeling
and Simulation Office in 1998, HLA IEEE 1516-2000
published by IEEE in 2000, and HLA 1516-2010 published by
IEEE in 2010 and known as HLA Evolved [11].

BPMN is a business process-modeling standard that offers
a graphical notation based on a flowcharting technique.
BPMN represents the end-to-end flow of a process. The
Business Process Management Initiative (BPMI) developed
the Business Process Modeling standard. In 2005, this group
merged with the OMG (Object Management Group). In 2011,
OMG released the BPMN 2.0 version release and changed the
name of the method to Business Process Model and Notation.
This Business Process Modeling standard became more
detailed by using a richer set of symbols and notations for
business process diagrams. The main goal of BPMN is to
deliver a standard notation easily readable by non-expert
users. In the presented work, we used BPMN to clear up the
proposed methodology and simplify the understanding of the
integration and collaboration between discrete event
simulators.

The technical part of the methodology is also discussed in
the present work. In this part, we will discuss the Java
implementation of this methodology; the methods used to
create, join, or destroy an HLA federation, the
publish/subscribe mechanism, interactions/parameters
communication, objects/attributes communication, time
management, DES configuration. The DES used in this paper
is JaamSim. We chose Jaamsim as a Discrete Event Simulator
because it is a free and open source simulator written in Java
language. Using Eclipse or any other integrated development
environment, users are able to add/change Jaamsim objects or
add their own code in Java, which is familiar to many
programmers [12]. Jaamsim is not developed for distributed
simulations and communication to external systems; in this

article, we showed that even with such simulators, we could
implement the distributed simulation.

The rest of this paper is structured as follows: Section II
reviews the background, related work and relevant
contributions to distributed simulation. Section III shows the
material and methods used to develop the distributed
simulation system. The last section is the conclusion and
future work.

II. BACKGROUND AND RELATED WORK
A. HLA Standard

Distributed Simulations are very useful in systems
engineering. The HLA standard describes a set of services
and rules for distributed simulations’ implementation. The
HLA approach promotes interoperability and reusability. In
HLA, the system is considered a federation, a federation is a
collection of federates, federates are interconnected through
a Run-Time Infrastructure (RTI). The RTI role is to ensure a
smooth run of the simulation. Fig. 1 describes the overall
architecture of an HLA simulation. In the example we worked
on, Jaamsim models are federates that interconnect and
connect to other external DESs.

The HLA standard defines:

• Ten architectural rules describing the responsibilities
of the entire federation. One of the rules specifies that
all data exchanges between federates must go
through the RTI.

• A federate interface specification delineating the set
of services provided by the RTI. These services are
required to manage federates during simulation
execution.

• A Federation Object Model (FOM) that describes the
shared objects and interactions used to exchange
data.

HLA also supports optional services for time
management, allowing the coordination of event exchanges
between the existing federates. Time management is
responsible for the mechanism of regulating the progression
of each federate on the federation time axis. Each federate has
a logical time. The RTI guarantees the time synchronization
of the federates by consistently advancing the logical times
of each federate. The logical time is equivalent to the
simulation time in the classical literature of DES.

Fig. 1. Global Orchestration

B. BPMN Standard
BPMN standard is a flowchart method that models the

steps of a business process from the ground up. One of the
key elements of BPMN is to provide a detailed visual
representation of the complete sequence of business activities
and information flows. Its purpose is to increase efficiency. It
is the enterprise equivalent of the Unified Modeling
Language (UML) used in software design. More details about
BPMN standard are found in [13].

Fig. 3 represents an Aeronautic Assembly line model.
This model is used as the basic model from which multiple

scenarios, with different configurations, are generated. Using
HLA, we were able to run these scenarios in parallel and
compare the outputs to get the most efficient scenarios. This
Aeronautic industry produces four references of an
aeronautic fastener. The sales order is sent to the cutting shop,
where, based on the product reference, raw material metal is
cut into specific dimensions. In the cutting shop, setup time
is required to change the settings, for the machine to be able
to cut a different line of product; if consecutive products have
the same reference, no setup time is required. After the
cutting process, the product is sent to the treatment shop,
where a thin layer of Zinc is added. The product is then
delivered to the Assembly shop. The first machine in the
assembly shop will also require a setup time in case of a
product reference change. The last process in the production
line is the Machining process, where, based on the reference
type, a gear is installed to the product. This process also
requires a changeover time. The finished good is finally
delivered to the warehouse and is ready for delivery process.
C. Related Work

This Section reviews the existing related work and
relevant contributions to the distributed simulation domain.

Jayadev Misra proposed a solution that partitioned a
simulation to multiple components running on different
processors and presented different techniques for deadlock
detection and avoidance [5]. The main objective of his work
was to enhance the simulation performance.

In [14], the authors proposed a model-driven method that
allowed the generation of an HLA-based code from a BPMN
model using a chain of models to text transformations. BPMN
and HLA have different techniques and objectives. The
authors were able to combine both standards into a model-
driven method that makes the distributed simulation
techniques easier to understand for developers and engineers.
Others introduced a BPMN extension to address data
structures’ definition associated with the information
exchanged during the execution of the Business Process
collaborations [15]. Their paper defines a model-driven
framework for DS based analysis of Business Process in
order to fill the gap between HLA and BPMN.

In [16], using HLA standard, authors developed an
Enterprise Operating System architecture to control and
monitor the enterprise’s operations. Authors used HLA
standard to integrate large distributed environments and
synchronize data and actions among existing federates. The
authors, in [17], presented a reference architecture to inter-
integrate manufacturing distributed simulations and connect
them to other manufacturing software and data repositories.

In a previous study, we developed a Co-Simulation
system for industries and enterprises based on MECSYCO
(Multi-agent Environment for Complex System CO-
simulation), in which users specify the simulations input on a
web interface then launch the system from the interface [18].
The system initializes the simulators and runs the simulations
simultaneously in parallel. The respective output results
appear in a graphical presentation during the simulation run-
time process. Each of these simulations represents a different
setup or configuration for the same aeronautic assembly line.
By varying the inputs, users can easily choose the best
configuration/setup that suits the production assembly line.

The purpose of our work is to extend the scope of the
previous studies by proposing a methodology to connect
different separated DESs using HLA publish/subscribe
mechanism and time management. This methodology will be

discussed using BPMN for easy access to non-expert users.
For the technical savvy, the java coding that has been used
during the implementation process will be discussed.

III. MATERIAL AND METHODS
In this part, we will use an example connecting three

federates, Master federate, Scenario 1 federate, and Scenario
2 federate. Scenario 1 represents the DES model of Fig. 3;
Scenario 2 represents the same model with some
modifications in the production design. The aim of this
distributed simulation is to determine how these scenarios
react to changes in attributes and parameters, and compute
the best behavior scenarios. These federates are linked via the
RTI constituting a federation. These federation elements use
a common Federation Object Model (FOM), an XML file that
defines the objects/attributes and the interactions/parameters
of the federation. We used the Java library of Pitch pRTI
platform [19] to develop the following part.
A. Federation related Services

First, a federation should be created. As per Fig. 2, when
the Master platform starts the simulation, it creates the
Federation by calling the RTI Ambassador; this HLA service
creates the Federation using a unique Federation name and
links it to its corresponding FOM XML file. The method in
RTIAmbassador class used to create the federation execution
is RTIAmbassador.createFederationExecution(“Federation
Name”, xmlFOMfile). After creating the federation, the
Master, as a federate, joins the federation using the
RTIAmbassador.joinFederationExecution(“Federate
Name”, “Federate Type”, “Federation name to join”)
method. Next, the Master launches the two DES scenarios
that also join the created federation using the same method
and parameters.

Fig. 2. Create/Join Federation

In the example we developed, as per Fig. 4, the object
classes created are “Scenario” and “Machine”. The Scenario
Object Class has the following attributes: Name, SimTime,
Run Duration, Material Buffer, and Stock Keeping Unit
(SKU). “Name” represents the Scenario Name, “SimTime” is
the Simulation Time of the DES during the run time,
“RunDuration” determines in years the duration of the
simulation scenario, “MaterialBuffer” represents the number
of raw materials waiting for the production process, and
“SKU” represents the number of units remaining in stock.
The Machine Object Class attributes include the number of
goods processed, the number of goods in progress, the
working time of the machine, the number of workers needed
per machine, and the Work In Progress (WIP) that represents
the in-process inventory. We subsequently created eight
interactions: Scenario Load, Scenario Loaded, Scenario
Error, Start/Pause/Stop Simulation, Order Demand Increase,
and Order Demand Decrease. For each interaction, we have
one or more parameters listed as noted in Fig. 4. The
objects/attributes and the interactions/parameters sharing
mechanisms (Publish “p”, Subscribe “s”, Publish/Subscribe
“ps”) are also listed in Fig. 4.

Fig. 3. Aeronautic assembly line model

Fig. 4. Federation Object Model (FOM)

B. Declaration Management Services
Fig. 6 illustrates the steps used to select the

Publish/Subscribe interests of the Object Classes. Each
object should first get the handle for the actual object class in
order to be published. The method used for this service is
RTIAmbassador.getObjectClassHandle(“Object Class”). In
our example, “Object Class” could be “Scenario” or
“Machine”. The next step involves creating an Attribute
Handle Set using the method create() in the
AttributeHandleSetFactory class. Next, one should get the
Attribute Handle using
RTIAmbassador.getAttributeClassHandle(“Object Class
Handle”, “Attribute”) method. One of the attributes could be
“Name” that exists in the Object Class “Scenario”. Next, the
Attribute Handle Set should be added using the method add()
in the AttributeHandleSet class. The last step in the
declaration part is to Publish/Subscribe the
AttributeHandleSet of the Object Class using
RTIAmbassador.publishObjectClassAttributes(“Object
Class Handle”, “Attribute Handle Set”) and
RTIAmbassador.subscribeObjectClassAttributes(“Object
Class Handle”, “Attribute Handle Set”) methods.

After the publish Object Class Attribute, a callback from
the RTI accesses the

startRegistrationForObjectClass(“ObjectClass Handle”)
method.

Registering the Publish/Subscribe for the interaction
classes is more straightforward. First, one should get the
Interaction Class Handle using the method:
RTIAmbassador.getInteractionClassHandle(“Interaction
Class”) then get the Parameter Handle using
RTIAmbassador.getParameterHandle(“Interaction Class
Handle”, “Parameter”) method.
C. Object Management

Fig. 5 shows the required services to register/discover
object instances.
RTIAmbassador.registerObjectInstance(“Object Class
Handle”, “the Object Name”) is required to register the
object instance. After the registration process, a callback is
sent to the other existing federates, accessing the method
discoverObjectInstance(“Object Instance Handle”, “Object
Class Handle”, “the Object Name”).
turnUpdatesOnForObectInstance() callback method is
accessed in the federate that registered the object instance.

Fig. 5. Object Instance Registration

The method updateAttributeValues() of the RTIAmbassador
class is used to update the attributes related to the registered
object instance. After the attribute update,
ReflectAttributeValues() callback method is accessed in the
other existing federates as per Fig. 7. As for the interactions,
the same concept is used with the sendInteraction() method
and receiveInteraction() callback method.

Fig. 6. Object/Attribute Declaration

Fig. 7. Objects/Attributes update

D. Time Management
By default, federates have the time regulating service and

the time constrained service disabled. To enable the time
management services, a federate requests to be a time
regulating federate using the method
EnableTimeRegulation(), or to be time constrained using the
method EnableTimeConstrained(). A federate could be time
regulating/constrained at the same time. When these two
methods are used, the Federate Ambassador calls back the
TimeRegulationEnabled() and TimeConstrainedEnabled()
methods. In this work, all DESs have the time
regulating/constrained enabled.

The DES Federates in this paper are developed using
Jaamsim. Jaamsim is not designed for communications to
external systems and not fitted for DS; it is viewed as a black
box simulator. As it is an open source software, we were able
to run the startSimulation() and pauseSimulation() methods

in Jaamsim to Start/Pause the simulations. These methods are
linked to the aforementioned interaction’s parameters
StartSimulation and PauseSimulation. As per Fig. 8, when the
DES runs, Jaamsim will add, with each event, a new output
line to the log file issued using the Entity Logger option.
When an event is processed, the federate will ask for time
advancement to send new events using the
nextEventRequest() method. The RTI ensures that it will not
deliver any message with a Time Stamped Order less than the
lookahead time and the federate actual time combined, the
lookahead being the time delay that cannot be exceeded
between simulations. The larger the lookahead value, the
longer it takes for messages to reach the other federates. With
a zero lookahead, messages should reach the other federates
instantly. These HLA services are used to avoid out of order
messages delivery.

If a time advance is granted to the federate, we test the
value of X:

• A value that is equal to one means that Jaamsim was
already running and there is no need to run it again.

• A value that is equal to zero means that Jaamsim was
paused and we need to start/resume the simulation
again, then assign the value of one to the variable X.

If the “LogicalTimeAlreadyPassed” exception is raised, it
implies that Jaamsim simulation should be paused:

• A value of X that is equal to zero means that Jaamsim
was already paused and there is no need to pause it
again.

• A Value of X that is equal to one means that Jaamsim
was running and we have to pause it, then assign the
value of zero to the variable X.

This way, all Jaamsim DESs will run in parallel sending the
output of the simulations almost simultaneously depending
on the lookahead value.

Fig. 8. Time Advancement, Event-Based

IV. CONCLUSION AND FUTURE WORK
HLA standard does not propose nor precise any particular

language to describe the behavioral process of the federation,
i.e. group of federates, before to setup and implement. This

IEEE standard also does not point out any specific programing
language or software use. In this article, we described the
methodology followed to define the desired interconnections
and data exchange between DESs while running simulations

in parallel on a network of processors. The implementation
steps are explained using BPMN and the Java library of pRTI.
BPMN provides a standard straightforward notation easily
readable by non-expert users while Java language describes
the technical implementation part.

Many industries are inefficiently implementing Lean tools
in their organizations and are facing quality, management,
financial, and other failures in their Lean implementations.
This simulation system aims to conduct manufacturing
industries in choosing the right Lean Manufacturing tools that
lead the implementation to success with explaining the
planned behavior. Our future work is to develop more models,
contexts, and scenarios using this developed distributed
simulator in order to obtain relative hypothesis that
contributes, helps, and conducts Lean tools implementations
in the production domain.

REFERENCES
[1] T. I. Ören and B. P. Zeigler, "Concepts for advanced simulation

methodologies," SIMULATION, vol. 32, pp. 69-82, 1979.
[2] C. D. Barnes and K. R. Laughery, "Advanced uses for Micro

Saint simulation software," in 1998 Winter Simulation
Conference. Proceedings (Cat. No.98CH36274), 1998, pp. 271-
274 vol.1.

[3] G. S. Fishman, Discrete-event simulation: modeling,
programming, and analysis: Springer Science & Business Media,
2013.

[4] R. M. Fujimoto, "Parallel discrete event simulation," Commun.
ACM, vol. 33, pp. 30-53, 1990.

[5] J. Misra, "Distributed discrete-event simulation," ACM
Computing Surveys (CSUR), vol. 18, pp. 39-65, 1986.

[6] A. Falcone, A. Garro, A. DxAmbrogio, and A. Giglio, "Using
BPMN and HLA for SoS engineering: lessons learned and future
directions," 2018 IEEE International Systems Engineering
Symposium (ISSE), pp. 1-8, 2018.

[7] J. J. Possik, A. A. Amrani, and G. Zacharewicz, "Development of
a co-simulation system as a decision-aid in Lean tools
implementation," presented at the Proceedings of the 50th
Computer Simulation Conference, Bordeaux, France, 2018.

[8] A. Amrani, J. Possik, Y. Ducq, and G. Zacharewicz,
"Contribution to a Lean Maturity Evaluation: Leanness Metrics
Calculation," presented at the PMA 2018 - Performance
Measurement and Management in a Globally Networked World,
Warsaw, Poland, 2018.

[9] J. S. Dahmann, F. Kuhl, and R. Weatherly, "Standards for
Simulation: As Simple As Possible But Not Simpler The High
Level Architecture For Simulation," SIMULATION, vol. 71, pp.
378-387, 1998.

[10] F. Yilmaz, U. Durak, K. Taylan, and H. Oğuztüzün, "Adapting
functional mockup units for HLA-compliant distributed
simulation," in Proceedings of the 10 th International Modelica
Conference; March 10-12; 2014; Lund; Sweden, 2014, pp. 247-
257.

[11] "IEEE Standard for Modeling and Simulation (M&amp;S)
High Level Architecture (HLA)-- Framework and Rules," IEEE
Std 1516-2010 (Revision of IEEE Std 1516-2000), pp. 1-38, 2010.

[12] D. H. King and H. S. Harrison, "Open-source simulation software
“JaamSim”," in 2013 Winter Simulations Conference (WSC),
2013, pp. 2163-2171.

[13] O. M. Group. (1997-2019, March 5, 2019). Business Process
Model and Notation. Available: http://www.bpmn.org/

[14] A. Garro, A. Falcone, A. D'Ambrogio, and A. Giglio, "A Model-
Driven Method to Enable the Distributed Simulation of BPMN
Models," 2018 IEEE 27th International Conference on Enabling
Technologies: Infrastructure for Collaborative Enterprises
(WETICE), pp. 121-126, 2018.

[15] P. Bocciarelli, A. D. Ambrogio, E. Paglia, and A. Giglio, "An
HLA-based BPMN extension for the specification of business
process collaborations," in 2017 IEEE/ACM 21st International
Symposium on Distributed Simulation and Real Time
Applications (DS-RT), 2017, pp. 1-8.

[16] J. Youssef, G. Zacharewicz, D. Chen, and F. Vernadat, EOS:
enterprise operating systems, 2017.

[17] C. McLean and F. Riddick, "Simulation in the international IMS
MISSION project: the IMS MISSION architecture for distributed
manufacturing simulation," presented at the Proceedings of the
32nd conference on Winter simulation, Orlando, Florida, 2000.

[18] J. Possik, A. Amrani, and G. Zacharewicz, "WIP: Co-simulation
system serving the configuration of lean tools for a manufacturing
assembly line," presented at the Works in Progress Symposium,
WIP 2018, Part of the 2018 Spring Simulation Multiconference,
SpringSim 2018, Baltimore, United States, 2018.

[19] P. Technologies. (March 2, 2019). Pitch pRTI. Available:
http://pitchtechnologies.com/products/prti/

